
CS103 Handout 44

Winter 2016 March 7, 2016

Another Practice CS103 Final Exam

This exam is closed-book and closed-computer. You may have a double-sided, 8.5” × 11” sheet of
notes with you when you take this exam. You may not have any other notes with you during the
exam. You may not use any electronic devices during the course of this exam without prior autho-
rization from the course staff. Please write all of your solutions on this physical copy of the exam.

You are welcome to cite results from the problem sets or lectures on this exam. Just tell us what
you're citing and where you're citing it from. However, please do not cite results that are beyond the
scope of what we've covered in CS103.

On the actual exam, there'd be space here for you to write your name and sign a
statement saying you abide by the Honor Code. We're not collecting or grading this
exam (though you're welcome to step outside and chat with us about it when you're
done!) and this exam doesn't provide any extra credit, so we've opted to skip that
boilerplate.

This practice exam is formed from questions that have been given on final exams in previous quar-
ters (though not all at the same time), so it's a good representative of what you might expect to get
on the actual final exam.

(signed) ___

You have three hours to complete this exam. There are 48 total points.

Question Points Graders

(1) Induction / 4

(2) First-Order Logic / 5

(3) Sets and Functions / 5

(4) Regular Languages / 12

(5) Context-Free Languages / 3

(6) R and RE Languages / 15

(7) P and NP Languages / 4

/ 48

2 / 14

Problem One: Induction (4 Points)
(Final Exam, Spring 2015)

If you're hungry, you can make yourself a cheese sandwich by taking two pieces of bread and
putting a slice of cheese between them. If you're really hungry, you can make a cheese metasand-
wich by making two cheese sandwiches and putting a slice of cheese between them. If you're really,
really hungry, you can make a cheese meta-metasandwich by making two cheese metasandwiches
and putting a slice of cheese between them.

Formally, we can define a hierarchy of sandwich variants as follows:

• An order 0 metasandwich is a normal cheese sandwich.

• An order n+1 metasandwich consists of two order n metasandwiches with a piece of
cheese between them.

Determine formulas for the number of pieces of bread and slices of cheese in an order n metasand-
wich, then prove by induction that your formulas are correct. Your formulas should not be recur-
rence relations, by the way – it should be easy to directly evaluate your formulas to see how much
bread and cheese is necessary to make an order n metasandwich.

3 / 14

Problem Two: First-Order Logic (5 Points)
(Final Exam, Spring 2015)

Suppose we have the predicates

• Person(p), which states that p is a person, and
• Loves(p, q), which states that p loves q.

Below are a series of five English statements paired with a statement in first-order logic. For each
statement, decide whether the corresponding formula in first-order logic is a correct translation of
the English statement and check the appropriate box. There is no penalty for an incorrect guess.

Everyone loves themselves.
∀p. (Person(p) →
 ∀q. (Loves(p, q) → p = q)
)

 ☐ Correct

 ☐ Incorrect

There are two people that everyone
loves.

∀r. (Person(r) →
 ∃p. (Person(p) ∧
 ∃q. (Person(q) ∧ q ≠ p ∧
 Loves(r, p) ∧ Loves(r, q)
)
)
)

 ☐ Correct

 ☐ Incorrect

Love is a transitive relation
over the set of people.

∀p. (Person(p) ∧
 ∀q. (Person(q) ∧
 ∀r. (Person(r) ∧
 (Loves(p, q) ∧ Loves(q, r) →
 Loves(p, r)
)
)
)
)

 ☐ Correct

 ☐ Incorrect

No two people love exactly
the same set of people.

∀p. (Person(p) →
 ∀q. (Person(q) ∧ q ≠ p →
 ∃r. (Person(r) ∧
 (Loves(p, r) ↔ ¬Loves(q, r))
)
)
)

 ☐ Correct

 ☐ Incorrect

Someone doesn't love anyone.
¬∀p. (Person(p) →
 ∃q. (Person(q) ∧ Loves(p, q))
)

 ☐ Correct

 ☐ Incorrect

4 / 14

Problem Three: Sets and Functions (5 Points)
(Final Exam, Winter 2013)

There can be many functions from one set A to a second set B. This question explores how many
functions of this sort there are.

For any set S, we will denote by 2S the following set:

2S = { f | f : S → {0, 1} }

That is, 2S is the set of all functions whose domain is S and whose codomain is the set {0, 1}. Note
that 2S does not mean “two raised to the Sth power.” It's just the notation we use to denote the set of
all functions from S to {0, 1}.

Prove that if S is a nonempty set, then |2S| = |℘(S)|. To do so, find a bijection from 2S to ℘(S), then
prove that your function is a bijection. Your proof should work for all sets S, including infinite sets.

You may find the following definition useful: if f : A → B and g : A → B are functions with the
same domain and the same codomain, then we say that f = g if f(a) = g(a) for all a ∈ A.

5 / 14

(Extra space for your answer to Problem Three, if you need it.)

6 / 14

Problem Four: Regular Languages (12 Points)
(Final Exam, Fall 2011)

Consider the following language over Σ = {0, 1}:

SANDWICH = { w | w starts and ends with the same symbol, and |w| > 0 }

For example, 010 ∈ SANDWICH, 111 ∈ SANDWICH, 1 ∈ SANDWICH, and 00 ∈ SANDWICH.
However, ε ∉ SANDWICH (because it has length zero), 10 ∉ SANDWICH (because it doesn't begin
and end with the same symbol), and 0101 ∉ SANDWICH.

i. (3 Points) Design a DFA that accepts SANDWICH.

ii. (2 Points) Design a regular expression for SANDWICH.

7 / 14

(Final Exam, Fall 2014)

Let Σ = {a, b} and consider the following language over Σ:

L = { w ∈ Σ* | w has odd length and its middle character is a }

iii. (5 Points) Prove that L is not a regular language.

8 / 14

(Final Exam, Fall 2014)

As a reminder, the language L over Σ = {a, b} from the previous page was defined as follows:

L = { w ∈ Σ* | w has odd length and its middle character is a }

You just proved that this language is not regular. However, below is an NFA that purportedly has
language L:

q₀ q₁

Σ

a ε q₂

Σ

start

Here is a line of reasoning that claims that this NFA has language L:

“Intuitively, this NFA will sit in state q₀ following its Σ transition until it nondeter-
ministically guesses that it's about to read the middle a character. When it does, it
transitions to q₁, where it keeps following the Σ transition as long as more charac-
ters are available. Finally, once it's read all the characters of the input, the NFA
follows the ε transition from q₁ to q₂, where the NFA then accepts.”

Of course, this reasoning has to be incorrect, since L is not a regular language.

iv. (2 Points) Without using the fact that L is not a regular language, explain why the above
NFA is not an NFA for the language L.

9 / 14

Problem Five: Context-Free Languages (3 Points)
(Final Exam, Spring 2015)

Let Σ = {a, b} and consider the following language L over Σ:

L = { w ∈ Σ* | |w| ≡₃ 0 and all the characters in the first third of w are the same }

For example, aababa ∈ L, bbbaaaaaa ∈ L, aaa ∈ L, and ε ∈ L, but abbbbb ∉ L and aaaaa ∉ L.
(For convenience, I've underlined the first third of the characters in each string.)

Write a context-free grammar for L.

10 / 14

Problem Six: R and RE Languages (15 Points)
(Final Exam, Spring 2015)

Let Σ = {(,)}. Consider the language L = { w ∈ Σ* | w is a string of balanced parentheses }. For
example, (()) ∈ L, (())(()()) ∈ L, and ε ∈ L, but))((∉ L, ()) ∉ L, and (() ∉ L.

i. (5 Points) Design a TM that is a decider for the language L. Please draw out an actual TM
consisting of states and transitions rather than providing a high-level description of the TM.
No justification is necessary.

Some hints:

• Our solution doesn't use very many states. If you find yourself drawing out a huge TM,
you might want to reevaluate your solution.

• Rather than searching for an open parenthesis and trying to find the close parenthesis
that matches it, instead search for a close parenthesis and work backwards to find the
nearest open parenthesis.

• Remember that if a state in a TM has no transition defined for a particular character in
the tape alphabet, the TM will automatically reject if it reads that character in that
state.

11 / 14

(Final Exam, Spring 2015)

Although we typically haven't treated the class RE as a set, it is indeed a set of languages, so we
can speak of subsets of the RE languages.

Let S ⊆ RE be an arbitrary subset of the RE languages where Ø ∈ S and Σ* ∉ S. We can then de-
fine a new language LS as follows:

LS = { ⟨M⟩ | M is a TM and ℒ(M) ∈ S }

In other words, LS is the set of all TMs whose language is one of the languages included in set S.

ii. (5 Points) Prove that LS is not an RE language. As a hint, think about the following self-
referential program:

 int main() {
 string me = mySource();
 string input = getInput();

 for (int i = 0 to ∞) {
 for (each string c of length i) {
 if (imConvincedIsInLS(me, c)) {
 accept();
 }
 }
 }
}

12 / 14

(More space for Problem 7.ii, if you need it)

13 / 14

(Final Exam, Spring 2015)

iii. (5 Points) Below is a Venn diagram showing the overlap of different classes of languages
we've studied so far. We have also provided you a list of seven numbered languages. For
each of those languages, draw where in the Venn diagram that language belongs. As an ex-
ample, we've indicated where Language 1 and Language 2 should go. No proofs or justifi-
cations are necessary, and there is no penalty for an incorrect guess.

RER

ALL

1

2

1. Σ*

2. LD

3. { ⟨D, w⟩ | D is a DFA and D does not accept w }

4. { ⟨R, w⟩ | R is a regular expression and R does not match w }

5. { ⟨M, w⟩ | M is a TM and M does not accept w }

6. { ⟨M⟩ | M is a TM and M accepts ⟨M⟩ }

7. { ⟨M⟩ | M is a TM and there is no verifier for ℒ(M) }

14 / 14

Problem Seven: P and NP Languages (4 Points)
(Final Exam, Spring 2015)

In class, we saw that the language INDSET is NP-complete. If you'll recall, INDSET is defined as

INDSET = { ⟨G, k⟩ | G is an undirected graph that has an independent set of size at least k }

Now, consider the following language:

INDEPENDENCE = { ⟨G, k⟩ | G is an undirected graph and α(G) = k }

(Recall from Problem Set Four that α(G) is the size of the largest independent set in G). It turns
out that it's known that INDEPENDENCE is NP-hard, but it's not known whether it's NP-complete
because it's not known whether INDEPENDENCE ∈ NP.

Using the verifier intuition for NP, explain why it's unlikely that INDEPENDENCE ∈ NP even
though the related language INDSET is in NP. Specifically, explain at a high level how a polyno-
mial-time verifier for INDSET would work, then explain at a high level why a similar polynomial-
time verifier would not work for INDEPENDENCE. No formal proof is necessary.

