Mathematical Induction
Part One



Everybody - do the wave!



The Wave

 If done properly, everyone will eventually
end up joining in.

« Why is that?
« Someone (me!) started everyone off.

 Once the person before you did the wave,
you did the wave.



Let P be some property. The principle of mathematical
induction states that if

K\ ] oo .
1 it otarts P(0) is true aV\Ole:je sTays
True.. and

Vk € N. (P(k) -» P(k+1))
then

vVn € N. P(n)

Then i1's
always True,



Induction, Intuitively

It's true for O.
Since it's true for O, it's true for 1.

Since it's true for 1, it's true for 2.

Since it's true for 2, it

s true for 3.
Since it's true for 3, it's true for 4.

Since it's true for 4, it's true for 5.
Since it's true for 5, it's true for o.



Prootf by Induction

* A proof by induction is a way to use
mathematical induction to show that some result
is true for all natural numbers n.

« In a proof by induction, there are three steps:
« Prove that P(0) is true.

- This is called the basis or the base case.
 Prove that if P(k) is true, then P(k+1) is true.

- This is called the inductive step.

- The assumption that P(k) is true is called the inductive
hypothesis.

« Conclude, by induction, that P(n) is true for all n € N,



Some Summations



20+ 21=1+4+2=3=22-1

204+ 21 4+ 22 =1 +2+4+4=7=23-1

20 421 4224 23=14+24+4+8=15=2*-1

204 21 + 224+ 234+ 29=14+2+4+8+16=31=2>-1



Theorem: The sum of the first n powers of two is 2" - 1.

Proof: Let P(n) be the statement “the sum of the first n powers
of two is 2" - 1.” We will prove, by induction, that P(n) is
true for all n € N, from which the theorem follows.

AT the sfart of the proot, we tell the
reader whal property we're going fo show is
true tor all natural numbers n, then fell
them we're going to prove it by induction,




Theorem: The sum of the first n powers of two is 2" - 1.

Proof: Let P(n) be the statement “the sum of the first n powers
of two is 2" - 1.” We will prove, by induction, that P(n) is
true for all n € N, from which the theorem follows.

In a proof by induction, we need fo prove that

O P(o) is True
O It P(k) is true, Then P(k+1) is true.




Theorem: The sum of the first n powers of two is 2" - 1.

Proof: Let P(n) be the statement “the sum of the first n powers
of two is 2" - 1.” We will prove, by induction, that P(n) is
true for all n € N, from which the theorem follows.

For our base case, we need to show P(0) is true, meaning
that the sum of the first zero powers of two is 2° - 1.

Here, we state what P(0) acfually says. Now,
can go prove this using any proot technigues
we'd like:




Theorem: The sum of the first n powers of two is 2" - 1.

Proof: Let P(n) be the statement “the sum of the first n powers
of two is 2" - 1.” We will prove, by induction, that P(n) is
true for all n € N, from which the theorem follows.

For our base case, we need to show P(0) is true, meaning
that the sum of the first zero powers of two is 2° - 1. Since
the sum of the first zero powers of two is zero and 2° -1

is zero as well, we see that P(0) is true.

In a proof by induction, we need fo prove that

v P(o) is True
O It P(k) is true, Then P(k+1) is true.




Theorem: The sum of the first n powers of two is 2" - 1.

Proof: Let P(n) be the statement “the sum of the first n powers
of two is 2" - 1.” We will prove, by induction, that P(n) is
true for all n € N, from which the theorem follows.

For our base case, we need to show P(0) is true, meaning
that the sum of the first zero powers of two is 2° - 1. Since
the sum of the first zero powers of two is zero and 2° - 1

1S zero as well, we see that P(0) is true.

For the inductive step, assume that for some k € N that
P(k) holds, meaning that

204 2V 4+ .4 2k =22k 1, (1)
We need to show that P(k + 1) holds, meaning that the sum

Of thn £+ - b 1 2 aVatdtlatalal ~f oz dc r)k+l 1

The goal of this sfep is to prove

“If P(Kk) is true, then P(k+1) is true.”

To do this, we'll choose an arbitrary k, assume
That P(k) is true, then try To prove P(k+1),




Theorem: The sum of the first n powers of two is 2" - 1.

Proof: Let P(n) be the statement “the sum of the first n powers
of two is 2" - 1.” We will prove, by induction, that P(n) is
true for all n € N, from which the theorem follows.

For our base case, we need to show P(0) is true, meaning
that the sum of the first zero powers of two is 2° - 1. Since

the sum of the first zero powers of two is zero and 2° - 1
1S zero as well, we see that P(0) is true.

For the inductive step, assume that for some k € N that
P(k) holds, meaning that

20 4+ 2V + .+ 2K =2k -1, (1)

We need to show that P(k + 1) holds, meaning that the sum
of the first k + 1 powers of two is 2kt - 1.

Here, we explicitly stafing P(k+1), which
is what we want fo prove, Now, we can
use any proot Technigue we want fo Try
fo prove it,




Theorem: The sum of the first n powers of two is 2" - 1.

Proof: Let P(n) be the statement “the sum of the first n powers
of twq4 '

For o] (the assumpTtion that P(k) is true) To Pheaning
that tY simplify a complex expression. This is a 12-081?06
common Theme in inductive proots, Lo

For the inductive step, assume that for some k € N that
P(k) holds, meaning that
204+ 21 + .+ 2K =2k 1], (1)

We need to show that P(k + 1) holds, meaning that the sum
of the first k + 1 powers of two is 2kt - 1. To see this,
notice that

20420+ 04 2804 28 = (204 2V 4+ ... 4+ 2K1) + 2K



Theorem: The sum of the first n powers of two is 2" - 1.

Proof: Let P(n) be the statement “the sum of the first n powers
of two is 2" - 1.” We will prove, by induction, that P(n) is
true for all n € N, from which the theorem follows.

For our base case, we need to show P(0) is true, meaning
that the sum of the first zero powers of two is 2° - 1. Since
the sum of the first zero powers of two is zero and 2° -1

is zero as well, we see that P(0) is true.

For the inductive step, assume that for some k € N that
P(k) holds, meaning that
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We
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Therefore, P(k + 1) is true, completing the induction.



Theorem: The sum of the first n powers of two is 2" - 1.

Proof: Let P(n) be the statement “the sum of the first n powers
of two is 2" - 1.” We will prove, by induction, that P(n) is
true for all n € N, from which the theorem follows.

For our base case, we need to show P(0) is true, meaning
that the sum of the first zero powers of two is 2° - 1. Since
the sum of the first zero powers of two is zero and 2° -1

is zero as well, we see that P(0) is true.

For the inductive step, assume that for some k € N that
P(k) holds, meaning that

20 4+ 2V + .+ 2K =2k -1, (1)

We need to show that P(k + 1) holds, meaning that the sum
of the first k + 1 powers of two is 2k*! - 1. To see this,
notice that

20 4 21 4 . 4 2K 4 2K = (20 4 21 4 . 4 2K1) 4 D
=2k-1 42k (via (1))
=229 - 1
= 241 - 1,

Therefore, P(k + 1) is true, completing the induction. W




A Quick Aside

e This result helps explain the range of
numbers that can be stored in an int.

 If you have an unsigned 32-bit integer,

the largest value you can store is given
byl +2+4+8+ ...+ 21 =2%2-1,

e This formula for sums of powers of two
has many other uses as well. If we have
time, we'll see one later today.



Structuring a Proof by Induction

« Define some property P that you'll show, by induction, is
true for all natural numbers.

e Prove the base case:

« State that you're going to prove the property holds for O, then
go prove it.

 Prove the inductive step:

« Say that you're assuming P is true for some natural number k,
then write out exactly what that means.

« Say that you're going to prove P is true for k+1, then write out
exactly what that means.

« Prove that P is true for k+1 using any proof technique you'd
like.

« This is a rather verbose way of writing inductive proofs.
As we get more experience with induction, we'll start
leaving out some details from our proofs.



Induction, Intuitively

* You can imagine an “machine” that turns
proofs that the property holds for k into
proofs that the property holds for k + 1.

« Starting with a proof that the property holds
for 0, we can run the machine as many times
as we'd like to get proofs for 1, 2, 3, ....

« The principle of mathematical induction says
that this style of reasoning is a rigorous
argument.



The Counterteit Coin Problem



Problem Statement

* You are given a set of three seemingly
identical coins, two of which are real and
one of which is counterteit.

 The counterfeit coin weighs more than
the rest of the coins.

* You are given a balance. Using only one
weighing on the balance, find the
counterteit coin.



Finding the Counterteit Coin




Finding the Counterteit Coin




Finding the Counterteit Coin




A Harder Problem

* You are given a set of nine seemingly
identical coins, eight of which are real
and one of which is counterfeit.

 The counterfeit coin weighs more than
the rest of the coins.

* You are given a balance. Using only two
welighings on the balance, find the
counterteit coin.



Finding the Counterteit Coin

Now we have one welighing
fo find The counterteit out
of fhese three coins.,




Finding the Counterteit Coin

Now we have one welighing
fo find The counterteit out
of fhese three coins.




Finding the Counterteit Coin

Now we have one weighing
fo find The counterteit out
of fhese three coins.




If we have n weighings on the scale, what
is the largest number of coins out of which
we can find the countertfeit?



A Pattern

« Assume out of the coins that are given, exactly
one is counterteit and weighs more than the
other coins.

 If we have no weighings, how many coins can
we have while still being able to find the
counterfeit?

e One coin, since that coin has to be the countertfeit!

 If we have one weighing, we can find the
counterfeit out of three coins.

« If we have two weighings, we can find the
counterfeit out of nine coins.



So far, we have
1, 3, 9 = 39 31, 3°

Does this pattern continue?



Theorem: If exactly one coin in a group of 3" coins is heavier than the rest,
that coin can be found using only n weighings on a balance.

Proof: Let P(n) be the following statement:

If exactly one coin in a group of 3" coins is heavier than the rest,
that coin can be found using only n weighings on a balance.

We'll use induction to prove that P(n) holds for every n € N, from which
the theorem follows.

AT the starf ot the proot, we tell the
reader what property we're going fo show is
true tor all natural numbers n, then fell
them we've going to prove it by induction,




Theorem: If exactly one coin in a group of 3" coins is heavier than the rest,
that coin can be found using only n weighings on a balance.

Proof: Let P(n) be the following statement:

If exactly one coin in a group of 3" coins is heavier than the rest,
that coin can be found using only n weighings on a balance.

We'll use induction to prove that P(n) holds for every n € N, from which
the theorem follows.

In a proot by induction, we need to prove fhat

O P(o) is True
O It P(k) is true, Then P(k+1) is true.




Theorem: If exactly one coin in a group of 3" coins is heavier than the rest,
that coin can be found using only n weighings on a balance.

Proof: Let P(n) be the following statement:

If exactly one coin in a group of 3" coins is heavier than the rest,
that coin can be found using only n weighings on a balance.

We'll use induction to prove that P(n) holds for every n € N, from which
the theorem follows.

As our base case, we'll prove that P(0) is true, meaning that if we have

a set of 3°=1 coins with one coin heavier than the rest, we can find that
coin with zero weighings.

Here, we state what P(0) acfually says. Now,
can go prove this using any proot technigues
we'd like:




Theorem: If exactly one coin in a group of 3" coins is heavier than the rest,
that coin can be found using only n weighings on a balance.

Proof: Let P(n) be the following statement:

If exactly one coin in a group of 3" coins is heavier than the rest,
that coin can be found using only n weighings on a balance.

We'll use induction to prove that P(n) holds for every n € N, from which
the theorem follows.

As our base case, we'll prove that P(0) is true, meaning that if we have
a set of 3°=1 coins with one coin heavier than the rest, we can find that
coin with zero weighings. This is true because if we have just one coin,
it's vacuously heavier than all the others, and no weighings are needed.

In a proof by induction, we need fo prove that

v P(o) is True
O It P(k) is true, Then P(k+1) is true.




Theorem: If exactly one coin in a group of 3" coins is heavier than the rest,
that coin can be found using only n weighings on a balance.

Proof: Let P(n) be the following statement:

If exactly one coin in a group of 3" coins is heavier than the rest,
that coin can be found using only n weighings on a balance.

We'll use induction to prove that P(n) holds for every n € N, from which
the theorem follows.

As our base case, we'll prove that P(0) is true, meaning that if we have
a set of 3°=1 coins with one coin heavier than the rest, we can find that
coin with zero weighings. This is true because if we have just one coin,
it's vacuously heavier than all the others, and no weighings are needed.

For the inductive step, suppose that P(k) is true for some k € N, so we
can find the heavier of 3% coins in k weighings. We'll prove P(k+1): that
we can find the heavier of 3**! coins in k+1 weighings.

The goal of this step is to prove
“If P(Kk) is true, then P(k+1) is true.”

To do this, we'll choose an arbifrary k, assume
that P(k) is true, then try To prove P(k+1),




Theorem: If exactly one coin in a group of 3" coins is heavier than the rest,
that coin can be found using only n weighings on a balance.

Proof: Let P(n) be the following statement:

If exactly one coin in a group of 3" coins is heavier than the rest,
that coin can be found using only n weighings on a balance.

We'll use induction to prove that P(n) holds for every n € N, from which
the theorem follows.

As our base case, we'll prove that P(0) is true, meaning that if we have
a set of 3°=1 coins with one coin heavier than the rest, we can find that
coin with zero weighings. This is true because if we have just one coin,
it's vacuously heavier than all the others, and no weighings are needed.

For the inductive step, suppose that P(k) is true for some k € N, so we
can find the heavier of 3% coins in k weighings. We'll prove P(k+1): that
we can find the heavier of 3! coins in k+1 weighings.

Here, we explicitly state P(k+1), which is
whal we want to prove, Now, we can
use any proot Tfechnigue we want fo Try
To prove i1,




Theorem: If exactly one coin in a group of 3" coins is heavier than the rest,
that coin can be found using only n weighings on a balance.

Proof: Let P(n) be the following statement:

If exact ) ‘ :
hat d Here, we use our inductive hypothesis

We'lluse | (The assumption that P(k) is True) fo
the theort colve this simpler version of the overall

As our b b\ f we have
a set of 3 proviems, find that
coin with one coin,

it's vacuously heavier than all the others, and no weighings are needed.

For the inductive step, suppose that P(k) is true for some k € N, so we
can find the heavier of 3% coins in k weighings. We'll prove P(k+1): that
we can find the heavier of 3%*! coins in k+1 weighings.

Suppose we have 3%*! coins with one heavier than the others. Split the
coins into three groups of 3% coins each. Weigh two of the groups
against one another. If one group is heavier than the other, the coins in
that group must contain the heavier coin. Otherwise, the heavier coin
must be in the group we didn't put on the scale. Therefore, with one
weighing, we can find a group of 3% coins containing the heavy coin. We
can then use k more weighings to find the heavy coin in that group.



Theorem: If exactly one coin in a group of 3" coins is heavier than the rest,
that coin can be found using only n weighings on a balance.

Proof: Let P(n) be the following statement:

If exactly one coin in a group of 3" coins is heavier than the rest,
that coin can be found using only n weighings on a balance.

We'll use induction to prove that P(n) holds for every n € N, from which
the theorem follows.

As our base case, we! 'l prove that P(O) is true, meanmg that if we have

aset 'F 20—1 ~rNin A alata¥a athalll a¥ata a at=ta a¥a a N ~ran fino that
coinw| In a proof by induction, we need fo prove that Pin,
it's vaq ad.
For th . we
can fi v P(0) is True hat
we ca v It P(K) is True, then P(k+1) is true.

Suppo he

coins into three groups of 3% coins each. Weigh two of the groups
against one another. If one group is heavier than the other, the coins in
that group must contain the heavier coin. Otherwise, the heavier coin
must be in the group we didn't put on the scale. Therefore, with one
weighing, we can find a group of 3% coins containing the heavy coin. We
can then use k more weighings to find the heavy coin in that group.

We've given a way to use k+1 weighings and find the heavy coin out of
a group of 3**! coins. Thus P(k+1) is true, completing the induction.



Theorem: If exactly one coin in a group of 3" coins is heavier than the rest,
that coin can be found using only n weighings on a balance.

Proof: Let P(n) be the following statement:

If exactly one coin in a group of 3" coins is heavier than the rest,
that coin can be found using only n weighings on a balance.

We'll use induction to prove that P(n) holds for every n € N, from which
the theorem follows.

As our base case, we'll prove that P(0) is true, meaning that if we have
a set of 3°=1 coins with one coin heavier than the rest, we can find that
coin with zero weighings. This is true because if we have just one coin,
it's vacuously heavier than all the others, and no weighings are needed.

For the inductive step, suppose that P(k) is true for some k € N, so we
can find the heavier of 3% coins in k weighings. We'll prove P(k+1): that
we can find the heavier of 3! coins in k+1 weighings.

Suppose we have 3%*! coins with one heavier than the others. Split the
coins into three groups of 3% coins each. Weigh two of the groups
against one another. If one group is heavier than the other, the coins in
that group must contain the heavier coin. Otherwise, the heavier coin
must be in the group we didn't put on the scale. Therefore, with one
weighing, we can find a group of 3% coins containing the heavy coin. We
can then use k more weighings to find the heavy coin in that group.

We've given a way to use k+1 weighings and find the heavy coin out of
a group of 3%**! coins. Thus P(k+1) is true, completing the induction. |l



Some Fun Problems

« Suppose that you have a group of coins where
there's either exactly one heavier coin, or all
coins weigh the same amount. If you only get k
weighings, what's the largest number of coins
where you can find the counterteit or determine
none exists?

« What happens if the counterfeit can be either
heavier or lighter than the other coins? What's
the maximum number of coins where you can
find the counterfeit if you have k weighings?



Time-Out for Announcements!



Problem Set Four

 Problem Set Four checkpoint was due at
3:00PM today. That's the last checkpoint of the
quarter!

 The remaining problems are due on Friday at
the start of class.

« Make sure to start early! You've probably figured
this out by now, but these questions take time to
think over.

 Ask questions when you have them! You can ask
on Piazza or in office hours.



Midterm Exam

 The first midterm exam is next Monday,
February 8 from 7PM - 10PM, location TBA.

« Covers material from PS1 - PS3. Later
concepts will not be tested (yet).

* You're responsible for Lectures 00 - 08 and
for topics covered on PS1 - PS3.

« Students with OAE accommodations: please
contact us immediately if you need to take
the exam at an alternate time or need
extended time.



Midterm Exam

« We want you to do well on this exam. We're not
trying to weed out weak students. We're not trying
to enforce a curve where there isn't one. We want
you to show what you've learned up to this point so
that you get a sense for where you stand and where

you can improve.

 The purpose of this midterm is to give you a chance
to show what you've learned in the past month. It is
not designed to assess your “mathematical
potential” or “innate mathematical ability.”



Midterm Exam

« The exam is
» closed-book,
» closed-computer, and
« limited-note.

* You can have a single, double-sided sheet of 8.5” x 11”
paper with notes with you while you take the exam.

* You may want to start thinking about what you're
going to put on that note sheet.

* Our advice: write your own notes. The act of
creating them will help solidity your understanding.



Practice Midterm Exam

« To help you prepare for the midterm, we'll be holding a
practice midterm exam on Wednesday, 7PM - 10PM
in Bishop Auditorium.

« We've written two exams - a practice exam and a real
exam - that have similar structure and style. We'll give
you the practice midterm on Wednesday under realistic
conditions so that you can prepare for the exam.

« The TAs and I will be on hand to answer your questions.

« Can't make it? We'll release the practice exam online
and the solutions in hardcopy.



Extra Practice Problems

« We'll be releasing three sets of cumulative
review problems this week that you can use to
prepare for the exam.

 We strongly recommend working through
these practice problems. They're a great way
to get additional practice with the material and
to see where you need to study.

e Solutions will be released in class and will be
available for pickup in the Gates filing cabinet.



Advice from Generations Past

« We've released a handout (Handout 19)
containing advice from previous CS103
students about how to do well on the
exam.

 Read it over. There's some good advice in
there!



Your Questions



“Keith, how can I get better at maths?
(specifically CS103 and CS109)”

Practice, practice, practicer Gel in as much
pracTice as you can., Do the extra practice
problems, Ask the TAs to review your work
honestly but politely, Identify what skills you
need to work on, fhen focus down those

areas.




“What were some of your favorite classes
when you were an undergrad?”

I veally liked my PWR section from my freshman year

(I am a much betfer writer for the experience), 1

also enjoyed *A History of Russian Music’ (culfure!)
and *Planefary Exploration” (spacer)

On the CS side, I loved CS143, CS154, CS161/261/ 361,
and CS140, Greal classes, Highly recommended:




Back to CS103!



How Not To Induct



Something's Wrong...

Theorem: The sum of the first n powers of two is 2".

Proof: Let P(n) be the statement “the sum of the first n powers
of two is 2".” We will prove, by induction, that P(n) is
true for all n € N, from which the theorem follows.
For the inductive step, assume that for some k € N that
P(k) holds, meaning that
20 + 21 4+ ..+ 2K = 2k, (1)
We need to show that P(k + 1) holds, meaning that the sum
of the first k + 1 powers of two is 2%*!, To see this, notice
that
20+ 21 4+ 4+ 2K 4 2k = (20 + 21 + .. 4+ 2K1) + 2K
= 2k 4 2k (via (1))

Therefore, P(k + 1) is true, completing the induction. W



When writing a proot by induction,
make sure to prove the base case!

Otherwise, your argument is invalid!



Why did this work?



Theorem: The sum of the first n powers of two is 2™.
Proof: Let P(n) be the statement “the sum of the first n powers
of two is 2™.” We will prove, by induction, that P(n) is
true for all n € N, from which the theorem follows.
For the inductive step, assume that for some k € N that
P(k) holds, meaning that
204+ 21 + ..+ 2k1 = 2k, (1)

We need to show that P(k + 1) holds, meaning that the sum
of the first kK + 1 powers of two is 2!, To see this, notice
that

20 4+ 2V + 4 2K 4 2k = (20 4 21 + . 4 2K1) 4+ 2K

714 )\

You can prove anything from a
taulty assumption., This is called fhe
principle ot explosion,

Therefore, P(k + 1)




The MU Puzzle



Godel, Escher Bach:
An Eternal Golden Braid

e Pulitzer-Prize
winning book
exploring recursion,
computability, and
CONnsclousness.

« Written by Douglas
Hofstadter, cognitive
scientist at Indiana
University.

» A great (but dense!)
GODEL,ESCHER,BACH read.




The MU Puzzle

« Begin with the string MI.

 Repeatedly apply one of the following
operations:

 Double the contents of the string after the M: for
example, MIIU becomes MIIUIIU, or MI becomes MII.

 Replace III with U: MIIII becomes MUI or MIU.

« Append U to the string if it ends in I: MI becomes
MIU.

« Remove any UU: MUUU becomes MU.
* Question: How do you transform MI to MU?



MI

(@

MII

(@

MIIII

(a) Double the string after an M. i (c)

(b) Replace III with u. MIIITIU

(c) Append U, if the string ends in I. i(b)

(d) Delete uu from the string. MUTIU

(@

MUIUUIU

(@

MUIIU




Try It!

Starting with MI, apply these
operations to make MU:

(a) Double the string after an M.

(b) Replace III with u.

(c) Append U, if the string ends in I.
(d) Delete uU from the string.




Not a single person in this room
was able to solve this puzzle.

Are we even sure that there is a solution?



Counting I's

e T

10



The Key Insight

o Initially, the number of I's is not a
multiple of three.

« To make MU, the number of I's must end
up as a multiple of three.

« Can we ever make the number of I's a
multiple of three?



Lemma 1: If n is an integer that is not a multiple of three,
then n - 3 is not a multiple of three.

Proof: By contrapositive; we'll prove that if n - 3 is a multiple
of three, then n is also a multiple of three. Because n - 3 is
a multiple of three, we can write n - 3 = 3k for some
integer k. Then n = 3(k+1), so n is also a multiple of three,
as required. W

Lemma 2: If n is an integer that is not a multiple of three,
then 2n is not a multiple of three.

Proof: Let n be a number that isn't a multiple of three. If n is
congruent to one modulo three, then n = 3k + 1 for some
integer k. This means 2n = 2(3k+1) = 6k + 2 = 3(3k) + 2,
so 2n is not a multiple of three. Otherwise, n must be
congruent to two modulo three, so n = 3k + 2 for some
integer k. Then 2n = 2(3k+2) = 6k+4 = 3(2k+1) + 1, and
so 2n is not a multiple of three. B



Lemma: No matter which moves are made, the number of I's in the string
never becomes multiple of three.

Proof: Let P(n) be the statement “After any n moves, the number of I's in
the string will not be multiple of three.” We will prove, by induction, that
P(n) is true for all n € N, from which the theorem follows.

As a base case, we'll prove P(0), that the number of I's after 0 moves is
not a multiple of three. After no moves, the string is MI, which has one I in
it. Since one isn't a multiple of three, P(0) is true.

For our inductive step, suppose that P(k) is true for some k € N. We'll
prove P(k+1) is also true. Consider any sequence of k+1 moves. Let r be
the number of I's in the string after the kth move. By our inductive
hypothesis (that is, P(k)), we know that r is not a multiple of three. Now,
consider the four possible choices for the k+1% move:

Case 1: Double the string after the M. After this, we will have 2r I's
in the string, and from our lemma 2r isn't a multiple of three.

Case 2: Replace III with U. After this, we will have r - 3 I's in the string,
and by our lemma r - 3 is not a multiple of three.

Case 3: Either append U or delete UU. This preserves the number of
I's in the string, so we don't have a multiple of three I's at this point.

Therefore, no sequence of k+1 moves ends with a multiple of three I's.
Thus P(k+1) is true, completing the induction. W



Theorem: The MU puzzle has no solution.

Proof: Assume for the sake of contradiction that the MU
puzzle has a solution and that we can convert MI to
MU. This would mean that at the very end, the number
of I's in the string must be zero, which is a multiple of
three. However, we've just proven that the number of
I's in the string can never be a multiple of three.

We have reached a contradiction, so our assumption
must have been wrong. Thus the MU puzzle has no
solution. W



Algorithms and Loop Invariants

 The proof we just made had the form

« “If P is true before we perform an action, it is true
after we perform an action.”

 We could therefore conclude that after any series
of actions of any length, if P was true beforehand,
it 1s true now.

* In algorithmic analysis, this is called a loop
invariant.

« Proofs on algorithms often use loop invariants to
reason about the behavior of algorithms.

« Take CS161 for more details!



The Limits of Data Compression



Bitstrings

« A bitstring is a finite sequence of Os and
1s.

« Examples:

« 11011100
« 010101010101
« 0000
e £ (the empty string)
 There are 2n bitstrings of length n.



Data Compression

» Inside a computer, all data are represented as
sequences of 0Os and 1s (bitstrings)

 To transfer data (across a network, on DVDs, on a flash
drive, etc.), it is useful to reduce the number of 0s and
1s before transferring it.

 Most real-world data can be compressed by exploiting
redundancies.

2 "

« Text repeats common patterns (“the”, “and”, etc.)
« Bitmap images use similar colors throughout the image.

« Idea: Replace each bitstring with a shorter bitstring
that contains all the original information.

« This is called lossless data compression.



101010101010101010101010101010

1 Compress

Transmit
v

1 Decompress

101010101010101010101010101010




Lossless Data Compression

* In order to losslessly compress data, we need two
functions:

« A compression function C, and
« A decompression function D.
e We need to have D(C(x)) = x.

« Otherwise, we can't uniquely encode or decode
some bitstring.

« This means that D must be a left inverse of C, so
(as you proved in PS3!) C must be injective.



A Perfect Compression Function

 Ideally, the compressed version of a bitstring
would always be shorter than the original
bitstring.

* Question: Can we find a lossless compression
algorithm that always compresses a string
into a shorter string?

« To handle the issue of the empty string (which
can't get any shorter), let's assume we only
care about strings of length at least 10.



A Counting Argument

Let B" be the set of bitstrings of length n, and B<" be
the set of bitstrings of length less than n.

How many bitstrings of length n are there?

« Answer: 2"

How many bitstrings of length less than n are there?
« Answer: 2°+ 21 4+ .+ 201 =2n_-1

By the pigeonhole principle, no function from B” to B="
can be injective - at least two elements must collide!

Since a perfect compression function would have to be
an injection from B" to B<", there is no perfect
compression function!



Why this Result is Interesting

* Our result says that no matter how hard we try,
it is impossible to compress every string into a
shorter string.

 No matter how clever you are, you cannot write
a lossless compression algorithm that always
makes strings shorter.

 In practice, only highly redundant data can be
compressed.

 The fields of information theory and
Kolmogorov complexity explore the limits of
compression; if you're interested, go explore!



Next Time

e Variations on Induction

« Starting induction later.
« Taking larger steps.
« Complete induction.
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