

The Big Picture

Announcements

● Problem Set 9 due right now. We'll release solutions
right after lecture.

– Congratulations – you're done with CS103
problem sets!

● Please evaluate this course on Axess! Your
feedback really does make a difference.

Final Exam Logistics

● Final exam is Wednesday, March 16 from 3:30PM –
6:30PM, location TBA.
– We'll announce locations over the weekend.

– Cumulative exam – all topics are fair game for the exam
– but the questions are calibrated based on the skills
you've developed on the problem sets. The exam is
balanced at around 50% topics from PS1 – PS6 and 50%
topics from PS7 – PS9.

● Exam is closed-book, closed-computer, and limited-
note. You can have a double-sided, 8.5” × 11”
sheet of notes with you when you take the exam.

Preparing for the Exam

● By popular demand, we'll be holding a practice final
exam on Saturday at 2PM in 320-105. We'll use
the “Pracitce Final Exam” handout up on the course
website as the practice exam, so please don't look at
it if you're thinking you're going to attend. ☺

● We will be holding limited office hours next week.
Check the OH calendar for details.

● Please feel free to ask us questions on Piazza over
the next couple of days. We want you to understand
this material!

● EPP8 – EPP10 are cumulative review problems.
Solutions are available in the Gates building.

The Big Picture

The Big Picture

Cantor's Theorem: |S| < | (℘ S)|

Corollary: Unsolvable problems exist.

What problems can
be solved by computers?

First, we need to learn how to prove
results with certainty.

Otherwise, how can we know for
sure that we're right about anything?

We also should be sure we have some
rules about reasoning itself.

Let's add some logic into the mix.

Let's study a few common discrete
structures.

That way, we know how to model
connected structures and relationships.

We also need to prove things about
processes that proceed step-by-step.

So let's learn induction.

Okay! So now we're ready to go!

What problems are unsolvable?

Well, first we need a
definition of a computer!

q
0

q
1

q
2

q
3

0

 1

0

1

0

1 1

0

start

q
2

Cool! Now we have a model of a computer!

We're not quite sure what we can solve at
this point, but that's okay for now.

Let's call the languages we can capture
this way the regular languages.

I wonder what other
machines we can make?

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

Wow! Those new machines are
way cooler than our old ones!

I wonder if they're more powerful?

q₄

q₀

q₂

start

ε

 b
*{q , ₀ q }₃

a b
{q , ₁ q }₄ {q }₄

*{q , ₁ q }₄ Ø {q , ₂ q }₃

{q }₄ Ø {q }₃

*{q , ₂ q }₃ {q , ₀ q , ₃ q }₄ {q , ₀ q , ₃ q }₄

*{q }₃ {q }₄ {q }₄

*{q , ₀ q , ₃ q }₄ {q , ₁ q }₄ {q , ₃ q }₄

*{q , ₃ q }₄ {q }₄ {q , ₃ q }₄

Ø Ø Ø

a

Σ

b

q₁

q₃

Σ

Wow! I guess not. That's surprising!

So now we have a new way of modeling
computers with finite memory!

However, we have just seen that
computability (what problems can you

solve?) is not the same as complexity (how
efficiently can you solve the problem.)

I wonder how we can combine
these machines together?

start

ε

ε

ε

start

Cool! Since we can glue
machines together, we can glue

languages together as well.

How are we going to do that?

a+(.a+)*@a+(.a+)+

Wow! We've got a new way
of describing languages.

So what sorts of languages
can we describe this way?

q
s

q
f

q
f

q
1

q
2

R
12

R
21

R
11

R
22

start ε ε

ε R
11

* R
12

Awesome! We got back the
exact same class of languages.

It seems like all our models give us the
same power! Did we get every language?

xw ∈ L
yw ∉ L

Wow, I guess not.

But we did learn something cool:

We have just explored what problems
can be solved with finite memory.

So what else is out there?

Can we describe languages another way?

S → aX
X → b | C
C → Cc | ε

Awesome!

So, did we get every language yet?

|Σ*| < | (℘ Σ*)|

Hmmm... guess not.

So what if we make our
memory a little better?

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start
Go to
start

start

0 → , R☐
 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐
0 → 0, L
1 → 1, L

 → ☐ ☐, R

q
acc

q
acc

 → ☐ ☐, R

q
acc

q
rej

1 → , R☐

 → ☐ ☐, R
0 → 0, R

Cool! Can we make these
more powerful?

Wow! Looks like we can't
get any more powerful.

(The Church-Turing thesis says
that this is not a coincidence!)

So why is that?

UTM = “On input ⟨M, w⟩, where M is a TM and w ∈ Σ*:
 Set up the initial configuration of M running on w.
 while (true) {
 If M accepted w, then UTM accepts ⟨M, w⟩.
 If M rejected w, then UTM rejects ⟨M, w⟩.
 Otherwise, simulate one more step of M on w.
 }”

UTM = “On input ⟨M, w⟩, where M is a TM and w ∈ Σ*:
 Set up the initial configuration of M running on w.
 while (true) {
 If M accepted w, then UTM accepts ⟨M, w⟩.
 If M rejected w, then UTM rejects ⟨M, w⟩.
 Otherwise, simulate one more step of M on w.
 }”

Wow! Our machines can
simulate one another!

This is a theoretical justification
for why all these models are
equivalent to one another.

So... can we solve everything yet?

#include <iostream>
#include <string>
#include <vector>
using namespace std;

const vector<string> kToPrint = {
 ...
};

string mySource() {
 string result;
 for (string line: kToPrint) {
 if (line == "@") {
 for (string inLine: kToPrint) {
 result += " R\"(" + inLine + ")\",\n";
 }
 } else {
 result += line + '\n';
 }
 }
 return result;
}

int main() {
 cout << mySource() << endl;
}

Weird! Programs can gain access
to their own source code!

Why does that matter?

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Crazy! The power of self-reference
immediately limits what TMs can do!

What if we think about solving
problems in a different way?

int main() {
string me = mySource();
string input = getInput();

for (each string c) {
if (imConvincedWillLoop(me, input, c) {

accept();
}

}
}

int main() {
string me = mySource();
string input = getInput();

for (each string c) {
if (imConvincedWillLoop(me, input, c) {

accept();
}

}
}

No No Acc Acc No …

Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc …

No Acc Acc Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc No Acc …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc

Acc

Acc

No

Acc

No

…

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Oh great. Some problems
are impossible to solve.

But look what we learned along the way!

R

CFL

REG

RE

Wow. That's pretty deep.

So... what can we do efficiently?

PP

NPN P

So... how are you two related again?

No clue.

But what do we know about them?

P

 NP NP-Hard
NPC

We've gone to the absolute limits of
computing.

We've probed the limits of efficient
computation.

Congratulations on making it this far!

What's next in CS theory?

What problems can
be solved by computers?

Regular languages
Context-Free Languages

R and RE
P and NP

DFAs
NFAs

Regular Expressions
Context-Free Grammars

Recognizers
Deciders
Verifiers

Poly-time TMs/Verifiers

Formal languages

What problems can
be solved by computers?

Interactive proof systems (CS254)
Approximation algorithms (CS261/369A)

Average-case efficiency (CS264)
Randomized algorithms (CS265/254)
Parameterized complexity (CS266)

Communication complexity (CS369E)

Nondeterministic TMs (CS154)
Enumerators (CS154)

Oracle machines (CS154)
Space-Bounded TMs (CS154/254)

Machines with Advice (CS254/354)
Streaming algorithms (CS263)
μ-Recursive functions (CS258)
Quantum computers (CS259Q)

Circuit complexity (CS354)

Function problems (CS254)
Counting problems (CS254)

How do we actually get the computer
to effectively solve problems?

DFA design intuitions
Guess-and-check

Massive parallelism
Myhill-Nerode lower bounds

Verification
Polynomial-time reductions

How do we actually get the computer
to effectively solve problems?

Algorithm design (CS161)
Efficient data structures (CS166)

Modern algorithmic techniques (CS168)
Approximation algorithms (CS261/CS369A)
Average-case efficient algorithms (CS264)

Randomized algorithms (CS265)
Parameterized algorithms (CS266)

Geometric algorithms (CS268)
Game-theoretic algorithms (CS364A/B)

What mathematical structures
arise in computer science?

Sets
Propositional and First-Order Logic

Equivalence Relations
Strict Orders

Functions
Injections, Surjections, Bijections

Graphs
Planar and Bipartite Graphs
Polynomial-Time Reductions

What mathematical structures
arise in computer science?

Groups, Rings, and Fields (Math 120, CS255)
Trees (Math 108, CS161)

Graphs (Math 107)
Hash Functions (CS109, CS161, CS255)

Permutations (Math 120, CS255)
Monoids (CS149)

Lattices and Semilattices (CS143)
Control-Flow Graphs (CS143)

Vectors and Matrices (Math 113, EE103, CS205A)
Modal Logic (Phil 154, CS224M)

Mapping Reductions (CS154)

Where does CS theory
meet CS practice?

Finite state machines
Regular expressions

CFGs and programming languages
Password-checking

Secure voting
“This program is not responding”

Polynomial-time reducibility
NP-hardness and NP-completeness

Where does CS theory
meet CS practice?

Compilers (CS143)
Computational logic (CS157)

Program optimization (CS243)
Data mining (CS246)

Cryptography (CS255)
Programming languages (CS258)

Network protocol analysis (CS259)
Techniques in big data (CS263)

Graph algorithms (CS267)
Computational geometry (CS268)
Algorithmic game theory (CS364)

A Whole World of Theory Awaits!

What's being done here at Stanford?

Hardness results for easy problems
(Virginia Williams)

Algorithms ∩ Game theory
(Tim Roughgarden)

Learning patterns in randomness
(Greg Valiant)

Approximating NP-Hard Problems
(Moses Charikar)

Optimizing programs... randomly
(Alex Aiken)

Computing on encrypted data
(Dan Boneh)

Interpreting structure from shape
(Leonidas Guibas)

Lower bounds from upper bounds
(Ryan Williams)

So many options – what to do next?

Really enjoyed this class?
Give CS154 a try!

Interested in trying out CS?
Continue on to CS109!

Want to see this material come to life?
Check out CS143!

Want to tame infinity?
Dive into Math 161!

Like discrete structures?
Try Math 108!

Want to just go write code?
Take CS107!

Keep on exploring! There's
so much more to learn!

A Final “Your Questions”

“What's the wildest thing you did as an
undergrad?”

Yeah... it's not repeatable.
Sorry about that!

Yeah... it's not repeatable.
Sorry about that!

“You seem like you do an excellent job of
keeping your brain active and engaged post-
school. I'm graduating and would like to do
the same, any suggestions for how to keep

learning?”

You'd be amazed how much you pick up and learn just purely
by doing your job. Everyone I know in industry is constantly
learning new things. If you find yourself in a job that isn't
intellectually stimulating, see if you can find a better one.

Also, read a lot. Get a subscription to the New Yorker, The
Atlantic, or The Economist and make time to read it. Listen
to interesting podcasts. Take classes on Coursera or edX on
topics you know nothing about. Find YouTube channels on
things that interest you. Talk to people with different

backgrounds and experiences. The world is an exciting place!

You'd be amazed how much you pick up and learn just purely
by doing your job. Everyone I know in industry is constantly
learning new things. If you find yourself in a job that isn't
intellectually stimulating, see if you can find a better one.

Also, read a lot. Get a subscription to the New Yorker, The
Atlantic, or The Economist and make time to read it. Listen
to interesting podcasts. Take classes on Coursera or edX on
topics you know nothing about. Find YouTube channels on
things that interest you. Talk to people with different

backgrounds and experiences. The world is an exciting place!

“How can we keep in touch with you?
Realistically, how much capacity do you have
for staying in convo with your students? What

recommendations do you have for building
and maintaining actually meaningful

relationships with faculty?”

In a 385-person class there's just no way that I can stay in
touch with everyone, but that shouldn't stop you from

reaching out to me and keeping in touch! I'm still in touch
with a bunch of my students from when I first started

teaching. Stop on by and let me know how you're doing – I'd
love to hear what you're up to!

In a 385-person class there's just no way that I can stay in
touch with everyone, but that shouldn't stop you from

reaching out to me and keeping in touch! I'm still in touch
with a bunch of my students from when I first started

teaching. Stop on by and let me know how you're doing – I'd
love to hear what you're up to!

“Any TV show recommendations for those of
us looking for something to binge on over

Spring Break?”

If you haven't watched “The Wire,” go watch it. It's
phenomenal – I think it's the best TV show ever made.

David Simon's new show “Show Me a Hero” is also
fantastic. You can watch the whole thing in a day.

For really good but really dark television, watch “How to
Get Away with Murder” or “Mr. Robot.” For something

hilarious and irreverent, watch “One-Punch Man.” Or just
go on YouTube and watch all the Steph Curry highlights.

OR GO OUTSIDE. It's Spring Break!

If you haven't watched “The Wire,” go watch it. It's
phenomenal – I think it's the best TV show ever made.

David Simon's new show “Show Me a Hero” is also
fantastic. You can watch the whole thing in a day.

For really good but really dark television, watch “How to
Get Away with Murder” or “Mr. Robot.” For something

hilarious and irreverent, watch “One-Punch Man.” Or just
go on YouTube and watch all the Steph Curry highlights.

OR GO OUTSIDE. It's Spring Break!

“Do you think computers have the capacity to
be creative?”

I do. I don't think we've quite gotten
there yet, but we're getting close. A
lot of the new work done with deep

neural nets (neural artwork, AlphaGo) is
really interesting and I'm super excited

to see where they take us.

I do. I don't think we've quite gotten
there yet, but we're getting close. A
lot of the new work done with deep

neural nets (neural artwork, AlphaGo) is
really interesting and I'm super excited

to see where they take us.

“Hi Keith- I'm worried about retaining
material from past classes (wow, I guess I
forgot all of chem!) and I was wondering

which you think is more important:
information recall and easily acceding the

material, or the general process of learning to
learn.”

Most people honestly forget most of what they
learned as an undergrad. What's important is
that you know what's out there and the key
ideas. That makes it super easy to pick things
back up later on and to keep exploring beyond

what you learned the first time around.

Most people honestly forget most of what they
learned as an undergrad. What's important is
that you know what's out there and the key
ideas. That makes it super easy to pick things
back up later on and to keep exploring beyond

what you learned the first time around.

Anything else?

Final Thoughts

There are more problems to
solve than there are programs

capable of solving them.

There is so much more to explore and so
many big questions to ask – many of

which haven't been asked yet!

Theory

Practice

You now know what problems we can solve,
what problems we can't solve, and what

problems we believe we can't solve
efficiently.

My questions to you:

What problems will you choose to solve?
Why do those problems matter to you?
And how are you going to solve them?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116

