The Guide to Self-Reference

—

©

N

~X

Hi everybody:

N—

first fime you see them,

™~

Self —veference proofs can be
pretty hard to understand the

—

N—

N

It you're confused - that's okay:
It's totally normal, This stuft is

Tricky,

Once you get a betfer sense for
how To sfructure these proofs,

I think you'll find that they're not

EE bad as they initially seem,

This lecture slide was the first time
that we really saw self—reference,

and a lot of you got prefty tripped
up by what was going on, A
N

- N

Part of fhe reason why This can be

Tricky is That what you're looking at
is a finished product, It you don't
have a sense of where it comes from,

\ iT's veally hard to understand: /‘

Let's see where it comes from:
wWe'll take it from the fop,

~ N

Let's Try 1o use selt—reference
to prove that A, is undecidable,

N—

—

N—

N

AT a high level, we're going o do

a proof by contradiction,

A, €R

— —~

We're going to start off by
assuming that A, is decidable,

N—

A, €R

— —~

Somehow, we're qoing To try o
use this to gef to a contradiction,

N—

> .

Contradiction!

A, €R

— —~

It we can get a confradiction -
any contradiction - we'll see
That our assumption was wrong.

N—

> .

Contradiction!

A, €R

— —~

The challenge is figuring out
exactly how to go and do fhis,

N—

> .

Contradiction!

A, €R

~ TN
Rather than just jumping all the

way To the end, lef's see what
our inifial assumption fells us,

N—

Contradiction!

A, €R

Contradiction!

—

N—

We're assuming that A, is

N

decidable, What does that mean?

A, €R

!

There is a decider
D for A,

Contradiction!

~Well, a language is decidable if
there's a decider for it, so that

means there's some decider tor A_,.

\ Let's call That decider D.

A, €R

!

There is a decider
D for A,

Contradiction!

— —~

What might this decider look like?

N—

A, €R

!

There is a decider
D for A,

Contradiction!

Decider D
for A,

N

A decider tor a language is a
Turing machine with a few key

properties,

N—

A, €R

!

There is a decider
D for A,

Contradiction!

Decider D
for A,

—

N—

FirsT, iT has To always halt,

N

Decider D
for A,

Ay €R Q
l

There is a decider
D for A,

" That means that if you give it
any input, it has To either accept
or veject if, We'll visualize This
\wiﬂn these two possible outputs,

Contradiction!

A, €R

!

There is a decider
D for A,

Contradiction!

Decider D
for A,

—

N—

Next, the decider has To fell us

N

something about A

T™®

~X

A, €R

!

There is a decider
D for A,

Contradiction!

for A,

Decider D]<©

—

N—

Next, the decider has To fell us
something about A

T™®

N

~X

—

As a reminder, A

N—

™

is the langu

age
{{M, w) | MisaTM and M accepts w }

Ay €R Q
l Decider D
for
There is a decider B
D for A,
Specifically, the decider D needs
to fake in an input and tell us
whether that input is in A,
N—
~
As a reminder, AL, is The language
{{M, w) | MisaTM and M accepts w }
Contradiction!

A, €R

M »
l Decider D
for
There is a decider w B
D for A,

A, is a language of pairs of

TMs and strings, so D will
Take in Two inpuls, a machine

M and a STVW]Q<

—

As a reminder, A

v is the language

{{M, w) | MisaTM and M accepts w }
Contradiction!

A, €R

!

There is a decider
D for A,

Contradiction!

M Q Yes, M accepts w.
Decider D
w for ATM
~ TN

means That (M, w) is in A,

It D accepls ifs input, it

\ <
~

As a reminder, AL, is The language
{{M, w) | MisaTM and M accepts w }
N—

An € R Yes, M accepts w.

M ()
l Decider D
for
There is a decider w A
D for A, No, M does not accept w.

— —~

Otherwise, if D relects ifs input,
iT means that M doesn't accept w.

\ <
~
As a reminder, AL, is The language
{{M, w) | MisaTM and M accepts w }
Contradiction!

A, €R

!

There is a decider
D for A,

Contradiction!

M Q Yes, M accepts w.
Decider D
w for ATM
No, M does not accept w.
~ N

N—

So now we've got this TM D
lying around. What can we do

with i1?

~X

A € R Yes, M accepts w.

M ()
l Decider D
for
There is a decider w A
D for A, No, M does not accept w.

W l . We've seen the idea that TMs cam
prsgﬁigﬁlgt run other TMs as subroutines, This
use D as a helper means we can write programs that

method

__ UYse D as a subvoufm<

Contradiction!

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

Contradiction!

Yes, M accepts w.

Decider D
for A,
No, M does not accept w.

bool willAccept(string program, string input)

—

Since TMs are kinda like programs,

we

N—

N

can imagine That D is a helper
method that looks like this,

~X

€ R
B M Q Yes, M accepts w.

l Decider D
for
There is a decider w A
D for A, No, M does not accept w.
l bool willAccept(string program, string input)

We can write
programs that
use D as a helper

method ~Tn mathematics, the convention is ™
To use single=letter variable names
tor everything, which isn't good

- programming style,

Contradiction!

€ER '
Ay willAccept Yes, M accepts w.

M ()
l Decider D
for
There is a decider w A
D for A, No, M does not accept w.

l bool willAccept(string program, string input)

We can write
programs that
use D as a helper

method 7~ TN

Here, the method name
(willAccept) is just a fancier and
more descriptive name tor D,

RN

Contradiction!

cR program .
Ay willAccept Yes, M accepts w.

M ()
l Decider D
for
There is a decider w B
D for A, tnput No, M does not accept w.

l bool willAccept(string program, string input)

We can write
programs that
use D as a helper

method 7~ TN

The Two arguments to willAccept
then correspond to the inputs to
the decider D,

RN

Contradiction!

A €R progran willAccept

l M Q Yes, M accepts w.

Decider D

for
There is a decider w B
D for A, tnput No, M does not accept w.

l bool willAccept(string program, string input)

We can write
programs that
use D as a helper

method When thinking of D as a decider, >
we Think of it accepting or
rejecting. In programming—speak,
\iT's like veturning a boolean,

Contradiction!

cR program .
Ay willAccept Yes, M accepts w.

M ()
l Decider D
for
There is a decider w B
D for A, tnput No, M does not accept w.

l bool willAccept(string program, string input)

We can write
programs that
use D as a helper

method FSo at this point we've just set up>
the fact that this subroutine exists,
What exactly are we going fo do

N— with |T"?<

Contradiction!

cR program .
Ay willAccept Yes, M accepts w.

M ()
l Decider D
for
There is a decider w B
D for A, tnput No, M does not accept w.

l bool willAccept(string program, string input)

We can write
programs that
use D as a helper

method 7~ TN

Ultimately, we're trying to get
a confradiction,

RN

Contradiction!

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

@oiﬁca\\%, we're going To bm

a program — which we'll call P -
that has some really broken
behavior.. it will accept ifs inpud
it and only it i1 doesn't accept

\ iITs impuT<

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

@ou've wondering how on eavm

you were supposed To figure oud

That that's the next step, donrt

panic, The first time you see if, it
looks fotally crazy, Once you've
done this a few fimes, you'll

ge\Ta lot more comtorfable with ﬁ,f

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Now, we haven't actually written
this program P yet, Thal's the
next step.

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

It you look at what we've said,

right now we have a goal of what

P should do, not how P actually
does that,

—=<

R program ,
B willAccept Q Yes, M accepts w.

M
l Decider D
for
There is a decider w B
D for A, tnput No, M does not accept w.
l bool willAccept(string program, string input)

We can write
programs that
use D as a helper
method

o mEmmmm l ------ IS
¢ >
)}

Program P
accepts its input
if and only if
program P does
not accept its
input

You can Think ot this requirement
as a sort ot ‘design specification,”

-------—

Contradiction!

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

o mEmmmm l ------ IS
¢ >
)}

Program P
iaccepts its input
+ if and only if

' program P does
. not accept its

' input

-------—

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:

Let's actually go write out a spec
for what P needs to do:

R program ,
B willAccept Q Yes, M accepts w.

M
l Decider D
for
There is a decider w B
D for A, tnput No, M does not accept w.
l bool willAccept(string program, string input)

We can write . . .
programs that Program P design specification:

use D as a helper
method

o mEmmmm l ------ IS
¢ >
)}

Program P
accepts its input
if and only if
program P does
not accept its
input

Since This requirement is an ‘it and

only it,” we can break it down info
fwo cases.,

N—

-------—

Contradiction!

cR program .
A M willAccept Q Yes, M accepts w.

l Decider D
for
There is a decider w B
D for A, tnput No, M does not accept w.
l bool willAccept(string program, string input)

We can write . . .
programs that Program P design specification:

use D as a helper If P accepts its input, then
method P does not accept its input.

:' Program P

1 /

iaccepts its input
+ if and only if
' program P does
. not accept its

' input

First, if this program P is suppo@
fo accept ifs input, then it needs
fo not accept ifs input,

-------—

Contradiction!

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

o mEmmmm l ------ IS
¢ >
)}

Program P
iaccepts its input
+ if and only if

' program P does
. not accept its

' input

-------—

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

@T, it this program P is supposed

To not accept its input, then it
needs fo accept its input,

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

. . N
We now have a specificafion for

what program P is supposed to do,
Let's see how To wrife if:

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

/] Program P — ~~

We Il write it in the space
over to the left,

\//

N—

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

/] Program P ~~

Like most programs, our
program begins execulion
n main().

int main() {

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

// Program P —~~

Our program needs fo
get some input, so lef's
do that here.

int main() {
string input = getInput();

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

// Program P — —~~

Now, we somehow need fo
meet fThe design spec given
above,

int main() {
string input = getInput();

N—

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

// Program P — —~~

That means we need fo be
able to figure out whether
we're going To accepl,

int main() {
string input = getInput();

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

/] Program P We've got this handy method

lying around that will lef us
know whether any program will

__ accept any !Eif:iif__’,/

int main() {
string input = getInput();

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

// Program P . ~~
What if we had program P ask
whether 11 was going to accept

someThing?

\//

int main() {
string input = getInput();

N—

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

[/ Program P

— —~

Crazy as i1 seems, thal's
something we can actually do:

N— \//

int main() {
string input = getInput();

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

progranm

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

// Program P ~First, let's have our program N

get its own source code.,
(We know this is possibler We

5w how fo do iTm\c\as;.)/

int main() {
string input = getInput();
string me = mySource();

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

progranm

M willAccept Q Yes, M accepts w.
Decider D
w for ATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

/] Program P 7~ Next, let's call this magic

willAccept method to ask whether
we (program P) are going o

int main() {
string input = getInput();

string me = mySource(); .
____accepl our inpuf,

if (willAccept(me, input)) { “‘-.,_/_——’/

} else {

}

}

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

[/ Program P
Now, lef's look back at our
design specification and see whaf
we need fo do,

int main() {
string input = getInput();
string me = mySource();

if (willAccept(me, input)) {\\“ “‘-.._/_——’/
} else {
}

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:

If P accepts its input, then
P does not accept its input.

fo not accept ifs input,
if (willAccept(me, input)) {\\“ “‘-.._/_——’/

}

Our specification says That, if

this program is supposed fo
accept ifs input, then it needs

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:

If P accepts its input, then
P does not accept its input.

— —~

What's something we can do 1o
not accept our input?

if (willAccept(me, input)) {\\“ “‘-.._/_——’/

}

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M

1%

input

willAccept Q Yes, M accepts w.

Decider D
for A,

No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:

If P accepts its input, then
P does not accept its input.

—

There's a couple of opfions
here, actually, One of them is
fo just go and reject:

if (willAccept(me, input)) {\\“ “‘-.._/_——’/

reject();

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
v If P accepts its input, then
P does not accept its input.

— —~

So we've taken care of fhat
parf of fhe design,

\//

N—

if (willAccept(me, input)) {
reject();

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:

v
If P does not accept its input, then
P accepts its input.
~ N
What about this part?
— \//
else {

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
v

If P does not accept its input, then
P accepts its input.

7 This says that if we aren't

supposed fTo accept the input,
then we should accept fhe

" imPuTo-.,iiiij-"’/

else {

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:

v
If P does not accept its input, then
P accepts its input.
~ TN
So letrs go add this line to
our program,

~— \//

else {

accept();

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
v

s If P does not accept its input, then
P accepts its input.

— —~

And heyr We're done with this
part of the design spec.

\//

N—

else {
accept();

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
v If P accepts its input, then
P does not accept its input.
s If P does not accept its input, then
P accepts its input.

// Program P — —~

So let's fake a quick look over
our program P,

\//

int main() {
string input = getInput();
string me = mySource();

N—

if (willAccept(me, input)) {
reject();

} else {
accept();

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

o mEmmmm l ------ IS
¢ >
)}

Program P
accepts its input
if and only if
program P does
not accept its
input

-------—

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
v If P accepts its input, then
P does not accept its input.
s If P does not accept its input, then
P accepts its input.

[/ Program P

: . This is what we said thaf P
int main() {
string input = getInput(); was supposed fo do,
string me = mySource(); And heyr That's what it does.
if (willAccept(me, input)) {\\“ ‘-.,-~/"”/
reject();
} else {
accept();

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
v If P accepts its input, then
P does not accept its input.
s If P does not accept its input, then
P accepts its input.

// Program P — —~

The whole point of this exercise
was to gef a contradiction,

N— \//

int main() {
string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
reject();

} else {
accept();

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
v If P accepts its input, then
P does not accept its input.
s If P does not accept its input, then
P accepts its input.

/] Program P And, indeed, thaf's what we've)

doner There's a confradiction
here because P accepts it and

int main() {
string input = getInput();

string me = mySource(); T
_ only it it doesn't accept.
if (willAccept(me, input)) { ‘-.,-~/"”/
reject();
} else {
accept();

.............................
-~ Ss

.................................

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
v If P accepts its input, then
P does not accept its input.
s If P does not accept its input, then
P accepts its input.

// Program P — —~

So if you frace through fhe
implications here..

\//

int main() {
string input = getInput();
string me = mySource();

N—

if (willAccept(me, input)) {
reject();

} else {
accept();

............... l------------._
. S

‘There is a decidef“‘.l
D for A,

!

We can write
i programs that
: use D as a helper
' method '

~
..............................

"

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

| Program P design specification:

v If P accepts its input, then

P does not accept its input.
s If P does not accept its input, then
P accepts its input.

// Program P — —~

So if you frace through fhe
implications here..

\//

int main() {
string input = getInput();
string me = mySource();

N—

if (willAccept(me, input)) {
reject();

} else {
accept();

A, €R

!

There is a decider
D for A,

...........................
S

.
'l

~ We can write
i programs that
: use D as a helper
' method

l

, Program P .
. accepts its input
. ifand only if
. program P does

L4
o’

-~
..............................

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

il Program P design specification:

v If P accepts its input, then

P does not accept its input.
s If P does not accept its input, then
P accepts its input.

// Program P — ™~

So if you frace through fhe
implications here..

\//

int main() {
string input = getInput();
string me = mySource();

N—

if (willAccept(me, input)) {
reject();

} else {
accept();

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

............... L-------------_~
»* A
* LS

, Program P

. accepts its input

. ifand only if |

. program P does

i not accept its
input

!

. Contradiction!

A .
..............................

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
v If P accepts its input, then
P does not accept its input.
s If P does not accept its input, then
P accepts its input.

/] Program P — —~

So if you frace through fhe
implications here..

\//

int main() {
string input = getInput();
string me = mySource();

N—

if (willAccept(me, input)) {
reject();

} else {
accept();

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
v If P accepts its input, then
P does not accept its input.
s If P does not accept its input, then
P accepts its input.

// Program P You can see that the starting™

assumption that A, is
string input = getInput(); :
string me = mySource(): decidable leads to a

_contradiction - we're done:
if (willAccept(me, input)) { ‘*-__-/"”/

reject();
} else {
accept();

int main() {

Heve's that initial lecture
slide again,

Take a look at it more
closely,

bool willAccept(string program, string input) {
/* .. some implementation .. */

} I: Recognize This code? Now you

) , know wheve it comes from:
int main() {

string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();
} else {

accept();
}
}

bool willAccept(string program, string input) {
/* .. some implementation .. */

} I: We creafed it to gef these

contradictions,

int main() {

string me = mySource();

string input = getInput();

if (willAccept(me, input)) {

reject();
} else {

accept();
}
}

Try running this program on any input.
What happens if

... this program accepts its input?
It rejects the input!

... this program doesn't accept its input?
It accepts the input!

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
v If P accepts its input, then
P does not accept its input.
s If P does not accept its input, then
P accepts its input.

// Program P — —~

This might seem like a lot - and
in many ways it is,

\//

int main() {
string input = getInput();
string me = mySource();

N—

if (willAccept(me, input)) {
reject();

} else {
accept();

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

—

N—

The key idea here is what's
given over there on the lett

column,

\//

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

— —~

This progression comes up In
all the self—reference proofs
we've done This gquarter.,

N— \//

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

—

N—

—~

We'll do another example of

this in a liffle bit,

\//

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

Before we move on, though,
I fhought 1 d fake a minute to
falk about a few common

. %uesTions weﬂ//

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

Program P design specification:

v

If P accepts its input, then
P does not accept its input.

[/ Program P

if (willAccept(me, input)) {
reject();

TN
First, let's jump back fo this

part of the program P that
we wrofe,

N— \//

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

Program P design specification:

v

If P accepts its input, then
P does not accept its input.

[/ Program P

if (willAccept(me, input)) {
reject();

This is the case where program
P is supposed to accept itfs
input, We need fo program it

0 that it doesn ',

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

Program P design specification:

v

If P accepts its input, then
P does not accept its input.

[/ Program P

if (willAccept(me, input)) {
reject();

—~

Here, the specific way we ended
up doing that was by having
program P veject its inpud.

N— \//

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

Program P design specification:

v

If P accepts its input, then
P does not accept its input.

[/ Program P

if (willAccept(me, input)) {
reject();

—~
1 mentioned that there were

other things we could do here
as well,

N— \//

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

Program P design specification:

v

If P accepts its input, then
P does not accept its input.

[/ Program P

if (willAccept(me, input)) {

}

while (true) { }

—

Here's another option, We could
have the program go info an
infinife loop in this case,

N— \//

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

Program P design-specificaliGnsa--ucccocuaaan

/

' If P accepts its input, then E
P does not accept its input. :

[/ Program P

if (willAccept(me,

}

while (true) { }

input)) {

The design spec here says thal™
P needs fo nof accept in this
case, and indeed, fhat's what

haPPews!\//

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

Program P design specification:

v

If P accepts its input, then
P does not accept its input.

[/ Program P

if (willAccept(me, input)) {

}

while (true) { }

7 lot of people ask us whether™

this is allowed, since we were
assuming we had a decider

\amol deciders cawy

A, €R

!

There is a decider
D for A,

!

We can write . . .
programs that Program P design specification:

use D as a helper s If P accepts its input, then
method P does not accept its input.
Program P // Program P — —~

accepts its input
if and only if

program P does
not accept its

input if (willAccept(me, input)) {\ \//
l while (true) { }
}

Contradiction!

Turns out, this is fotally fine:

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

Program P design specification:

v

If P accepts its input, then
P does not accept its input.

[/ Program P

if (willAccept(me, input)) {

}

while (true) { }

—

N—

—~

There are Two different
programs here,

\//

A €R
{There is a decider
! D for A, '

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

'— --- IS

Q Yes, M accepts w.

‘------

progran willAccept
M
Decider D
w for ATM
input

No, M does not accept w.

.
)

1
|
|
|
|
|
|
|
|
|
|
l

bool willAccept(string program, string input)

Program P design specification:

v

If P accepts its input, then
P does not accept its input.

[/ Program P

if (willAccept(me,

}

while (true) { }

input)) {

N—

First, there's this decider D.

requived to halt on all inputs,

—~

D is a decider, so it's

\//

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

ot

Program P
accepts its input
if and only if
program P does

)}

'-----.~

Contradiction!

L4

V== --

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
v If P accepts its input, then
P does not accept its input.

/] Program P ¥ There's also This program P,

Program P isn't the decider
tor A, so it's nol required

: fo halt on all inputs,
: if (willAccept(me, input)) {?\“ ‘*-__-/""/
E while (true) { }

}

TS -

L 4
4
<

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
v If P accepts its input, then
P does not accept its input.

7~ 6oing Torward, remember Thal N\

these proofs involve fwo
different programs: the decider
for the language, and the

It —vet fial ,
if (willAccept(me, input)) {\“‘Se A evem|aj2z23:ii}__—’/
while (true) { }

}

[/ Program P

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
v If P accepts its input, then
P does not accept its input.

~ N

The decider is always required
fo halt, but the program P
is not.

\//

[/ Program P

N—

if (willAccept(me, input)) {
while (true) { }
}

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
v If P accepts its input, then
P does not accept its input.

~ N

Lef's undo all these changes
so That we can talk about
the next common guestion,

— —

[/ Program P

if (willAccept(me, input)) {
while (true) { }
}

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
v If P accepts its input, then
P does not accept its input.
s If P does not accept its input, then
P accepts its input.

// Program P ~
int main() {
string input = getInput();
string me = mySource();

Much better:

\//

if (willAccept(me, input)) {
reject();

} else {
accept();

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
v If P accepts its input, then
P does not accept its input.
s If P does not accept its input, then
P accepts its input.

[/ Program P

— —~

int main() {
string input = getInput();
string me = mySource();

On to the next question,

\//

N—

if (willAccept(me, input)) {
reject();

} else {
accept();

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

[/ Program P

int main() {
string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
reject();

} else {
accept();

— —~

A lot of people take a look at
The program we've written..

N— \//

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

[/ Program P

int main() {
string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
reject();

} else {
accept();

—

N—

—~

. and ask whaf happens it we

Take fhese Two lines..

\//

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

[/ Program P

int main() {
string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
accept();

} else {
reject();

—

—~

. and swap them like fhis,

\//

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

[/ Program P

int main() {
string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
accept();

} else {
reject();

—

Usually, people ask whether we
could have just done this anc
ended up proving that A, € R,

N—

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

[/ Program P

int main() {
string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
accept();

} else {
reject();

—

N—

—~

Turns out, that doesn't work.,

Let's see why,

\//

A, €R

!

There is a decider

D for A,

!

We can write
programs that
use D as a helper
method

'— ------ l ------ [N

Program P
accepts its input
if and only if
program P does
not accept its

‘------

Contradiction!

~.-----"

[/ Program P

int main() {
string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
accept();

} else {
reject();

N—

—~

Notice thal this program P
doesn't have the behavior given

over here,

\//

A, €R

!

There is a decider

D for A,

!

We can write
programs that
use D as a helper
method

v

g 5

Program P
accepts its input
if and only if
program P does
v accept its input

~

N

4

Contradiction!

\ Y

Y

[/ Program P

int main() {
string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
accept();

} else {
reject();

It you think aboul the behavior
it does have, it looks more
like This,

N— \//

A, €R

!

There is a decider

D for A,

!

We can write
programs that
use D as a helper
method

v

g 5

Program P
accepts its input
if and only if
program P does
v accept its input

~

N

4

Contradiction!

\ Y

Y

[/ Program P

int main() {
string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
accept();

} else {
reject();

—

N—

—~

Notice thal this is a true

statement.

\//

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

'

P ~»

Program P ™
accepts its input
if and only if
program P does
accept its input

L 3
.

el BN EN BN BN BN BN BN BN BN BN BN BN BN BN BN BN B ay
AN BN BN BN BN BN BN BN BN BN BN BN BN BN BN B

‘\Contradiction! S

4

[/ Program P

int main() {

}

string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
accept();

} else {
reject();

—

N—

—~

Originally, we got a contradiction

here,

\//

L 3
.

el BN EN BN BN BN BN BN BN BN BN BN BN BN BN BN BN B ay

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

'

P ~»

Program P ™
accepts its input
if and only if
program P does
accept its input

~.------------------

[/ Program P

int main() {
string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
accept();

} else {
reject();

— —~

Instead, we've shown that
we end up al a frue statement.

N— “‘-.__Jr"”/

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
accept its input

[/ Program P

int main() {
string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
accept();

} else {
reject();

—

N—

However, Take a minute To look
at the giant implication given

here.,

\//

A, €R

/] Program P — N

int main() { Overall, This shows fhat
string input = getInput();
string me = mySource();

Al,€ER - T
if (willAccept(me, input)) {\\“ “‘-.~_/_——’/

accept();
} else {
reject();

A, €R

/] Program P Does this statement say anythingd

int main() { about whether A, is decidable?
string input = getInput();
string me = mySource();

Al,€ER - T
if (willAccept(me, input)) {\\“‘ - ““-._/_——’/

accept();
} else {
reject();

A, €R

P P .
/] Program " Nope! Remember, anything)

int main() { implies a true statement,
string input = getInput();
string me = mySource();

Al,€ER - T
if (willAccept(me, input)) {\\“ “‘-.~_/_——’/

accept();
} else {
reject();

A, €R

// Program P 7~ We have no way of kmovﬂmé‘\\

int main() { 0 whether A, € R or not just
string input = getInput(); : .
string me = mySource(): by looking at this stafement,

Al,€ER - T
if (willAccept(me, input)) {\\“‘ = ““-._/_——’/

accept();
} else {
reject();

A, €R

/I Program P The fact that we didn't gef
int main() { 0 a contradiction doesn't mean
string input = getInput(); . .
string me = mySource(): that A, is decidable,

accept();
} else {
reject();

A.,ER - T
l if (willAccept(me, input)) {\\“ <—~._-~/-"’/

A, €R

[/ Program P —
int main() { Just so we don't get confused,
string input = getInput(); let's resel everything back to
string me = mySource(); how it used to be,
if (willAccept(me, input)) {\\“ *-._-~/"”/
accept();
} else {
reject();

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
v If P accepts its input, then
P does not accept its input.
s If P does not accept its input, then
P accepts its input.

// Program P ~
int main() {
string input = getInput();
string me = mySource();

Much better:

\//

if (willAccept(me, input)) {
reject();

} else {
accept();

A, €R

!

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
w fOIUATM
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
v If P accepts its input, then
P does not accept its input.
s If P does not accept its input, then
P accepts its input.

/] Program P 7~ Take a look at the general

sfructure of how we got here,
Then, let's go do another

\\‘; exampki;iiiiij__”,

int main() {
string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
reject();

} else {
accept();

— ™~

Do you remember the secure
voting problem from lecture?

N—

M is a secure voting machine
if and only if
L(M)={wEe€ {r,d}*| whas more r's than d's }

~
We said that a TM M is a

secure voling machine it it
obeys the above rule,

N—

M is a secure voting machine
if and only if
L(M)={wEe€ {r,d}*| whas more r's than d's }

— ™~

That's kind of a lot to take
in at once,

N—

M is a secure voting machine

if and only if

----- a

L(M)E= {w e {r, d}* | w has more r's than d's }

COmEm=m-

P
|
|
|

~ N
Remember — the language of a ™™

is The set of all the strings it
accepTs,

N—

M is a secure voting machine

if and only if

So really this statement means that
M accepts every string with more

r's than d's and nothing else,
N—

M is a secure voting machine
if and only if
L(M)={wEe€ {r,d}*| whas more r's than d's }

7~ Our goal was To show that it's
not possible to build a program
that can fell whether an arbifrary

M is a secure vofing machine.,

M is a secure voting machine
if and only if
L(M)={wEe€ {r,d}*| whas more r's than d's }

Nofice thal our goal was not to
show thal you can't build a secure
voTing machine,

N—

M is a secure voting machine
if and only if
L(M)={wEe€ {r,d}*| whas more r's than d's }

~ TN
It's absolutely possible to do

that,

int main() {
string input = getInput();
if (countRs(input) > countDs(input)) {
accept();
} else {
reject();
}

}

M is a secure voting machine
if and only if
L(M)={wEe€ {r,d}*| whas more r's than d's }

The hard part is being able to
fell whether an arbitrary program
is a secure voting machine,

5

int main() {
string input = getInput();
if (countRs(input) > countDs(input)) {
accept();
} else {
reject();
}

}

M is a secure voting machine

if and only if
L(M)={wEe€ {r,d}*| whas more r's than d's }
~ TN

Here's a program where no one
khows whether i1's a secure
voting machine,

N— ‘\\\\\\\:S:_—a/
int main() {

string input = getInput();

int n = countRs(input);

while (n > 1) {
if(n%¥2==0)n=n/2;
else n = 3*n + 1;

}

if (countRs(input) > countDs(input)) {
accept();

} else {
reject();

}

}

M is a secure voting machine
if and only if
L(M)={wEe€ {r,d}*| whas more r's than d's }

~ TN

You can see This because no one
knows whether This part will
always terminate,

N— ‘\\\\\\\:S:_—a/
int main() {

string input = getInput();

¢— ------------------------- L 3
"int n = countRs(input);
"while (n > 1) {
if(n%¥2==0)n=n/2;
else n = 3*n + 1;

-----’

|
|
|
|
|
\

if (countRs(input) > countDs(input)) {
accept();

} else {
reject();

}

}

M is a secure voting machine
if and only if
L(M)={wEe€ {r,d}*| whas more r's than d's }

7~ It's enfively possible that this
goes into an infinite loop on
some inpul - we're honestly

not suv?i\\\\\\\sg_,,/
int main() {

string input = getInput();

¢— ------------------------- L 3
"int n = countRs(input);
"while (n > 1) {
if(n%¥2==0)n=n/2;
else n = 3*n + 1;

-----’

} X 4

if (countRs(input) > countDs(input)) {
accept();

} else {
reject();

}

}

M is a secure voting machine
if and only if
L(M)={wEe€ {r,d}*| whas more r's than d's }

~ So, 1o recap: N

Building a secure voting machine isn*t hard,
Checking whether an arbitrary program is a

___ Secure vofing machine %

int main() {
string input = getInput();

int n = countRs(input);

while (n > 1) {
if(n%¥2==0)n=n/2;
else n = 3*n + 1;

}

if (countRs(input) > countDs(input)) {
accept();

} else {
reject();

}

}

7~ Our goal is To show thal the secure voling
problem - the problem of checking whether a
program is a secure votling machine - is

N— umdecidab\«

The secure voting
problem is
decidable.

~

Following our paftern from betfore, we'll
assume That the secure voting problem is

N—

decidable,

—

The secure voting
problem is
decidable.

-

Contradiction!

~

—

We 've ulfimately frying to gel some kind of

N—

contradiction here,

—

The secure voting
problem is
decidable.

~ N

As before, we'll fake it one step at a fime,

— —

Contradiction!

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

Contradiction!

r

—

First, since we're assuming that The secure
voting problem is decidable, we're assuming

N—

that fhere's a decider for it,

—

The secure voting

prol?lem is Decider D
decidable. for the secure
l voting problem

There is a decider
D for the secure
voting problem

So whal does that look like?

— N

Contradiction!

The secure voting

problem is M Decider D
decidable. for the secure
l voting problem

There is a decider
D for the secure
voting problem

A decider for the secure vofing problem will

Take in some TM M, which is The machine
we want to specifically check,

— L

Contradiction!

The secure voting Yes, M is a secure voting

problem is M Decider D machine.
decidable. for the secure
l voting problem _
No, M is not a secure
voting machine.

There is a decider
D for the secure
voting problem

~ N

The decider will then accept it M is a secure
voting machine and reject otherwise,

— S

Contradiction!

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

Contradiction!

M

Yes, M is a secure voting
Decider D machine.
for the secure

voting problem _
No, M is not a secure

voting machine.

~

Following our paftern from betfore, we'll
then say that we can use this decider as a

N—

subroutine in other TMs.

—

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

Contradiction!

Yes, M is a secure voting
Decider D machine.

M for the secure
voting problem _
No, M is not a secure
voting machine.
bool isSecure(string program)
~ N
In sottware, that decider D might look
something like whal's given above,
N—

—

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

Contradiction!

i1sSecure

Yes, M is a secure voting

M Decider D machine.
for the secure
voting problem _
No, M is not a secure
voting machine.
bool isSecure(string program)
~ N

Here, isSecure is just another name for the
decider D, but with a more descriptive

N—

nhame,

—

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

Contradiction!

i1sSecure . .
program Yes, M is a secure voting

M Decider D machine.
for the secure

voting problem _
No, M is not a secure

voting machine.

bool isSecure(string program)

— o TN
Its argument (program) is just a more

descriptive name tor the TM (program) qiven
as input,

— R

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

Contradiction!

i1sSecure

program Yes, M is a secure voting
M Decider D machine.

for the secure

voting problem _

No, M is not a secure
voting machine.

bool isSecure(string program)

This was the point in the previous proof where
we starfed 1o write a design spec for some

self—referential program P,

—

N—

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

Contradiction!

i1sSecure . .
program Yes, M is a secure voting

M Decider D machine.
for the secure

voting problem _
No, M is not a secure

voting machine.

bool isSecure(string program)

~ N

Previously, we wrote P to get this contradiction:
P accepts if and only if it doesn't accept.

. S

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

Contradiction!

i1sSecure . .
program Yes, M is a secure voting

M Decider D machine.
for the secure

voting problem _
No, M is not a secure

voting machine.

bool isSecure(string program)

/ . N
That was a great confradiction To get when

we had a decider that would fell us whether
a program would accept a given input,

— e

The secure voting
problem is
decidable.

- R R R RN EN ‘NN NE NN N] I
¢ l 1

EThere is a decider:
i D for the secure
voting problem !

We can write
programs that
use D as a helper
method

Contradiction!

SRS, X 4\V-Tol|Tol- SNy

L4

Yes, M is a secure voting

program ! :
M Decider D machine.
»> for the secure
i voting problem ,
' No, M is not a secure
Semmemmemmmmmmeee- voting machine.
| bool isSecure(string program)
/ . .
The problem here is Thal our decider doesn'f

N—

do that, Instead, it tells us whether a program

is a secure voting machine,

—

SRS, X 4\V-Tol|Tol- SNy

L4

The secure voting progran
problem is M
decidable.

Yes, M is a secure voting
Decider D machine.

,
[|
|
[|
» for the secure
:
[|
\ ¥

voting problem _
No, M is not a secure

JUREE— l MELEEEEEELEEEEEL voting machine.

EThere is a decideri
. D for the secure
voting problem !

bool isSecure(string program)

-------- I R ~Following the maxim of *do what you can with™
whal you have where you are,” we'll try fo
We can write set up a contradiction concerning whether a
programs that

use D as a helper ___ Prodram is or is not a vofing machine,
method <

Contradiction!

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure . .
program Yes, M is a secure voting

M Decider D machine.
for the secure

voting problem _
No, M is not a secure

voting machine.

bool isSecure(string program)

. . . \
Specifically, we're going fo build a program P

that is a secure voting machine it and only if
IT's not a secure voting machine,

— L

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure . .
program Yes, M is a secure voting

M Decider D machine.
for the secure

voting problem _
No, M is not a secure

voting machine.

bool isSecure(string program)

Geverally speaking, you'll Try to sef up a
contradiction where the program has the property
given by the decider it and only if if doesn't

have the property given %

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure . .
program Yes, M is a secure voting

M Decider D machine.
for the secure

voting problem _
No, M is not a secure

voting machine.

bool isSecure(string program)

Geverally speaking, you'll Try to sef up a
contradiction where the program has the property
given by the decider it and only if if doesn't

have the property given %

Pay atfention to thal other guy: ThaJEI

really, veally good advice:

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure . .
program Yes, M is a secure voting

M Decider D machine.

for the secure

voting problem _
No, M is not a secure

voting machine.

bool isSecure(string program)

~ N

So now we have fo figure ouf how fo write this
program P,

— S

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure . .
program Yes, M is a secure voting

M Decider D machine.
for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

~ N

As betore, let's start by writing out a design
specification for what if's supposed to do,

. N

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
machine.

program

M Decider D

for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.

~ N

This first part fakes care of the first half of
The biconditional,

—

N—

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
machine.

program

M Decider D

for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.
If P is not a secure voting machine, then
P is a secure voting machine.

~ N
This second part takes care of the other
direction.

N—

—

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
machine.

program

M Decider D

for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.
If P is not a secure voting machine, then
P is a secure voting machine.

AT this point, we have written out a spec

for what we want P fo do. All that's lett 1o
do now is to code it up:

—

N—

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure . .
program Yes, M is a secure voting

M Decider D machine.
for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.
If P is not a secure voting machine, then
P is a secure voting machine.

~1n lecture, we wrofe one particular program
that met these requirements, For the sake of
simplicity, I'm going fo wrife a different one

__ here. Don'T worry:r 11 %

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
machine.

program

M Decider D

for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.
If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

int main() { -~ Y
Our program starts off in
main(),
N

\//

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
machine.

program

M Decider D

for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.
If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

~
Lltimately, we need fo figure

out it we're a secure vofing
machine or not,

\//

int main() {

N—

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure . .
program Yes, M is a secure voting

M Decider D machine.
for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.
If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

L — ~
int matn() { The best tool we have for that

string me = mySource(); is some kind of self—=reference
trick,

N— \//

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting

progranm
machine.
M

Decider D
for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.
If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

As before, we'll use the facT™

that we have this decider lying
around fo make P figure out

__ What exacTly iTolQ//

int main() {

string me = mySource();

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
Decider D machine.
for the secure

voting problem

program
M

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.
If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

— ™~

Specifically, let's have program
P ask what if's going to do.

N— \//

int main() {

string me = mySource();

if (isSecure(me)) {

} else {

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
Decider D machine.
for the secure

voting problem

program
M

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.
If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

— ~
Let's Take it one step at a

Time.
<-._-~/-"’/

int main() {

string me = mySource();

if (isSecure(me)) {

N—

} else {

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
machine.

program

M Decider D

for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

U — ~~
tnt matn() { oddly enough, letrs look at fhe

second requirement first,
Why? 1 ask: why not?

\//

string me = mySource();

if (isSecure(me)) {

N—

} else {

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
Decider D machine.
for the secure

voting problem

program
M

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

If P is not a secure voting machine, then
P is a secure voting machine.

/] Program P This requirement says That if

The program is supposed to not
be a secure voling machine,
Then it needs fo be a secure

__ Vofing machime\.//

int main() {

string me = mySource();

if (isSecure(me)) {

} else {

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting

progranm
machine.
M

Decider D
for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

— ~~

This case is the part fhat

int main() { drops us in the ‘else” branch of

string me = mySource(); This it statement, so let's focus
on that part for now,
— _
else {
}

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
Decider D machine.
for the secure

voting problem

program
M

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

— ™~

In this specific case, we're
suppose To make P be a
secure voling machine,

int main() {

string me = mySource();

N—

else { <‘-"“~Jr——”/
} ‘
}

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
machine.

program

M Decider D

for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

~

That means we need to make P
accepl all strings with more r's
than d's and not accept

anything else,
N—

else { <‘-"“~Jr——”/
} ‘
}

int main() {

string me = mySource();

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting

progranm
machine.
M

Decider D
for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

— ™~

The good news is that, a
while back, we already saw
how To do that:

int main() {

string me = mySource();

N—

else { <‘-"“~Jr——”/
} ‘
}

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
Decider D machine.
for the secure

voting problem

program
M

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

— ™~

The code looks something like

This,

int main() {
string input = getInput();
string me = mySource();

N—
else {

if (countRs(input) > countDs(input)) accept();
else reject();
}
}

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
Decider D machine.
for the secure

voting problem

program
M

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

7~ Tust o confirm that this N
works — nofice that it the

input has more v's than d's,
we accepl if, and ofherwise

_ we veJecT.\//
else {

if (countRs(input) > countDs(input)) accept();
else reject();
}
}

int main() {
string input = getInput();
string me = mySource();

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
Decider D machine.
for the secure

voting problem

program
M

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

» If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

— ™~

Okay! So that's one of fwo
requirements down,

\//

int main() {
string input = getInput();
string me = mySource();

N—
else {

if (countRs(input) > countDs(input)) accept();
else reject();
}
}

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

program

Decider D
M for the secure
voting problem

Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

If P is a secure voting machine, then
P is not a secure voting machine.

[/ Program P

int main() {
string input = getInput();
string me = mySource();

if (isSecure(me)) {

}

— ™~

Let's move on To the other

N—

one,

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
machine.

program

M Decider D

for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.

[/ Program P

~
This says That if P is supposed

fo be a secure voling
machine, it needs to not be
a secure voting machine,

N—

} —
| o

int main() {
string input = getInput();
string me = mySource();

if (isSecure(me)) {

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
machine.

program

M Decider D

for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.

[/ Program P

— ™~

There are a lot of ways 1o gef
P to not be a secure voting
machine,

if (isSecure(me)) { \\\~¥ <‘---j_—”/
}

int main() {
string input = getInput();
string me = mySource();

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
Decider D machine.
for the secure

voting problem

program
M

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.

[/ Program P

7 We can literally do anything N
we want except accepling
all strings with more v's than
d's and not accepting

if (isSecure(me)) { _ anything ekfz;iiij_—’//
}

int main() {
string input = getInput();
string me = mySource();

i1sSecure

The secure voting program Yes, M is a secure voting
problem is M Decider D machine.
decidable. for the secure
l voting problem ,
No, M is not a secure
voting machine.

There is a decider

D for the secure bool isSecure(string program)
voting problem
Program P design specification:
l If P is a secure voting machine, then

: P is not a secure voting machine.
We can write

programs that v
use D as a helper
method // Program P B N
l O 1 Among the many things we can
int main . o
string input = getInput(): do that falls info the “literally

Program P is
secure if and only
if program P is if (isSecure(me)) { _
not secure. accept();

}

string me = mySource(); amﬂhimg else” camp would be fo
just accept everything.

Contradiction! }

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
Decider D machine.
for the secure

voting problem

program
M

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.

[/ Program P

/Notice thaf in this case, P s N

not a secure voting machine:
it accepts everything, including
a fon of sfrings if's nof

if (isS to.
i aéézpic(:t;:e(me)) { _ supposed 0\//
}

int main() {
string input = getInput();
string me = mySource();

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
machine.

program

M Decider D

for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
, If P is a secure voting machine, then
P is not a secure voting machine.

v

[/ Program P

— ™~

So we're done with fhis part
of the design:

if (isS (me)) {
h acéZDiigge " N— ‘-~__-/"”/
}

int main() {
string input = getInput();
string me = mySource();

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
Decider D machine.
for the secure

voting problem

program
M

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.
» If P is not a secure voting machine, then
P is a secure voting machine.

v

/] Program P APutting it all fogether, fake a

look af what we accomplished,
This program is a secure voting
machine if and only it it isn'd

int main() {
string input = getInput();
string me = mySource();

if (isSecure(me)) { a secure voling machine:!
accept(); ~— g\//
} else {

if (countRs(input) > countDs(input)) accept();
else reject();
}
}

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

|

Contradiction!

i1sSecure

Yes, M is a secure voting
Decider D machine.
for the secure

voting problem

program
M

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.
» If P is not a secure voting machine, then
P is a secure voting machine.

v

[/ Program P

— ™~

That gives us the confradiction
that we needed to get,

\//

int main() {
string input = getInput();
string me = mySource();

if (isSecure(me)) {
accept(); \\‘-
} else {
if (countRs(input) > countDs(input)) accept();
else reject();
}
}

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

|

Contradiction!

i1sSecure

Yes, M is a secure voting
Decider D machine.
for the secure

voting problem

program
M

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.
» If P is not a secure voting machine, then
P is a secure voting machine.

v

[/ Program P

7~ We're doner We've shown N

That starfing with the assumption
thal the secure voting problem

int main() {
string input = getInput();

string me = mySource(); : .
J y O is decidable, we reach a

ifa((:(i:(sazic(:t)fe(me)) { _ covavaolicTiOV‘o\//
} else {

if (countRs(input) > countDs(input)) accept();
else reject();
}
}

~~

Let's fake a minute fo review
the general process thatl we
followed fo get these
resulfs fo work,

— g

~~

Let's fake a minute fo review
the general process thatl we
followed fo get these
resulfs fo work,

— g

That other guy is going Toa

you a general patfern fo
follow., You might want fo

Take nofes.,
g

— ™~

Let's suppose that you want
fo prove that some language
aboul TMs is undecidable,

— g

The problem in

question is
decidable

—

N—

Start off by assuming if's

™~

decidable,

—
L

The problem in

question is
decidable

-

Contradiction!

—

™~

The goal is fo get a
contradiction,

—
L

The problem in

question is
decidable

To gel there..

—
L

Contradiction!

The problem in

question is
decidable

l

There is a decider
D for that
problem.

— ™~

The first step is to suppose
that you have a decider for
The language in gquestion,

— —

Contradiction!

The problem in

question is
decidable

l

There is a decider
D for that
problem.

Contradiction!

Decider D
for this
problem

—

N—

™~

It's otten a good idea to
draw a picture showing what

that decider looks like,

\//

The problem in

question is
decidable

l

There is a decider
D for that
problem.

Contradiction!

Decider D
for this
problem

o

N—

~~

Think aboul what The inpuls

the decider are going fo

look like, That depends on

the language.

\//

The problem in

question is
decidable

l

There is a decider
D for that
problem.

Contradiction!

M Decider D

for this
problem

— ~

In the cases we're exploring
in This class, there will always
be at least one input that's

a TM of some sort,
N

L
L

The problem in

question is
decidable

l

There is a decider
D for that
problem.

Contradiction!

"

Decider D
for this
problem

N—

7~ Next, fhink about what the

decider is going fo tell you
about those inputs, That
depends on the problem at

hamol.\//

The problem in

question is
decidable

l

There is a decider
D for that
problem.

Contradiction!

Yes, M has property X.
M Decider D
for this
roblem
S No, M doesn't have
property X.

A For example, if your language N
is the sef of TMs that have
some properTy X, then the
decider will fell you whether

\The TM has property X,

The problem in Yes, M has property X.

question is M Decider D
decidable for this
bl
l PTOLISI No, M doesn't have
property X.
There is a decider
D for that
problem.
- TN
l The next step is To think about

We can write how To use that decider as
programs that a subrouTine in some program,

use D as a helper
method ~~— \//

Contradiction!

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

Contradiction!

Yes, M has property X.

M Decider D
for this
roblem
P No, M doesn't have
property X.
~

Think abouf what fhe decider
would look like as a method
in some high—level programming
language.

— T

The problem in
question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

Contradiction!

Yes, M has property X.

M Decider D
for this
roblem
P No, M doesn't have
property X.
~

N—

You already know what inputs if's
going fTo take and whal it says,
so Try To come up with a nice,
descriptive name for the method.

\//

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

Contradiction!

M

Yes, M has property X.
Decider D
for this

roblem
P No, M doesn't have

property X.

bool hasPropertyX(string program)

7Tn this case, since our decider™
says whether The program has
some properfy X, a good name
would be something like

_ hastopev%/

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

Contradiction!

hasPropertyX

program Yes, M has property X.
M Decider D
for this
problem

No, M doesn't have
property X.

bool hasPropertyX(string program)

/IT doesn't hurt to label TD

decider D 1o show what parfs

of the decider correspond
with the method.

— —

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

Contradiction!

hasPropertyX

program Yes, M has property X.
M Decider D
for this
problem

No, M doesn't have
property X.

bool hasPropertyX(string program)

— ™~

The next step is to build a
self—vreterential program that
gives you some sort of
contradiction,

N— \//

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

l

Program P has
property X if and
only if P doesn't
have property X

Contradiction!

hasPropertyX

program Yes, M has property X.
M Decider D
for this
problem

No, M doesn't have
property X.

bool hasPropertyX(string program)

You're going to want to
get a contradiction by building a
program tThal has some properTy
X if and only if it doesn't have

some properTy X,

o

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

l

Program P has
property X if and
only if P doesn't
have property X

Contradiction!

hasPropertyX

program Yes, M has property X.
M Decider D
for this
problem

No, M doesn't have
property X.

bool hasPropertyX(string program)

- ™~

Now, you have fo figure out
how To write program P,

—

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

l

Program P has
property X if and
only if P doesn't
have property X

Contradiction!

hasPropertyX

program Yes, M has property X.
M Decider D
for this
problem

No, M doesn't have
property X.

bool hasPropertyX(string program)

Program P design specification:

We recommend wrifing out
a design specification tor fhe
program thal you're going fo

write,

— —

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

l

Program P has
property X if and
only if P doesn't
have property X

Contradiction!

hasPropertyX
program Yes, M has property X.
M Decider D
for this
roblem
P No, M doesn't have

property X.

bool hasPropertyX(string program)

Program P design specification:

If P has property X, then

P does not have property X.

If P does not have property X, then

P has property X.

—

N—

™~

You can fill out thal spec by
reasoning about both directions

ot the implication.

\//

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

l

Program P has
property X if and
only if P doesn't
have property X

Contradiction!

hasPropertyX
program Yes, M has property X.
M Decider D
for this
roblem
P No, M doesn't have

property X.

bool hasPropertyX(string program)

Program P design specification:

If P has property X, then

P does not have property X.

If P does not have property X, then

P has property X.

—

N—

™~

Finally, you have to go and
write a program That gives

you a contradiction,

\//

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

l

Program P has
property X if and
only if P doesn't
have property X

Contradiction!

hasPropertyX

Yes, M has property X.

progranm
M Decider D
for this
problem

No, M doesn't have
property X.

bool hasPropertyX(string program)

Program P design specification:
If P has property X, then
P does not have property X.
If P does not have property X, then
P has property X.

[/ Program P
/?Ei%ou follow the design spec,

you'll likely get something like
This, Filling in the blanks fakes
some creativity,

int main() {
string input = getInput();
string me = mySource();

if (hasPropertyX(me)) {
// do something so you don't
// have property X.

} else {
// Do something so you do
// have property X.

}

}

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

l

Program P has
property X if and
only if P doesn't
have property X

|

Contradiction!

hasPropertyX

progranm
M

Decider D
for this
problem

Yes, M has property X.
No, M doesn't have
property X.

bool hasPropertyX(string program)

Program P design specification:
If P has property X, then

P does not have property X.

If P does not have property X, then

P has property X.

[/ Program P

int main() {

}

string input = getInput();
string me = mySource();

if (hasPropertyX(me)) {
// do something so you don't

// have property X.

} else {
// Do something so you do

}

// have property X.

—

N

™~

And now you have a
contradiction:

\//

—

Hope this helps:

Please feel free to ask

™~

guestions it you have them,

- TN
Did you find this useful? 1f

so, let us know! We can go
and make more guides like These,

N— \//

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 208

