
  

Binary Relations
Part Two



  

Outline for Today

● Recap from Last Time
● Where are we, again?

● A Fundamental Theorem
● What do equivalence relations do?

● Strict Orders
● Representing prerequisites.

● Hasse Diagrams
● Drawing prerequisite diagrams.



  

Recap from Last Time



  

Binary Relations

● A binary relation over a set A is a predicate 
R that can be applied to ordered pairs of 
elements drawn from A.

● If R is a binary relation over A and it holds for 
the pair (a, b), we write aRb.
● For example: 3 = 3, and 5 < 7, and Ø ⊆ ℕ.

● If R is a binary relation over A and it does not 
hold for the pair (a, b), we write aRb.
● For example: 4 ≠ 3, and 4 <≮ 3, and ℕ ⊆≮ Ø.



  

Reflexivity

● Some relations always hold from any element to itself.

● Examples:
● x = x for any x.
● A ⊆ A for any set A.
● x ≡ₖ x for any x.

● Relations of this sort are called reflexive.

● Formally speaking, a binary relation R over a set A is 
reflexive if the following first-order statement is true 
about R:

∀a ∈ A. aRa   

(“Every element is related to itself.”)   



  

Reflexivity Visualized

∀a ∈ A. aRa
(“Every element is related to itself.”)



  

Symmetry

● In some relations, the relative order of the objects 
doesn't matter.

● Examples:
● If x = y, then y = x.
● If x ≡ₖ y, then y ≡ₖ x.

● These relations are called symmetric.
● Formally: a binary relation R over a set A is called 

symmetric if the following first-order statement is true 
about R:

∀a ∈ A. ∀b ∈ A. (aRb → bRa)  

(“If a is related to b, then b is related to a.”)



  

Symmetry Visualized

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)



  

Transitivity

● Many relations can be chained together.
● Examples:

● If x = y and y = z, then x = z.
● If R ⊆ S and S ⊆ T, then R ⊆ T.
● If x ≡ₖ y and y ≡ₖ z, then x ≡ₖ z.

● These relations are called transitive.
● A binary relation R over a set A is called transitive if 

the following first-order statement is true about R:

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

(“Whenever a is related to b and b is
related to c, we know a is related to c.)



  

Transitivity Visualized

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)



  

Equivalence Relations

● An equivalence relation is a relation 
that is reflexive, symmetric and 
transitive.

● Some examples:
● x = y
● x ≡ₖ y
● x has the same color as y
● x has the same shape as y.



  

New Stuff!



  

Properties of Equivalence Relations



  xRy    if    x and y have the same shape



  xTy    if    x is the same color as y



  

Equivalence Classes

● Given an equivalence relation R over a set A, for 
any x ∈ A, the equivalence class of x is the set

[x]R = { y ∈ A | xRy }

● [x]R is the set of all elements of A that are related 
to x by relation R.

● For example, consider the ≡₃ relation over ℕ. 
Then
● [0]≡₃ = {0, 3, 6, 9, 12, 15, 18, …}

● [1]≡₃ = {1, 4, 7, 10, 13, 16, 19, …}

● [2]≡₃ = {2, 5, 8, 11, 14, 17, 20, …}

● [3]≡₃ = {0, 3, 6, 9, 12, 15, 18, …}

Notice that [0]≡₃ = [3]≡₃. 
These are literally the 
same sets, so they're just 
different names for the 
same thing.

Notice that [0]≡₃ = [3]≡₃. 
These are literally the 
same sets, so they're just 
different names for the 
same thing.



  

The Fundamental Theorem of 
Equivalence Relations: Let R be an 
equivalence relation over a set A. Then 
every element a ∈ A belongs to exactly one 
equivalence class of R.



  

Proving the Theorem

● The FToER says that if R is an 
equivalence relation over a set A, then 
every a ∈ A belongs to exactly one 
equivalence class of A.

● To prove this, we will show the following:
● Every a ∈ A belongs to at least one 

equivalence class of A.
● Every a ∈ A belongs to at most one 

equivalence class of A.



  

Lemma 1: Let R be an arbitrary equivalence relation over a set A.
Then for any a ∈ A, the element a belongs to at least one
equivalence class of R.

Proof: Let R be an arbitrary equivalence relation over a set A and
choose any a ∈ A. Since R is an equivalence relation, it's
reflexive, so we know that aRa. Therefore, by definition of [a]R,
we see that a ∈ [a]R, so we see that a belongs to at least one
equivalence class of R, as required. ■



  

Lemma 2: Let R be an arbitrary equivalence relation over a set A.
Then for any a ∈ A, the element a belongs to at most one
equivalence class of R.

Proof: Let R be an arbitrary equivalence relation over a set A and
choose any a ∈ A. To show that a belongs to at most one
equivalence class of R, suppose that a ∈ [b]R and a ∈ [c]R. We will
prove that [b]R = [c]R. To do so, we will show that [b]R ⊆ [c]R and
that [c]R ⊆ [b]R.

First, we'll prove [b]R ⊆ [c]R. Consider any x ∈ [b]R. This means 
that bRx. We need to prove that x ∈ [c]R, meaning that we need 
to show that cRx holds.

Earlier, we said that a ∈ [b]R. As a result, we know that bRa. 
Since R is symmetric and we know that bRa, we conclude that 
aRb. Then, since aRb and bRx, we know that aRx via transitivity. 
Similarly, we mentioned earlier that a ∈ [c]R, which means that 
cRa. Then, since cRa and aRx, by transitivity we see that cRx. 
This is what we needed to show to conclude that [b]R ⊆ [c]R.

The proof that [c]R ⊆ [b]R is identical to the above, with the roles 
of b and c interchanged. ■

This is a general technique for proving there is 
at most one object with some property – assume 
you have two objects with the same property, 
then show that they're really the same object.

Hypothetically speaking, this might be relevant 
for the question about uniqueness on the 

problem set. ☺

This is a general technique for proving there is 
at most one object with some property – assume 
you have two objects with the same property, 
then show that they're really the same object.

Hypothetically speaking, this might be relevant 
for the question about uniqueness on the 

problem set. ☺
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This is a really useful technique for 
showing that two sets are equal!
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Equivalences and Partitions

● Our definition of equivalence relations was 
motivated by the idea of partitioning elements 
into groups.

Partition of Elements ⇒ Equivalence Relation
● The Fundamental Theorem of Equivalence 

Relations shows that the reverse direction holds 
as well!

Equivalence Relation ⇒ Partition of Elements



  

Time-Out for Announcements!



  

Problem Set One

● Problem Set One has been graded. Feedback 
is available on GradeScope.
● Please review all your feedback. Our feedback 

is designed to help you learn how to write better 
proofs.

● Make sure you understand everything we've 
written. You don't want to keep making the same 
mistakes over and over again!

● Solutions are available online – please be sure 
to review them!



  

Problem Set Two

● Problem Set Two is due on Friday at 
3:00PM.
● Can use late days to extend that deadline to 

Monday at 3:00PM.

● Please ask questions on Piazza, in office 
hours, or to the staff mailing list! We're 
here to help out.



  

Back to CS103!



  

Prerequisite Structures
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CS110
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CS161
Design and Analysis

of Algorithms
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Pancakes
 

Everyone's got a pancake recipe. This one comes from Food Wishes 
(http://foodwishes.blogspot.com/2011/08/grandma-kellys-good-old-
fashioned.html).
 

Ingredients
 

  · 1 1/2 cups all-purpose flour
  · 3 1/2 tsp baking powder
  · 1 tsp salt
  · 1 tbsp sugar
  · 1 1/4 cup milk
  · 1 egg
  · 3 tbsp butter, melted
 

Directions
 

1. Sift the dry ingredients together.
2. Stir in the butter, egg, and milk. Whisk together to form the batter.
3. Heat a large pan or griddle on medium-high heat. Add some oil.
4. Make pancakes one at a time using 1/4 cup batter each. They're ready
    to flip when the centers of the pancakes start to bubble.



  

Measure
Flour

Measure
Baking Pwdr

Measure
Salt

Measure
Sugar

Measure
Milk

Melt
Butter

Beat Egg

Combine Dry
Ingredients

Heat
Griddle

Oil
Griddle

Add Wet
Ingredients

Make
Pancakes

Serve
Pancakes



  



  

Relations and Prerequisites

● Let's imagine that we have a prerequisite 
structure with no circular dependencies.

● We can think about a binary relation R 
where aRb means

“a must happen before b”
● What properties of R could we deduce 

just from this?



  

aa

ba cb ca

∧ →

ba ab

→



  

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

∀a ∈ A. ∀b ∈ A. (aRb → bRa)



  

Irreflexivity

● Some relations never hold from any element to 
itself.

● As an example, x <≮ x for any x.

● Relations of this sort are called irreflexive.

● Formally speaking, a binary relation R over a 
set A is irreflexive if the following first-order 
logic statement is true:

∀a ∈ A. aRa   

(“No element is related to itself.”)   



  

Irreflexivity Visualized

∀a ∈ A. aRa
(“No element is related to itself.”)



  

∀a ∈ A. aRa
(“Every element is related to itself.”)

Is this relation 
reflexive?

Is this relation 
reflexive?

Nope!



  

∀a ∈ A. aRa
(“No element is related to itself.”)

Is this relation 
irreflexive?

Is this relation 
irreflexive?

Nope!



  

Reflexivity and Irreflexivity

● Reflexivity and irreflexivity are not opposites!
● Here's the definition of reflexivity:

∀a ∈ A. aRa
● What is the negation of the above statement?

∃a ∈ A. aRa
● What is the definition of irreflexivity?

∀a ∈ A. aRa



  

Bad Naming Choices

● The opposite of reflexive is “not reflexive.” 
This is not the same as “irreflexive.”

● The opposite of irreflexive is “not 
irreflexive.” This is not the same as 
“reflexive.”

● Don't let the naming conventions trip you 
up! It's unfortunate that these are the 
names we have, but, c'est la vie.



  

Asymmetry

● In some relations, the relative order of the 
objects can never be reversed.

● As an example, if x < y, then y <≮ x.
● These relations are called asymmetric.
● Formally: a binary relation R over a set A is 

called asymmetric if the following first-order 
logic statement is true:

∀a ∈ A. ∀b ∈ A. (aRb → bRa)  

(“If a relates to b, then b does not relate to a.”)



  

Asymmetry Visualized

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a relates to b, then b does not relate to a.”)



  

Question to Ponder: Are symmetry and 
asymmetry opposites of one another?



  

Strict Orders

● A strict order is a relation that is irreflexive, 
asymmetric and transitive.

● Some examples:
● x < y.
● a can run faster than b.
● A  ⊊ B (that is, A ⊆ B and A ≠ B).

● Strict orders are useful for representing 
prerequisite structures and have applications in 
complexity theory (measuring notions of relative 
hardness) and algorithms (searching and sorting)



  

Strict Order Proofs

● Let's suppose that you're asked to prove 
that a binary relation is a strict order.

● Calling back to the definition, you could 
prove that the relation is asymmetric, 
irreflexive, and transitive.

● However, there's a slightly easier 
approach we can use instead.



  

Theorem: Let R be a binary relation over a 
set A. If R is asymmetric, then R is 

irreflexive.

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

a b

X
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Theorem: Let R be a binary relation over a set A. If R
is asymmetric, then R is irreflexive.

Proof: Let R be an arbitrary asymmetric binary relation
over a set A. We will prove that R is irreflexive.

To do so, we will proceed by contradiction. Suppose 
that R is not irreflexive. That means that there must 
be some x ∈ A such that xRx. Because the relation R is 
asymmetric and xRx holds, we conclude that xRx 
holds as well. However, this is impossible, since we 
can't have both xRx and xRx.

We have reached a contradiction, so our assumption 
must have been wrong. Thus R must be reflexive. ■

What's the high-level structure of this proof?

∀R. (Asymmetric(R) → Irreflexive(R))

Therefore, we'll choose an arbitrary asymmetric
relation R, then go and prove that R is irreflexive.

What's the high-level structure of this proof?

∀R. (Asymmetric(R) → Irreflexive(R))

Therefore, we'll choose an arbitrary asymmetric
relation R, then go and prove that R is irreflexive.



  

Theorem: Let R be a binary relation over a set A. If R
is asymmetric, then R is irreflexive.

Proof: Let R be an arbitrary asymmetric binary relation
over a set A. We will prove that R is irreflexive.

To do so, we will proceed by contradiction. Suppose 
that R is not irreflexive. That means that there must 
be some x ∈ A such that x Rx. Because the relation R 
is asymmetric and xRx holds, we conclude that xRx 
holds as well. However, this is impossible, since we 
can't have both xRx and xRx.

We have reached a contradiction, so our assumption 
must have been wrong. Thus R must be reflexive. ■

What is the definition of irreflexivity?
 

∀x ∈ A. xRx
 

What is the negation of this statement?
 

∃x ∈ A. xRx
 

So let's suppose that there is some element x  ∈ A
such that xRx and proceed from there.

What is the definition of irreflexivity?
 

∀x ∈ A. xRx
 

What is the negation of this statement?
 

∃x ∈ A. xRx
 

So let's suppose that there is some element x  ∈ A
such that xRx and proceed from there.



  

Theorem: Let R be a binary relation over a set A. If R
is asymmetric, then R is irreflexive.

Proof: Let R be an arbitrary asymmetric binary relation
over a set A. We will prove that R is irreflexive.

To do so, we will proceed by contradiction. Suppose 
that R is not irreflexive. That means that there must 
be some x ∈ A such that xRx.

Since R is asymmetric, we know for any a, b ∈ A that 
if aRb holds, then bRa holds. Plugging in a=x and 
b=x, we see that if xRx holds, then xRx holds. We 
know by assumption that xRx is true, so we conclude 
that xRx holds. However, this is impossible, since we 
can't have both xRx and xRx.

We have reached a contradiction, so our assumption 
must have been wrong. Thus R must be irreflexive. ■



  

Theorem: If a binary relation R is asymmetric
and transitive, then R is a strict order.

Proof: Let R be a binary relation that is
asymmetric and transitive. Since R is
asymmetric, by our previous theorem we
know that R is also irreflexive. Therefore, R
is asymmetric, irreflexive, and transitive, so
by definition R is a strict order. ■

To prove that some binary relation R is a 
strict order, you can just prove that R is 
asymmetric and transitive. In the next 
problem set, you'll see an even simpler 

technique!

To prove that some binary relation R is a 
strict order, you can just prove that R is 
asymmetric and transitive. In the next 
problem set, you'll see an even simpler 

technique!



  

Drawing Strict Orders



  

Gold Silver Bronze

46 37 38

27 23 17

26 18 26

19 18 19

17 10 15

12 8 21

10 18 1410 18 14

9 3 9

8 12 8

8 11 10

7 6 6

7 4 6

6 6 1

6 3 2

8 7 4

8 3 4



  

(g₁, s₁, b₁) R (g₂, s₂, b₂)        if        g₁ < g₂  ∧  s₁ < s₂  ∧  b₁ < b₂

(46, 37, 38)

(26, 18, 26) (27, 23, 17)

(19, 18, 19)

(17, 10, 15)

(12, 8, 21) (10, 18, 14)



  

(g₁, s₁, b₁) R (g₂, s₂, b₂)        if        g₁ < g₂  ∧  s₁ < s₂  ∧  b₁ < b₂

(46, 37, 38)

(26, 18, 26) (27, 23, 17)

(19, 18, 19)

(17, 10, 15)

(12, 8, 21) (10, 18, 14)



  

(g₁, s₁, b₁) R (g₂, s₂, b₂)        if        g₁ < g₂  ∧  s₁ < s₂  ∧  b₁ < b₂

(46, 37, 38)

(26, 18, 26) (27, 23, 17)

(19, 18, 19)

(17, 10, 15)

(12, 8, 21) (10, 18, 14)



  

Hasse Diagrams

● A Hasse diagram is a graphical 
representation of a strict order.

● Elements are drawn from bottom-to-top.
● Higher elements are bigger than lower 

elements: by asymmetry, the edges can 
only go in one direction.

● No redundant edges: by transitivity, we 
can infer the missing edges.



  

(46, 37, 38)
379

(26, 18, 26)
210

(27, 23, 17)
221

(19, 18, 19)
168

(17, 10, 15)
130

(12, 8, 21)
105

(10, 18, 14)
118 (g₁, s₁, b₁) T (g₂, s₂, b₂)

if 

5g₁ + 3s₁ + b₁ < 5g₂ + 3s₂ + b₂
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67
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Hasse Artichokes

xRy   if   x must be eaten before y



  

Hasse Artichokes

xRy   if   x must be eaten before y



  

The Meta Strict Order

Irreflexivity

Asymmetry Transitivity Reflexivity

Strict Order Equivalence
Relation

Symmetry

aRb      if      a is less specific than b



  

The Binary Relation Editor



  

Next Time

● Functions
● How do we model transformations between 

objects?

● Injections and Surjections
● Special and highly useful classes of 

functions.

● Function Composition
● How do we combine functions together?
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