

Functions

What is a function?

Functions, High-School Edition

f(x) = x4 – 5x2 + 4

source: https://saylordotorg.github.io/text_intermediate-algebra/section_07/6aaf3a5ab540885474d58855068b64ce.png

source: http://study.com/cimages/multimages/16/asymptote_1.JPG

Functions, High-School Edition

● In high school, functions are usually given as
objects of the form

● What does a function do?
● Takes in as input a real number.
● Outputs a real number.
● … except when there are vertical asymptotes or

other discontinuities, in which case the function
doesn't output anything.

f (x) =
x3+3x2+15x+7

1−x137

Functions, CS Edition

 int flipUntil(int n) {
 int numHeads = 0;
 int numTries = 0;

 while (numHeads < n) {
 if (randomBoolean()) numHeads++;

 numTries++;
 }

 return numTries;
 }

 int flipUntil(int n) {
 int numHeads = 0;
 int numTries = 0;

 while (numHeads < n) {
 if (randomBoolean()) numHeads++;

 numTries++;
 }

 return numTries;
 }

Functions, CS Edition

● In programming, functions
● might take in inputs,
● might return values,
● might have side effects,
● might never return anything,
● might crash, and
● might return different values when called

multiple times.

What's Common?

● Although high-school math functions and
CS functions are pretty different, they
have two key aspects in common:
● They take in inputs.
● They produce outputs.

● In math, we like to keep things easy, so
that's pretty much how we're going to
define a function.

Rough Idea of a Function:

A function is an object f that takes in one
input and produces exactly one output.

(This is not a complete definition – we'll
revisit this in a bit.)

fx

f(x)

High School versus CS Functions

● In high school, functions usually were given by a rule:

f(x) = 4x + 15
● In CS, functions are usually given by code:

 int factorial(int n) {
 int result = 1;
 for (int i = 1; i <= n; i++) {
 result *= i;
 }
 return result;

 }

● What sorts of functions are we going to allow from a
mathematical perspective?

Dikdik
Nubian

Ibex
Sloth

… but also …

f(x) = x2 + 3x – 15

f (n)={ −n/2 if n is even
(n+1)/2 otherwise

Functions like these
are called piecewise

functions.

Functions like these
are called piecewise

functions.

To define a function, you will typically either

· draw a picture, or
· give a rule for determining the output.

In mathematics, functions are deterministic.

That is, given the same input, a function must
always produce the same output.

The following is a perfectly valid piece of
C++ code, but it's not a valid function under

our definition:

int randomNumber(int numOutcomes) {
 return rand() % numOutcomes;
}

One Challenge

f(x) = x2 + 2x + 5

 f(3) = 32 + 3 · 2 + 5 = 20
 f(0) = 02 + 0 · 2 + 5 = 5

 f(3) = … ?

f() =

f() = 137 …?

We need to make sure we can't apply
functions to meaningless inputs.

Domains and Codomains

● Every function f has two sets associated with it: its
domain and its codomain.

● A function f can only be applied to elements of its domain.
For any x in the domain, f(x) belongs to the codomain.

Domain Codomain

The function
must be defined

for every element
of the domain.

The function
must be defined

for every element
of the domain.

The output of the
function must

always be in the
codomain, but not
all elements of the
codomain need to

be produced.

The output of the
function must

always be in the
codomain, but not
all elements of the
codomain need to

be produced.

Domains and Codomains

● Every function f has two sets associated with it: its
domain and its codomain.

● A function f can only be applied to elements of its domain.
For any x in the domain, f(x) belongs to the codomain.

The domain of this function
is ℝ. Any real number can be

provided as input.

The domain of this function
is ℝ. Any real number can be

provided as input.

The codomain of this function is ℝ.
Everything returned is a real

number, but not all real numbers
can necessarily be returned.

The codomain of this function is ℝ.
Everything returned is a real

number, but not all real numbers
can necessarily be returned.

private double absoluteValue(double x) {
 if (x >= 0) {
 return x;
 } else {
 return -x;
 }
}

Domains and Codomains

● If f is a function whose domain is A and whose
codomain is B, we write f : A → B.

● This notation just says what the domain and
codomain of the function is. It doesn't say how the
function is evaluated.

● Think of it like a “function prototype” in C or C++.
The notation f : ArgType → RetType is like writing

RetType f(ArgType argument);

We know that f takes in an ArgType and returns a
RetType, but we don't know exactly which RetType
it's going to return for a given ArgType.

Domains and Codomains

● A function f must be defined for every element of the domain.
● For example, if f : ℝ → ℝ, then the following function is not a valid

choice for f:

f(x) = 1 / x
● The output of f on any element of its domain must be an

element of the codomain.
● For example, if f : ℝ → ℕ, then the following function is not a valid

choice for f:

f(x) = x
● However, a function f does not have to produce all possible

values in its codomain.
● For example, if f : ℕ → ℕ, then the following function is a valid

choice for f:

f(n) = n2

Defining Functions

● Typically, we specify a function by
describing a rule that maps every
element of the domain to some element of
the codomain.

● Examples:
● f(n) = n + 1, where f : ℤ → ℤ
● f(x) = sin x, where f : ℝ → ℝ
● f(x) = ⌈x⌉, where f : ℝ → ℤ

● Notice that we're giving both a rule and
the domain/codomain.

Is this a function from A to B?

A B

Stanford

Berkeley

Michigan

Arkansas

Cardinal

White

Blue

Gold

Is this a function from A to B?

California

New York

Delaware

Washington
DC

Sacramento

Dover

Albany

A B

Is this a function from A to B?

Love-a-Lot

Tenderheart

Wish

Funshine

Friend

A B

Combining Functions

People Places Prices

Keith

Anna

Shloka

Mike

Mountain View

San Francisco

Redding, CA

Barrow, AK

Far Too Much

King's Ransom

A Modest Amount

Pocket Change

Kevin
Palo Alto

f : People → Places g : Places → Prices

h : People → Prices
h(x) = g(f(x))

Function Composition

● Suppose that we have two functions
f : A → B and g : B → C.

● Notice that the codomain of f is the
domain of g. This means that we can use
outputs from f as inputs to g.

f g
f(x)

x

g(f(x))

Function Composition

● Suppose that we have two functions f : A → B
and g : B → C.

● The composition of f and g, denoted g ∘ f, is a
function where
● g ∘ f : A → C, and
● (g ∘ f)(x) = g(f(x)).

● A few things to notice:
● The domain of g ∘ f is the domain of f. Its codomain is

the codomain of g.
● Even though the composition is written g ∘ f, when

evaluating (g ∘ f)(x), the function f is evaluated first.

The name of the function is g ∘ f.
When we apply it to an input x,
we write (g ∘ f)(x). I don't know

why, but that's what we do.

The name of the function is g ∘ f.
When we apply it to an input x,
we write (g ∘ f)(x). I don't know

why, but that's what we do.

Function Composition

● Let f : ℕ → ℕ be defined as f(n) = 2n + 1 and g : ℕ → ℕ
be defined as g(n) = n2.

● What is g ∘ f?

 (g ∘ f)(n) = g(f(n))

 (g ∘ f)(n) = g(2n + 1)

 (g ∘ f)(n) = (2n + 1)2 = 4n2 + 4n + 1

● What is f ∘ g?

 (f ∘ g)(n) = f(g(n))

 (f ∘ g)(n) = f(n2)

 (f ∘ g)(n) = 2n2 + 1

● In general, if they exist, the functions g ∘ f and f ∘ g are
usually not the same function. Order matters in
function composition!

Time-Out for Announcements!

Problem Sets

● Problem Set Two was due at 3:00PM today. You can
extend the deadline using your 24-hour late days until
Monday at 3:00PM.

● Problem Set Three goes out right now.
● The checkpoint problem is due on Monday at the start of class.
● The remaining problems are due next Friday at the start of

class.
● Explore binary relations, functions, and proofs on discrete

structures!

● As always, please keep asking us questions, whether in
office hours, over Piazza, or using the staff list.

Latinos in Technology Scholarship
● “This scholarship, established with

Silicon Valley Community
Foundation (SVCF) by the Hispanic
Foundation of Silicon Valley, will
present up to 100 Latino students
with up to $30,000 in scholarship
aid to help them continue their
education in science, technology,
engineering and math (STEM)
programs. Recipients will also have
the opportunity to be placed into
internships with leading companies
in Silicon Valley.”

● More information available via
this link.

http://siliconvalleycf.org/scholarships/latinos-technology-scholarship

Problem Set One: A Common Mistake

Theorem: For any integers x, y, and k, if x ≡ₖ y, then y ≡ₖ x.

Proof: Consider any arbitrary integers x, y, and k where
x ≡ₖ y. This means that there is an integer q where
x – y = kq. We need to prove that y ≡ₖ x, meaning that we
need to prove that there is an integer r where y – x = kr.

Since y – x = kr, we see that x – y = -kr. Earlier we noted
that x – y = kq, so collectively we see that -kr = kq.
Therefore, we see that r = -q. ■

An Incorrect Proof

Theorem: For any integers x, y, and k, if x ≡ₖ y, then y ≡ₖ x.

Proof: Consider any arbitrary integers x, y, and k where
x ≡ₖ y. This means that there is an integer q where
x – y = kq. We need to prove that y ≡ₖ x, meaning that we
need to prove that there is an integer r where y – x = kr.

Since y – x = kr, we see that x – y = -kr. Earlier we noted
that x – y = kq, so collectively we see that -kr = kq.
Therefore, we see that r = -q. ■

An Incorrect Proof

We're assuming
what we're

trying to prove!

We're assuming
what we're

trying to prove!

Theorem: For any integers x, y, and k, if x ≡ₖ y, then y ≡ₖ x.

Proof: Consider any arbitrary integers x, y, and k where
x ≡ₖ y. This means that there is an integer q where
x – y = kq. We need to prove that y ≡ₖ x, meaning that we
need to prove that there is an integer r where y – x = kr.

Since x – y = kq, we see that y – x = -kq = k(-q). Therefore,
there is an integer r, namely -q, such that y – x = kr.
Consequently, we see that y ≡ₖ x, as required. ■

A Better Proof

Notice that we start with our
initial assumptions and use them
to derive the required result.

Notice that we start with our
initial assumptions and use them
to derive the required result.

General Advice

● Be careful not to assume what you're
trying to prove.

● In a proof, we recommend using the phrases
“we need to show that” or “we need to prove
that” to clearly indicate your goals.

● If you later find yourself relying on a
statement marked “we need to prove that,”
chances are you've made an error in your
proof.

Your Questions

“How do you know CS is right for you or if you're just
being sucked down the Stanford CS vortex?”

Rather than giving you positive reasons why you should stay in the field, let me
give you a list of bad reasons for leaving the field.

“Everyone has been doing this forever and I'll never catch up.” That's just not
the case. You'd be amazed how much and how quickly you'll learn.

“Everyone can do this faster than me.” Trust us, we can tell when someone
rushed through something.

“Everyone knows more than me.” Allow me to demonstrate with a visual.

“I can't do anything useful with this.” Check out biocomputation, Code the
Change, CS + Social Good, the Kapor Center, Khan Academy, 18F, etc. for
places where you can. Also look up Bill Thies, who just got a MacArthur Genius
Grant for work in this space.

“I'm scared of CS107.” CS107 is hard. It does not eat kittens. It's a very
manageable course provided that you have the right approach.

“I'm going to end up in a cubicle and I'm going to have to work there until I
die! Aaaahhh!!” Don't worry! You have a lot of control over what job you get!
And avoid “minivanning” - it can really mess with your head!

Rather than giving you positive reasons why you should stay in the field, let me
give you a list of bad reasons for leaving the field.

“Everyone has been doing this forever and I'll never catch up.” That's just not
the case. You'd be amazed how much and how quickly you'll learn.

“Everyone can do this faster than me.” Trust us, we can tell when someone
rushed through something.

“Everyone knows more than me.” Allow me to demonstrate with a visual.

“I can't do anything useful with this.” Check out biocomputation, Code the
Change, CS + Social Good, the Kapor Center, Khan Academy, 18F, etc. for
places where you can. Also look up Bill Thies, who just got a MacArthur Genius
Grant for work in this space.

“I'm scared of CS107.” CS107 is hard. It does not eat kittens. It's a very
manageable course provided that you have the right approach.

“I'm going to end up in a cubicle and I'm going to have to work there until I
die! Aaaahhh!!” Don't worry! You have a lot of control over what job you get!
And avoid “minivanning” - it can really mess with your head!

Back to CS103!

Special Types of Functions

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

♀
☿

♂
♃
♄
♅
♆

♀

Injective Functions

● A function f : A → B is called injective (or one-to-one) if
the following first-order logic statement is true about f:

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

(“If the inputs are different, the outputs are different.”)

● The following first-order logic definition is equivalent and
tends to be more useful in proofs:

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

● A function with this property is called an injection.

● Intuitively, in an injection, every element of the codomain
has at most one element of the domain mapping to it.

Injective Functions

Theorem: Let f : ℕ → ℕ be defined as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₀, n₁ ∈ ℕ where f(n₀) = f(n₁). We
will prove that n₀ = n₁.

Since f(n₀) = f(n₁), we see that

2n₀ + 7 = 2n₁ + 7.
This in turn means that

2n₀ = 2n₁,

so n₀ = n₁, as required. ■

What does it mean for the function f to be
injective?

∀n₁ ∈ ℕ. ∀n₂ ∈ ℕ. (f(n₁) = f(n₂) → n₁ = n₂)

∀n₁ ∈ ℕ. ∀n₂ ∈ ℕ. (n₁ ≠ n₂ → f(n₁) ≠ f(n₂))

Therefore, we'll pick arbitrary n₁, n₂ ∈ ℕ
where f(n₁) = f(n₂), then prove that n₁ = n₂.

What does it mean for the function f to be
injective?

∀n₁ ∈ ℕ. ∀n₂ ∈ ℕ. (f(n₁) = f(n₂) → n₁ = n₂)

∀n₁ ∈ ℕ. ∀n₂ ∈ ℕ. (n₁ ≠ n₂ → f(n₁) ≠ f(n₂))

Therefore, we'll pick arbitrary n₁, n₂ ∈ ℕ
where f(n₁) = f(n₂), then prove that n₁ = n₂.

Injective Functions

Theorem: Let f : ℕ → ℕ be defined as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₁, n₂ ∈ ℕ where f(n₁) = f(n₂). We
will prove that n₁ = n₂.

Since f(n₁) = f(n₂), we see that

2n₁ + 7 = 2n₂ + 7.
This in turn means that

2n₁ = 2n₂,

so n₁ = n₂, as required. ■

Injective Functions

Theorem: Let f : ℤ → ℕ be defined as f(x) = x4. Then f
is not injective.

Proof: We will prove that there exist integers x₀ and x₁
such that x₀ ≠ x₁, but f(x₀) = f(x₁).

 Let x₀ = -1 and x₁ = +1. Then

f(x₀) = f(-1) = (-1)4 = 1

and

f(x₁) = f(1) = 14 = 1,

so f(x₀) = f(x₁) even though x₀ ≠ x₁, as required. ■

What does it mean for f to be injective?

∀x₁ ∈ ℤ. ∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))

What is the negation of this statement?

¬∀x₁ ∈ ℤ. ∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∃x₁ ∈ ℤ. ¬∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∃x₁ ∈ ℤ. ∃x₂ ∈ ℤ. ¬(x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∃x₁ ∈ ℤ. ∃x₂ ∈ ℤ. (x₁ ≠ x₂ ∧ ¬(f(x₁) ≠ f(x₂)))
∃x₁ ∈ ℤ. ∃x₂ ∈ ℤ. (x₁ ≠ x₂ ∧ f(x₁) = f(x₂))

Therefore, we need to find x₁, x₂ ∈ ℤ such that x₁ ≠ x₂, but
f(x₁) = f(x₂). Can we do that?

What does it mean for f to be injective?

∀x₁ ∈ ℤ. ∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))

What is the negation of this statement?

¬∀x₁ ∈ ℤ. ∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∃x₁ ∈ ℤ. ¬∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∃x₁ ∈ ℤ. ∃x₂ ∈ ℤ. ¬(x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∃x₁ ∈ ℤ. ∃x₂ ∈ ℤ. (x₁ ≠ x₂ ∧ ¬(f(x₁) ≠ f(x₂)))
∃x₁ ∈ ℤ. ∃x₂ ∈ ℤ. (x₁ ≠ x₂ ∧ f(x₁) = f(x₂))

Therefore, we need to find x₁, x₂ ∈ ℤ such that x₁ ≠ x₂, but
f(x₁) = f(x₂). Can we do that?

Injective Functions

Theorem: Let f : ℤ → ℕ be defined as f(x) = x4. Then f
is not injective.

Proof: We will prove that there exist integers x₁ and x₂
such that x₁ ≠ x₂, but f(x₁) = f(x₂).

Let x₁ = -1 and x₂ = +1. Then

f(x₁) = f(-1) = (-1)4 = 1

and

f(x₂) = f(1) = 14 = 1,

so f(x₁) = f(x₂) even though x₁ ≠ x₂, as required. ■

Injections and Composition

Injections and Composition

● Theorem: If f : A → B is an injection and
g : B → C is an injection, then the
function g ∘ f : A → C is an injection.

● Our goal will be to prove this result. To
do so, we're going to have to call back to
the formal definitions of injectivity and
function composition.

Theorem: If f : A → B is an injection and g : B → C is an
injection, then the function g ∘ f : A → C is also an
injection.

Proof: Let f : A → B and g : B → C be arbitrary injections. We
will prove that the function g ∘ f : A → C is also injective.
To do so, we will prove for all a₁ ∈ A and a₂ ∈ A that if
(g ∘ f)(a₁) = (g ∘ f)(a₂), then a₁ = a₂.

Suppose that (g ∘ f)(a₁) = (g ∘ f)(a₂). Expanding out the
definition of g ∘ f, this means that g(f(a₁)) = g(f(a₂)). Since
g is injective and g(f(a₁)) = g(f(a₂)), we know f(a₁) = f(a₂).
Similarly, since f is injective and f(a₁) = f(a₂), we know that
a₁ = a₂, as required. ■

What does it mean for g ∘ f : A → C to be injective?

There are two equivalent definitions, actually!

∀a₁ ∈ A. ∀a₂ ∈ A. ((g ∘ f)(a₁) = (g ∘ f)(a₂) → a₁ = a₂)

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → (g ∘ f)(a₁) ≠ (g ∘ f)(a₂))

Therefore, we'll choose arbitrary a ₁ ∈ A and a ₂ ∈ A where
a ₁ ≠ a , then prove that (₂ g ∘ f)(a) (₁ ≠ g ∘ f)(a).₂

What does it mean for g ∘ f : A → C to be injective?

There are two equivalent definitions, actually!

∀a₁ ∈ A. ∀a₂ ∈ A. ((g ∘ f)(a₁) = (g ∘ f)(a₂) → a₁ = a₂)

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → (g ∘ f)(a₁) ≠ (g ∘ f)(a₂))

Therefore, we'll choose arbitrary a ₁ ∈ A and a ₂ ∈ A where
a ₁ ≠ a , then prove that (₂ g ∘ f)(a) (₁ ≠ g ∘ f)(a).₂

Theorem: If f : A → B is an injection and g : B → C is an
injection, then the function g ∘ f : A → C is also an
injection.

Proof: Let f : A → B and g : B → C be arbitrary injections. We
will prove that the function g ∘ f : A → C is also injective.
To do so, we will prove for all a₁ ∈ A and a₂ ∈ A that if
a₁ ≠ a₂, then (g ∘ f)(a₁) ≠ (g ∘ f)(a₂). Equivalently, we need
show that if a₁ ≠ a₂, then g(f(a₁)) ≠ g(f(a₂)).

Consider any arbitrary a₁, a₂ ∈ A where a₁ ≠ a₂. Since f is
injective, we know that f(a₁) ≠ f(a₂). Similarly, since g is
injective, we know that g(f(a₁)) ≠ g(f(a₂)), as required. ■

A B C

f g

a₁

a₂

f(a₁)

f(a₂)

g(f(a₁))

g(f(a₂))Good exercise: Repeat
this proof using the other
definition of injectivity.

Good exercise: Repeat
this proof using the other
definition of injectivity.

Another Class of Functions

California

Washington

Oregon

Mt. Lassen

Mt. Shasta

Mt. St. Helens

Mt. Hood

Surjective Functions

● A function f : A → B is called surjective (or
onto) if this first-order logic statement is true
about f:

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every possible output, there's at least one
possible input that produces it”)

● A function with this property is called a
surjection.

● Intuitively, every element in the codomain of a
surjection has at least one element of the
domain mapping to it.

Surjective Functions

Theorem: Let f : ℝ → ℝ be defined as f(x) = x / 2. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = 2y. Then we see that

f(x) = f(2y) = 2y / 2 = y.

So f(x) = y, as required. ■

What does it mean for f to be surjective?

∀y ∈ ℝ. ∃x ∈ ℝ. f(x) = y

Therefore, we'll choose an arbitrary y ∈ ℝ,
then prove that there is some x ∈ ℝ where
f(x) = y.

What does it mean for f to be surjective?

∀y ∈ ℝ. ∃x ∈ ℝ. f(x) = y

Therefore, we'll choose an arbitrary y ∈ ℝ,
then prove that there is some x ∈ ℝ where
f(x) = y.

Surjective Functions

Theorem: Let f : ℝ → ℝ be defined as f(x) = x / 2. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = 2y. Then we see that

f(x) = f(2y) = 2y / 2 = y.

So f(x) = y, as required. ■

Composing Surjections

Theorem: If f : A → B is surjective and g : B → C is surjective,
then g ∘ f : A → C is also surjective.

Proof: Let f : A → B and g : B → C be arbitrary surjections.
We will prove that the function g ∘ f : A → C is also
surjective. To do so, we will prove that for any c ∈ C, there
is some a ∈ A such that (g ∘ f)(a) = c. Equivalently, we
will prove that for any c ∈ C, there is some a ∈ A such that
g(f(a)) = c.

Consider any c ∈ C. Since g : B → C is surjective, there is
some b ∈ B such that g(b) = c. Similarly, since f : A → B is
surjective, there is some a ∈ A such that f(a) = b. This
means that there is some a ∈ A such that

g(f(a)) = g(b) = c,

which is what we needed to show. ■

What does it mean for g ∘ f : A → C to be surjective?

∀c ∈ C. ∃a ∈ A. (g ∘ f)(a) = c

Therefore, we'll choose arbitrary c ∈ C and prove that there
is some a ∈ A such that (g ∘ f)(a) = c.

What does it mean for g ∘ f : A → C to be surjective?

∀c ∈ C. ∃a ∈ A. (g ∘ f)(a) = c

Therefore, we'll choose arbitrary c ∈ C and prove that there
is some a ∈ A such that (g ∘ f)(a) = c.

Theorem: If f : A → B is surjective and g : B → C is surjective,
then g ∘ f : A → C is also surjective.

Proof: Let f : A → B and g : B → C be arbitrary surjections.
We will prove that the function g ∘ f : A → C is also
surjective. To do so, we will prove that for any c ∈ C, there
is some a ∈ A such that (g ∘ f)(a) = c. Equivalently, we
will prove that for any c ∈ C, there is some a ∈ A such that
g(f(a)) = c.

Consider any c ∈ C. Since g : B → C is surjective, there is
some b ∈ B such that g(b) = c. Similarly, since f : A → B is
surjective, there is some a ∈ A such that f(a) = b. This
means that there is some a ∈ A such that

g(f(a)) = g(b) = c,

which is what we needed to show. ■

A B Cf g

c

b

a

Theorem: If f : A → B is surjective and g : B → C is surjective,
then g ∘ f : A → C is also surjective.

Proof: Let f : A → B and g : B → C be arbitrary surjections.
We will prove that the function g ∘ f : A → C is also
surjective. To do so, we will prove that for any c ∈ C, there
is some a ∈ A such that (g ∘ f)(a) = c. Equivalently, we
will prove that for any c ∈ C, there is some a ∈ A such that
g(f(a)) = c.

Consider any c ∈ C. Since g : B → C is surjective, there is
some b ∈ B such that g(b) = c. Similarly, since f : A → B is
surjective, there is some a ∈ A such that f(a) = b. This
means that there is some a ∈ A such that

g(f(a)) = g(b) = c,

which is what we needed to show. ■

Injections and Surjections

● An injective function associates at most
one element of the domain with each
element of the codomain.

● A surjective function associates at least
one element of the domain with each
element of the codomain.

● What about functions that associate
exactly one element of the domain with
each element of the codomain?

Katniss
Everdeen

Elsa

Hermione
Granger

Bijections

● A function that associates each element of
the codomain with a unique element of the
domain is called bijective.
● Such a function is a bijection.

● Formally, a bijection is a function that is
both injective and surjective.

● Bijections are sometimes called one-to-
one correspondences.
● Not to be confused with “one-to-one functions.”

Bijections and Composition

● Suppose that f : A → B and g : B → C are
bijections.

● Is g ∘ f necessarily a bijection?
● Yes!

● Since both f and g are injective, we know
that g ∘ f is injective.

● Since both f and g are surjective, we know
that g ∘ f is surjective.

● Therefore, g ∘ f is a bijection.

Inverse Functions

Katniss
Everdeen

Elsa

Hermione
Granger

Inverse Functions

● In some cases, it's possible to “turn a function
around.”

● Let f : A → B be a function. A function f-1 : B → A is
called an inverse of f if the following statements
are true:

∀a ∈ A. f-1(f(a)) = a ∀b ∈ B. f(f-1(b)) = b
● In other words, if f maps a to b, then f-1 maps b back

to a and vice-versa.
● Not all functions have inverses (we just saw a few

examples of functions with no inverse).
● If f is a function that has an inverse, then we say

that f is invertible.

Inverse Functions

● Theorem: Let f : A → B. Then f is
invertible if and only if f is a bijection.

● A proof of this result is in the course
reader – it's not required that you know
it, but if you're curious, check it out!

Where We Are

● We now know
● what an injection, surjection, and bijection are;
● that the composition of two injections,

surjections, or bijections is also an injection,
surjection, or bijection, respectively; and

● that bijections are invertible and invertible
functions are bijections.

● You might wonder why this all matters.
Well, there's a good reason...

Next Time

● Cardinality, Formally Speaking
● How do we rigorously define set

cardinalities?

● Cantor's Theorem Revisited
● A formal proof of Cantor's theorem!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

