Binary Relations Part II

Outline for Today

- Recap from Last Time
- Where are we, again?
- Properties of Equivalence Relations
- What's so special about those three rules?
- Strict Orders
- A different type of mathematical structure
- Hasse Diagrams
- How to visualize rankings

Recap from Last Time

Binary Relations

- A binary relation over a set \boldsymbol{A} is a predicate R that can be applied to pairs of elements drawn from A.
- If R is a binary relation over A and it holds for the pair (a, b), we write $\boldsymbol{a} \boldsymbol{R} \boldsymbol{b}$.

$$
3=3 \quad 5<7 \quad \varnothing \subseteq \mathbb{N}
$$

- If R is a binary relation over A and it does not hold for the pair (a, b), we write $\boldsymbol{a R b}$.

$$
4 \neq 3 \quad 4 \nless 3 \quad \mathbb{N} \not \subset \varnothing
$$

Reflexivity

- Some relations always hold from any element to itself.
- Examples:
- $x=x$ for any x.
- $A \subseteq A$ for any set A.
- $\chi \equiv_{k} \chi$ for any χ.
- Relations of this sort are called reflexive.
- Formally speaking, a binary relation R over a set A is reflexive if the following first-order logic statement is true about R :
$\forall a \in A . a R a$
("Every element is related to itself.")

Reflexivity Visualized

$\forall a \in A . a R a$ ("Every element is related to itself.")

Symmetry

- In some relations, the relative order of the objects doesn't matter.
- Examples:
- If $x=y$, then $y=x$.
- If $x \equiv_{k} y$, then $y \equiv_{k} x$.
- These relations are called symmetric.
- Formally: a binary relation R over a set A is called symmetric if the following first-order statement is true about R :
$\forall a \in A . \forall b \in A .(a R b \rightarrow b R a)$
("If a is related to b, then b is related to a.")

Symmetry Visualized

$\forall a \in A . \forall b \in A .(a R b \rightarrow b R a)$
("If a is related to b, then b is related to a. .)

Transitivity

- Many relations can be chained together.
- Examples:
- If $x=y$ and $y=z$, then $x=z$.
- If $R \subseteq S$ and $S \subseteq T$, then $R \subseteq T$.
- If $x \equiv_{k} y$ and $y \equiv_{k} z$, then $x \equiv_{k} z$.
- These relations are called transitive.
- A binary relation R over a set A is called transitive if the following first-order statement is true about R :
$\forall a \in A . \forall b \in A . \forall c \in A .(a R b \wedge b R c \rightarrow a R c)$
("Whenever a is related to b and b is related to c, we know a is related to c.)

Transitivity Visualized

$\forall a \in A . \forall b \in A . \forall c \in A .(a R b \wedge b R c \rightarrow a R c)$ ("Whenever a is related to b and b is related to c, we know a is related to c.)

New Stuff!

Properties of Equivalence Relations

$x R y$ if x and y have the same shape

$x T y$ if x is the same color as y

Equivalence Classes

- Given an equivalence relation R over a set A, for any $x \in A$, the equivalence class of \boldsymbol{x} is the set

$$
[x]_{R}=\{y \in A \mid x R y\}
$$

- $[x]_{R}$ is the set of all elements of A that are related to x by relation R.
- For example, consider the \equiv_{3} relation over \mathbb{N}. Then
- $[0]_{\Xi_{s}}=\{0,3,6,9,12,15,18, \ldots\}$
- $[1]_{\bar{\Xi}_{3}}=\{1,4,7,10,13,16,19, \ldots\}$
- $[2]_{\Xi_{s}}=\{2,5,8,11,14,17,20, \ldots\}$
- $[3]_{\Xi_{3}}=\{0,3,6,9,12,15,18, \ldots\}$

The Fundamental Theorem of Equivalence Relations: Let R be an equivalence relation over a set A. Then every element $a \in A$ belongs to exactly one equivalence class of R.

How'd We Get Here?

- We discovered equivalence relations by thinking about partitions of a set of elements.
- We saw that if we had a binary relation that tells us whether two elements are in the same group, it had to be reflexive, symmetric, and transitive.
- The FToER says that, in some sense, these rules precisely capture what it means to be a partition.
- Question: What's so special about these three rules?
$\forall a \in A . \forall b \in A . \forall c \in A .(a R b \wedge b R c \rightarrow c R a)$

A binary relation with this property is called cyclic.

$\forall a \in A . \forall b \in A . \forall c \in A .(a R b \wedge b R c \rightarrow c R a)$

$\forall a \in A . \forall b \in A . \forall c \in A .(a R b \wedge b R c \rightarrow c R a)$

Theorem: A binary relation R over a set A is an equivalence relation if and only if it is reflexive and cyclic.

Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

What We're Assuming

- R is an equivalence relation.
- R is reflexive.
- R is symmetric.
- R is transitive.

What We Need To Show

- R is reflexive.
- R is cyclic.

Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

What We're Assuming
What We Need To Show

- R is reflexive.
R is cyclic.
- R is reflexive.
R is symmetric.
R is transitive.

Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

What We're Assuming

- R is an equivalence relation.
- R is reflexive.
- R is symmetric.
- R is transitive.

What We Need To Show
R is reflexive.
R is cyclic.

- If $a R b$ and bRc, then $C R a$.

Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

What We're Assuming

- R is an equivalence relation.
- R is reflexive.
- R is symmetric.
- R is transitive.

What We Need To Show

- If $a R b$ and $b R c$, then cRa.

Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

What We're Assuming
R is an equivalence relation.
R is reflexive.
R is symmetric.

- R is transitive.

What We Need To Show

- If $a R b$ and $b R c$, then cRa.

Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

What We're Assuming
R is an equivalence relation.
R is reflexive.

- R is symmetric.
R is transitive.

What We Need To Show

- If $a R b$ and $b R c$, then cRa.

Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some set A. We need to prove that R is reflexive and cyclic.

Since R is an equivalence relation, we know that R is reflexive, symmetric, and transitive. Consequently, we already know that R is reflexive, so we only need to show that R is cyclic.
To prove that R is cyclic, consider any arbitrary $a, b, c \in A$ where $a R b$ and $b R c$. We need to prove that $c R a$ holds. Since R is transitive, from $a R b$ and $b R c$ we see that $a R c$. Then, since R is symmetric, from $a R c$ we see that $c R a$, which is what we needed to prove.

Lemma 1: If R is an equivalence relation over a set A, then R is reflexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some set A. We need to prove that R is reflexive and cyclic.

Since R is an equivalence relation. we know that R is

 reflexive, symmet: already know that that R is cyclic.To prove that R is where $a R b$ and $b I$

Notice how the first few sentences of this proof mirror the structure of what needs to be proved. We're just following the templates from the first week of class: Since R is transitive, from $a R b$ and $b R c$ we see that $a R c$. Then, since R is symmetric, from $a R c$ we see that $c R a$, which is what we needed to prove.

Notice how this setup mirrors the first-order definition of cyclicity:

$\forall a \in A . \forall b \in A . \forall c \in A .(a R b \wedge b R c \rightarrow c R a)$

When writing proofs about terms with first-order definitions, it's critical to call back to those definitions:

To prove that R is cyclic, consider any arbitrary $a, b, c \in A$ where $a R b$ and $b R c$. We need to prove that $c R a$ holds. Since R is transitive, from $a R b$ and $b R c$ we see that $a R c$. Then, since R is symmetric, from $a R c$ we see that $c R a$, which is what we needed to prove.

Although this proof is deeply informed by the first-order definitions, notice that there is no first-order logic notation anywhere in the proof. That's normal - it's actually quite rare to see first-order logic in written proofs.

Proof: Let R be an arbitrary equivalence relation over some set A. We need to prove that R is reflexive and cyclic.

Since R is an equivalence relation, we know that R is reflexive, symmetric, and transitive. Consequently, we already know that R is reflexive, so we only need to show that R is cyclic.
To prove that R is cyclic, consider any arbitrary $a, b, c \in A$ where $a R b$ and $b R c$. We need to prove that $c R a$ holds. Since R is transitive, from $a R b$ and $b R c$ we see that $a R c$. Then, since R is symmetric, from $a R c$ we see that $c R a$, which is what we needed to prove.

Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We're Assuming

- R is reflexive.
- R is cyclic.

What We Need To Show

- R is an equivalence relation.
- R is reflexive.
- R is symmetric.
- R is transitive.

Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We're Assuming

- R is reflexive. R is cyclic.

What We Need To Show
R is an equivalence relation.

- R is reflexive. R is symmetric. R is transitive.

Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We're Assuming

- R is reflexive.
- R is cyclic.

What We Need To Show

- R is an equivalence relation.
- R is reflexive.
- R is symmetric.
- R is transitive.

Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We're Assuming

- R is reflexive.
- R is cyclic.

What We Need To Show
R is an equivalence relation.
R is reflexive.

- R is symmetric. R is transitive.

Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We're Assuming

- R is reflexive.
- R is cyclic.

What We Need To Show

- R is symmetric.
- If $a R b$, then $b R a$.

Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We're Assuming

- R is reflexive.
- $\forall x \in A_{0} \times R x$
- R is cyclic.
- $x R y \wedge y R z \rightarrow z R x$

What We Need To Show

- R is symmetric.
- If $a R b$, then $b R a$.

Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We're Assuming
R is reflexive.

- $\forall x \in A_{0} x R x$
R is cyclic.
$x R y \wedge y R z \rightarrow z R x$

What We Need To Show

- R is symmetric.
- If $a R b$, then $b R a$.

Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We're Assuming
R is reflexive. $\forall x \in A_{0} \quad x R x$
R is cyclic.

- $x R y \wedge y R z \rightarrow z R x$

What We Need To Show

- R is symmetric.
- If $a R b$, then $b R a$.

Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We're Assuming

- R is reflexive.
- $\forall x \in A_{0} \times R x$
- R is cyclic.
- $x R y \wedge y R z \rightarrow z R x$

What We Need To Show
R is an equivalence relation.
R is reflexive.
R is symmetric.

- R is transitive.

Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We're Assuming

- R is reflexive.
- $\forall x \in A_{0} \quad x R x$
- R is cyclic.
- $x R y \wedge y R z \rightarrow z R x$

What We Need To Show

- R is transitive.
- If $a R b$ and $b R c$, then $a R c$.

Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We're Assuming
R is reflexive.
$\forall x \in A$ 。 $x R x$
R is cyclic.

$$
x R y \wedge y R z \rightarrow z R x
$$

What We Need To Show

- R is transitive.
- If $a R b$ and $b R c$, then $a R c$.

Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We're Assuming

- R is reflexive.
- $\forall x \in A_{0} \times R x$
- R is cyclic.
- $x R y \wedge y R z \rightarrow z R x$

What We Need To Show

- R is transitive.
- If $a R b$ and $b R c$, then $a R c$.

Lemma 2: If R is a binary relation over a set A that is reflexive and cyclic, then R is an equivalence relation.

What We're Assuming

- R is reflexive.
- $\forall x \in A_{0} \times R x$
- R is cyclic.
- $x R y \wedge y R z \rightarrow z R x$
- R is symmetric
- $x R y \rightarrow y R x$

What We Need To Show

- R is transitive.
- If $a R b$ and $b R c$, then $a R C$.

Lemma 2: If R is a binary relation over a set A that is cyclic and reflexive, then R is an equivalence relation.
Proof: Let R be an arbitrary binary relation over a set A that is cyclic and reflexive. We need to prove that R is an equivalence relation. To do so, we need to show that R is reflexive, symmetric, and transitive. Since we already know by assumption that R is reflexive, we just need to show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any arbitrary $a, b \in A$ where $a R b$ holds. We need to prove that $b R a$ is true. Since R is reflexive, we know that $a R a$ holds. Therefore, by cyclicity, since $a R a$ and $a R b$, we learn that $b R a$, as required.
Next, we'll prove that R is transitive. Let a, b, and c be any elements of A where $a R b$ and $b R c$. We need to prove that $a R c$. Since R is cyclic, from $a R b$ and $b R c$ we see that $c R a$. Earlier, we showed that R is symmetric. Therefore, from $c R a$ we see that $a R c$ is true, as required.

Lemn Notice how this setup mirrors the first-order definition of symmetry:

$\forall a \in A . \forall b \in A .(a R b \rightarrow b R a)$

When writing proofs about terms with first-order definitions, it's critical to call back to those definitions:

First, we'll prove that R is symmetric. To do so, pick any arbitrary $a, b \in A$ where $a R b$ holds. We need to prove that $b R a$ is true. Since R is reflexive, we know that $a R a$ holds. Therefore, by cyclicity, since $a R a$ and $a R b$, we learn that $b R a$, as required.
Next, we'll prove that R is transitive. Let a, b, and c be any elements of A where $a R b$ and $b R c$. We need to prove that $a R c$. Since R is cyclic, from $a R b$ and $b R c$ we see that $c R a$. Earlier, we showed that R is symmetric. Therefore, from $c R a$ we see that $a R c$ is true, as required.

Lemma 2: If R is a binary relation over a set A that is cyclic and reflexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that is cyclic and reflexive. We need to prove that R is an
refle Notice how this setup mirrors the first-order definition of transitivity:
knov shov
First $\forall a \in A . \forall b \in A . \forall c \in A .(a R b \wedge b R c \rightarrow a R c)$
$b R a$, as Inquiriu.
Next, we'll prove that R is transitive. Let a, b, and c be any elements of A where $a R b$ and $b R c$. We need to prove that $a R c$. Since R is cyclic, from $a R b$ and $b R c$ we see that $c R a$. Earlier, we showed that R is symmetric. Therefore, from $c R a$ we see that $a R c$ is true, as required.

Lemma 2 Although this proof is deeply informed by the first-order and ref. definitions, notice that there is no first-order logic Proof: Let notation anywhere in the proof. That's normal - it's actually is cycli quite rare to see first-order logic in written proofs. equivale reflexive, symmetric, and transitive. Since we already know by assumption that R is reflexive, we just need to show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any arbitrary $a, b \in A$ where $a R b$ holds. We need to prove that $b R a$ is true. Since R is reflexive, we know that $a R a$ holds. Therefore, by cyclicity, since $a R a$ and $a R b$, we learn that $b R a$, as required.
Next, we'll prove that R is transitive. Let a, b, and c be any elements of A where $a R b$ and $b R c$. We need to prove that $a R c$. Since R is cyclic, from $a R b$ and $b R c$ we see that $c R a$. Earlier, we showed that R is symmetric. Therefore, from $c R a$ we see that $a R c$ is true, as required.

Refining Your Proofwriting

- When writing proofs about terms with formal definitions, you must call back to those definitions.
- Use the first-order definition to see what you'll assume and what you'll need to prove.
- When writing proofs about terms with formal definitions, you must not include any first-order logic in your proofs.
- Although you won't use any FOL notation in your proofs, your proof implicitly calls back to the FOL definitions.
- You'll get a lot of practice with this on Problem Set Three. If you have any questions about how to do this properly, please feel free to ask on Piazza or stop by office hours!

Time-Out for Announcements!

Problem Set One Graded

$$
\begin{aligned}
& 75^{\text {th }} \text { Pernile: } \mathbf{6 5} / \mathbf{7 3} \\
& 50^{\text {th }} \text { Percentile: } \mathbf{5 8} / 73 \\
& 25^{\text {th }} \text { Percentile: } \mathbf{5 2} / 7 \mathbf{7 3}
\end{aligned}
$$

Pro tips when seeing a grading curve:

1. Standard deviations are malicious lies. Ignore them.
2. The average score is a malicious lie. Ignore it.
3. Raw scores are malicious lies. Ignore them.

Problem Set One Graded

```
75 th Percentile: 65 / 73
50 \({ }^{\text {th }}\) Percentile: 58 / 73
\(25^{\text {th }}\) Percentile: 52 / 73
```

"Great job: Look over your feedback for some
tips on how to tweak things for next time."

Problem Set One Graded

> 75 th Percentile: $65 / 73$
> 50 ${ }^{\text {th }}$ Percentile: $58 / 73$
> 25 ${ }^{\text {th }}$ Percentile: $52 / 73$
"You're almost there! Review
the feedback on your submission and see if there's anything to focus on for next time"

Problem Set One Graded

```
75 th Percentile: 65 / 73
50 \({ }^{\text {th }}\) Percentile: 58 / 73
\(25^{\text {th }}\) Percentile: 52 / 73
```

"You're on the right track, but there are some areas where you need to improve. Review your feedback and ask us questions about how to improve."

Problem Set One Graded

> 75 ${ }^{\text {th }}$ Percentile: 65 / 73
> $50^{\text {th }}$ Percentile: 58 / 73
> $25^{\text {th }}$ Percentile: 52 / 73

> "You're not quite there yet, but don't worry! Review your feedback in depth and find some concrete areas where you can improve. Ask us questions, focus on your weak spots, and you'll be in great shape."

Problem Set One Graded

$75^{\text {th }}$ Percentile: $65 / 73$
50 ${ }^{\text {th }}$ Percentile: $58 / 73$
25 ${ }^{\text {th }}$ Percentile: $52 / 73$
"Looks like something hasn't quite clicked yet. Get in touch with us and stop by office hours to get some extra feedback and advice. Don't get discouraged - you can do this!"

Problem Set One Graded

```
75 th Percentile: 65 / 73
50 \({ }^{\text {th }}\) Percentile: 58 / 73
\(25^{\text {th }}\) Percentile: 52 / 73
```

"Oops, you
forgot to
submit."

What Not to Think

- "Well, I guess I'm just not good at math."
- For most of you, this is your first time doing any rigorous proof-based math.
- Don't judge your future performance based on a single data point.
- Life advice: avoid "minivanning."
- Life advice: have a growth mindset!
- "Hey, I did above the median. That's good enough."
- Unless you literally earned every single point on this problem set - and even in that case - there's some area where the course staff thinks you need to improve. Take the time to see what that is.

THE ROAD TO WISDOM

The road to wisdom?-Well, it's plain and simple to express:

Err
and err
and err again,
but less
and less and less.

CS legend Don Knuth has this poem on the wall of his house.

- Piet Hein

Problem Set Two

- Problem Set Two is due on Friday at 2:30.
- Have questions? Stop by office hours or ask on Piazza!
- Reminder: check your first-order logic translations using our handy checklist! It's up on the course website.

Your Questions

"What are the pros and cons for a masters in CS vs. a B.S. in CS?"

I think there are two main contexts in which you could ask this question. First, should you do a CS major (BS), or do something else and get a coterm in CS (MS)? Second, if you already have a CS undergrad (BS), should you then go on to do a master's in it (MS)?

For that first case: both a CS BS and a CS MS will teach you a ton about the field. The CS BS gives you more of an opportunity to explore the field, since the tracks are more flexible, and the CS MS goes into way more depth into a single area but has a bit less exploration built in. The biggest question, though, would be what other major you're looking at. If you have multiple interests, a major outside of CS and a coterm in CS can be a great option. Just don't do that because you're nervous about majoring in CS; if you want to do CS but feel a bit intimidated, please come talk to me:

For that second case: there's a slight salary difference between BS and MS grads, but the opportunity cost of giving up a year's salary usually will eat it. The main reason to do an MS is if you're really liking what you're learning and want to dive deeper into it.

"What are your thoughts on AI?"

It's really exciting, there's a ton of new cool technologies coming out now, and were making a lot of progress in areas like vision and translation that have historically been real sticking points.

I also think that there's a bit too much hype and that while we are making huge steps forward, there's still a lot to figure out and in most domains simple heuristics are "good enough" for our purposes.

"What motivates you to wake up in the morning?"

Circadian
rhythms and my
alarm clock。e

Back to CS103!

Prerequisite Structures

The CS Core

Pancakes

Everyone's got a pancake recipe. This one comes from Food Wishes (http://foodwishes.blogspot.com/2011/08/grandma-kellys-good-oldfashioned.html).

Ingredients

- 1 1/2 cups all-purpose flour
- $31 / 2$ tsp baking powder
- 1 tsp salt
- 1 tbsp sugar
- 1 1/4 cup milk
- 1 egg
- 3 tbsp butter, melted

Directions

1. Sift the dry ingredients together.
2. Stir in the butter, egg, and milk. Whisk together to form the batter.
3. Heat a large pan or griddle on medium-high heat. Add some oil.
4. Make pancakes one at a time using $1 / 4$ cup batter each. They're ready to flip when the centers of the pancakes start to bubble.

Relations and Prerequisites

- Let's imagine that we have a prerequisite structure with no circular dependencies.
- We can think about a binary relation R where $a R b$ means " \boldsymbol{a} must happen before \boldsymbol{b} "
- What properties of R could we deduce just from this?

$\forall a \in$ A. aमR a

$\forall a \in A . \forall b \in A . \forall c \in A .(a R b \wedge b R c \rightarrow a R c)$

$$
\forall a \in A . \forall b \in A .(a R b \rightarrow b \not R a)
$$

Irreflexivity

- Some relations never hold from any element to itself.
- As an example, $x \nless x$ for any x.
- Relations of this sort are called irreflexive.
- Formally speaking, a binary relation R over a set A is irreflexive if the following first-order logic statement is true about R :
$\forall a \in \operatorname{A.aRa}$
("No element is related to itself.")

Irreflexivity Visualized

$\forall a \in A . a R a$
("No element is related to itself.")

Is this relation reflexive?

$\forall a \in \operatorname{A.aRa}$ ("Every element is related to itself.")

Is this relation irreflexive?

$\forall a \in A . a R a$
("No element is related to itself.")

Reflexivity and Irreflexivity

- Reflexivity and irreflexivity are not opposites!
- Here's the definition of reflexivity:

$$
\forall a \in \operatorname{A.aRa}
$$

- What is the negation of the above statement?

$$
\exists a \in A . a R a
$$

- What is the definition of irreflexivity?
$\forall a \in \operatorname{A}$. aRa

Asymmetry

- In some relations, the relative order of the objects can never be reversed.
- As an example, if $x<y$, then $y \nless x$.
- These relations are called asymmetric.
- Formally: a binary relation R over a set A is called asymmetric if the following first-order logic statement is true about R :

$$
\forall a \in A . \forall b \in A .(a R b \rightarrow b R a)
$$

("If a relates to b, then b does not relate to a. ")

Asymmetry Visualized

("If a relates to b, then b does not relate to $a . ")$

Question to Ponder: Are symmetry and asymmetry opposites of one another?

Strict Orders

- A strict order is a relation that is irreflexive, asymmetric and transitive.
- Some examples:
- $x<y$.
- a can run faster than b.
- $A \subsetneq B$ (that is, $A \subseteq B$ and $A \neq B$).
- Strict orders are useful for representing prerequisite structures and have applications in complexity theory (measuring notions of relative hardness) and algorithms (searching and sorting).

Drawing Strict Orders

Gold	Silver	Bronze
46	37	38
27	23	17
26	18	26
19	18	19
17	10	15
12	8	21
10	18	14
9	3	9
8	12	8
8	11	10
8	7	4
8	3	4
7	6	6
7	4	6
6	6	1
6	3	2

$\left(g_{1}, s_{1}, b_{1}\right) R\left(g_{2}, s_{2}, b_{2}\right) \quad$ if $\quad g_{1}<g_{2} \wedge s_{1}<s_{2} \wedge b_{1}<b_{2}$

Fewer Medals

$$
\left(g_{1}, s_{1}, b_{1}\right) R\left(g_{2}, s_{2}, b_{2}\right) \quad \text { if } \quad g_{1}<g_{2} \wedge s_{1}<s_{2} \wedge b_{1}<b_{2}
$$

Hasse Diagrams

- A Hasse diagram is a graphical representation of a strict order.
- Elements are drawn from bottom-to-top.
- No self loops are drawn, and none are needed! By irreflexivity we know they shouldn't be there.
- Higher elements are bigger than lower elements: by asymmetry, the edges can only go in one direction.
- No redundant edges: by transitivity, we can infer the missing edges.
$(46,37,38)$
$\mathbf{3 7 9}$ 379
$(27,23,17)$ 221
$(26,18,26)$
210
$(19,18,19)$ 168
$(17,10,15)$ 130
$(10,18,14)$
118
$(12,8,21)$
105

$\left(g_{1}, s_{1}, b_{1}\right) T\left(g_{2}, s_{2}, b_{2}\right)$
if
$5 g_{1}+3 s_{1}+b_{1}<5 g_{2}+3 s_{2}+b_{2}$

Hasse Artichokes

Hasse Artichokes

$x R y$ if x must be eaten before y

The Meta Strict Order

$a R b$ if
a is less specific than b

Next Time

- Functions
- How do we model transformations in a mathematical sense?
- Domains and Codomains
- Type theory meets mathematics!
- Injections, Surjections, and Bijections
- Three special classes of functions.

