
  

Binary Relations
Part II



  

Outline for Today

● Recap from Last Time
● Where are we, again?

● Properties of Equivalence Relations
● What’s so special about those three rules?

● Strict Orders
● A diferent type of mathematical structure

● Hasse Diagrams
● How to visualize rankings



  

Recap from Last Time



  

Binary Relations

● A binary relation over a set A is a predicate 
R that can be applied to pairs of elements 
drawn from A.

● If R is a binary relation over A and it holds for 
the pair (a, b), we write aRb.

3 = 3                5 < 7                Ø ⊆ ℕ
● If R is a binary relation over A and it does not 

hold for the pair (a, b), we write aRb.

4 ≠ 3                4 <≮ 3                ℕ ⊆≮ Ø



  

Refexivity

● Some relations always hold from any element to itself.
● Examples:

● x = x for any x.
● A ⊆ A for any set A.
● x ≡ₖ x for any x.

● Relations of this sort are called refexive.
● Formally speaking, a binary relation R over a set A is 

refexive if the following frst-oorder logic statement is 
true about R:

∀a ∈ A. aRa   

(“Every element is related to itself.”)   



  

Refexivity Visualized

∀a ∈ A. aRa
(“Every element is related to itself.”)



  

Symmetry

● In some relations, the relative order of the objects 
doesn't matter.

● Examples:
● If x = y, then y = x.
● If x ≡ₖ y, then y ≡ₖ x.

● These relations are called symmetric.
● Formally: a binary relation R over a set A is called 

symmetric if the following frst-oorder statement is true 
about R:

∀a ∈ A. ∀b ∈ A. (aRb → bRa)  

(“If a is related to b, then b is related to a.”)



  

Symmetry Visualized

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)



  

Transitivity

● Many relations can be chained together.
● Examples:

● If x = y and y = z, then x = z.
● If R ⊆ S and S ⊆ T, then R ⊆ T.
● If x ≡ₖ y and y ≡ₖ z, then x ≡ₖ z.

● These relations are called transitive.
● A binary relation R over a set A is called transitive if 

the following frst-oorder statement is true about R:

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

(“Whenever a is related to b and b is
related to c, we know a is related to c.)



  

Transitivity Visualized

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)



  

New Stuf!



  

Properties of Equivalence Relations



  xRy    if    x and y have the same shape



  xTy    if    x is the same color as y



  

Equivalence Classes

● Given an equivalence relation R over a set A, for 
any x ∈ A, the equivalence class of x is the set

[x]R = { y ∈ A | xRy }

● [x]R is the set of all elements of A that are related 
to x by relation R.

● For example, consider the ≡₃ relation over ℕ. 
Then
● [0]≡₃ = {0, 3, 6, 9, 12, 15, 18, …}

● [1]≡₃ = {1, 4, 7, 10, 13, 16, 19, …}

● [2]≡₃ = {2, 5, 8, 11, 14, 17, 20, …}

● [3]≡₃ = {0, 3, 6, 9, 12, 15, 18, …}       

Notice that [0]≡₃ = [3]≡₃. 
These are literally the 
same set, so they're just 
diferent names for the 
same thing.

Notice that [0]≡₃ = [3]≡₃. 
These are literally the 
same set, so they're just 
diferent names for the 
same thing.



  

The Fundamental Theorem of 
Equivalence Relations: Let R be an 
equivalence relation over a set A. Then 
every element a ∈ A belongs to exactly one 
equivalence class of R.



  

How’d We Get Here?

● We discovered equivalence relations by thinking 
about partitions of a set of elements.

● We saw that if we had a binary relation that tells 
us whether two elements are in the same group, 
it had to be refexive, symmetric, and transitive.

● The FToER says that, in some sense, these rules 
precisely capture what it means to be a partition.

● Question: What’s so special about these three 
rules?



  

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → cRa)



  ∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → cRa)

A binary relation 
with this property 
is called cyclic.

A binary relation 
with this property 
is called cyclic.



  ∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → cRa)

Is this an 
equivalence 
relation?

Is this an 
equivalence 
relation?



  

Theorem: A binary relation R over a set A 
is an equivalence relation if and only if it is 

refexive and cyclic.



  

Lemma 1: If R is an equivalence relation 
over a set A, then R is refexive and cyclic.

Lemma 2: If R is a binary relation over a 
set A that is refexive and cyclic, then R is 

an equivalence relation.



  

What We’re Assuming What We Need To Show

Lemma 1: If R is an equivalence relation 
over a set A, then R is refexive and cyclic.

● R is an equivalence 
relation.

● R is refexive.
● R is symmetric.
● R is transitive.

● R is refexive.
● R is cyclic.



  

What We’re Assuming What We Need To Show
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R is an equivalence 
relation.
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What We’re Assuming What We Need To Show

Lemma 1: If R is an equivalence relation 
over a set A, then R is refexive and cyclic.

● R is an equivalence 
relation.

● R is refexive.
● R is symmetric.
● R is transitive.

R is refexive.

R is cyclic.
● If aRb and bRc, 
then cRa.



  

What We’re Assuming What We Need To Show

Lemma 1: If R is an equivalence relation 
over a set A, then R is refexive and cyclic.

● R is an equivalence 
relation.

● R is refexive.
● R is symmetric.
● R is transitive.

● If aRb and bRc, then 
cRa.

a                      b 

c 
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R is an equivalence 
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What We’re Assuming What We Need To Show
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Lemma 1: If R is an equivalence relation over a set A, then R
is refexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some
set A. We need to prove that R is refexive and cyclic.

Since R is an equivalence relation, we know that R is 
refexive, symmetric, and transitive. Consequently, we 
already know that R is refexive, so we only need to show 
that R is cyclic.

To prove that R is cyclic, consider any arbitrary a, b, c ∈ A 
where aRb and bRc. We need to prove that cRa holds. 
Since R is transitive, from aRb and bRc we see that aRc. 
Then, since R is symmetric, from aRc we see that cRa, 
which is what we needed to prove. ■



  

Lemma 1: If R is an equivalence relation over a set A, then R
is refexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some
set A. We need to prove that R is refexive and cyclic.

Since R is an equivalence relation, we know that R is 
refexive, symmetric, and transitive. Consequently, we 
already know that R is refexive, so we only need to show 
that R is cyclic.

To prove that R is cyclic, consider any arbitrary a, b, c ∈ A 
where aRb and bRc. We need to prove that cRa holds. 
Since R is transitive, from aRb and bRc we see that aRc. 
Then, since R is symmetric, from aRc we see that cRa, 
which is what we needed to prove. ■

Notice how the frst few sentences of this 
proof mirror the structure of what needs 
to be proved. We’re just following the 
templates from the frst week of class!

Notice how the frst few sentences of this 
proof mirror the structure of what needs 
to be proved. We’re just following the 
templates from the frst week of class!



  

Lemma 1: If R is an equivalence relation over a set A, then R
is refexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some
set A. We need to prove that R is refexive and cyclic.

Since R is an equivalence relation, we know that R is 
refexive, symmetric, and transitive. Consequently, we 
already know that R is refexive, so we only need to show 
that R is cyclic.

To prove that R is cyclic, consider any arbitrary a, b, c ∈ A 
where aRb and bRc. We need to prove that cRa holds. 
Since R is transitive, from aRb and bRc we see that aRc. 
Then, since R is symmetric, from aRc we see that cRa, 
which is what we needed to prove. ■

Notice how this setup mirrors the frst-order 
defnition of cyclicity:

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → cRa)

When writing proofs about terms with frst-order 
defnitions, it’s critical to call back to those 

defnitions!

Notice how this setup mirrors the frst-order 
defnition of cyclicity:

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → cRa)

When writing proofs about terms with frst-order 
defnitions, it’s critical to call back to those 

defnitions!



  

Lemma 1: If R is an equivalence relation over a set A, then R
is refexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some
set A. We need to prove that R is refexive and cyclic.

Since R is an equivalence relation, we know that R is 
refexive, symmetric, and transitive. Consequently, we 
already know that R is refexive, so we only need to show 
that R is cyclic.

To prove that R is cyclic, consider any arbitrary a, b, c ∈ A 
where aRb and bRc. We need to prove that cRa holds. 
Since R is transitive, from aRb and bRc we see that aRc. 
Then, since R is symmetric, from aRc we see that cRa, 
which is what we needed to prove. ■

Although this proof is deeply informed by the frst-order 
defnitions, notice that there is no frst-order logic 

notation anywhere in the proof. That’s normal – it’s actually 
quite rare to see frst-order logic in written proofs.

Although this proof is deeply informed by the frst-order 
defnitions, notice that there is no frst-order logic 

notation anywhere in the proof. That’s normal – it’s actually 
quite rare to see frst-order logic in written proofs.



  

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a 
set A that is refexive and cyclic, then R is 

an equivalence relation.

● R is refexive.
● R is cyclic.

● R is an equivalence 
relation.

● R is refexive.
● R is symmetric.
● R is transitive.
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What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a 
set A that is refexive and cyclic, then R is 

an equivalence relation.

● R is refexive.
● R is cyclic.

● R is symmetric.
● If aRb, then bRa.

a                            b



  

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a 
set A that is refexive and cyclic, then R is 

an equivalence relation.

● R is refexive.
● ∀x  ∈ A. xRx

● R is cyclic.
● xRy  ∧ yRz  → zRx

● R is symmetric.
● If aRb, then bRa.

a                            b



  

What We’re Assuming What We Need To Show
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a                            b



  

What We’re Assuming What We Need To Show
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x
y

z
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What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a 
set A that is refexive and cyclic, then R is 

an equivalence relation.

● R is refexive.
● ∀x  ∈ A. xRx
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● xRy  ∧ yRz  → zRx
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then aRc.
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Lemma 2: If R is a binary relation over a set A that is cyclic
and refexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that
is cyclic and refexive. We need to prove that R is an
equivalence relation. To do so, we need to show that R is
refexive, symmetric, and transitive. Since we already
know by assumption that R is refexive, we just need to
show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any 
arbitrary a, b ∈ A where aRb holds. We need to prove that 
bRa is true. Since R is refexive, we know that aRa holds. 
Therefore, by cyclicity, since aRa and aRb, we learn that 
bRa, as required.

Next, we'll prove that R is transitive. Let a, b, and c be any 
elements of A where aRb and bRc. We need to prove that 
aRc. Since R is cyclic, from aRb and bRc we see that cRa. 
Earlier, we showed that R is symmetric. Therefore, from 
cRa we see that aRc is true, as required. ■
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Notice how this setup mirrors the frst-order defnition 
of symmetry:

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

When writing proofs about terms with frst-order 
defnitions, it’s critical to call back to those defnitions!
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Refning Your Proofwriting

● When writing proofs about terms with formal 
defnitions, you must call back to those defnitions.
● Use the frst-oorder defnition to see what you’ll assume and 

what you’ll need to prove.
● When writing proofs about terms with formal 

defnitions, you must not include any frst-oorder logic 
in your proofs.
● Although you won’t use any FOL notation in your proofs, 

your proof implicitly calls back to the FOL defnitions.
● You’ll get a lot of practice with this on Problem Set 

Three. If you have any questions about how to do this 
properly, please feel free to ask on Piazza or stop by 
ofice hours!



  

Time-oOut for Announcements!
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2. The average score is a malicious lie. Ignore it.
3. Raw scores are malicious lies. Ignore them.
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“Great job! Look over 
your feedback for some 
tips on how to tweak 
things for next time.”
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your feedback for some 
tips on how to tweak 
things for next time.”
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ofce hours to get some extra feedback 
and advice. Don’t get discouraged – you 

can do this!”

“Looks like something hasn’t quite clicked 
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can do this!”
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75th Percentile: 65 / 73
50th Percentile: 58 / 73
25th Percentile: 52 / 73

“Oops, you 
forgot to 
submit.”

“Oops, you 
forgot to 
submit.”



  

What Not to Think

● “Well, I guess I’m just not good at math.”
● For most of you, this is your frst time doing any rigorous 

proof-obased math.
● Don’t judge your future performance based on a single 

data point.
● Life advice: avoid “minivanning.”
● Life advice: have a growth mindset!

● “Hey, I did above the median. That’s good enough.”
● Unless you literally earned every single point on this 

problem set – and even in that case – there’s some area 
where the course staf thinks you need to improve. Take 
the time to see what that is.



  

 THE ROAD TO WISDOM

The road to wisdom?—Well, it's plain
and simple to express:

Err
and err

and err again,
but less
and less
and less.

                           — Piet Hein
CS legend Don Knuth 
has this poem on the 
wall of his house.

CS legend Don Knuth 
has this poem on the 
wall of his house.

And this guy is 
interesting. You should 

look him up.

And this guy is 
interesting. You should 

look him up.



  

Problem Set Two

● Problem Set Two is due on Friday at 
2:30.
● Have questions? Stop by ofice hours or ask 

on Piazza!
● Reminder: check your frst-oorder logic 

translations using our handy checklist! 
It’s up on the course website.



  

Your Questions



  

“What are the pros and cons for a masters 
in CS vs. a B.S. in CS?”

I think there are two main contexts in which you could ask this question. First, 
should you do a CS major (BS), or do something else and get a coterm in CS 
(MS)? Second, if you already have a CS undergrad (BS), should you then go on 
to do a master’s in it (MS)?
 

For that frst case: both a CS BS and a CS MS will teach you a ton about the 
feld. The CS BS gives you more of an opportunity to explore the feld, since 
the tracks are more fexible, and the CS MS goes into way more depth into a 
single area but has a bit less exploration built in. The biggest question, though, 
would be what other major you’re looking at. If you have multiple interests, a 
major outside of CS and a coterm in CS can be a great option. Just don’t do 
that because you’re nervous about majoring in CS; if you want to do CS but 
feel a bit intimidated, please come talk to me!
 

For that second case: there’s a slight salary diference between BS and MS 
grads, but the opportunity cost of giving up a year’s salary usually will eat it. 
The main reason to do an MS is if you’re really liking what you’re learning and 
want to dive deeper into it.

I think there are two main contexts in which you could ask this question. First, 
should you do a CS major (BS), or do something else and get a coterm in CS 
(MS)? Second, if you already have a CS undergrad (BS), should you then go on 
to do a master’s in it (MS)?
 

For that frst case: both a CS BS and a CS MS will teach you a ton about the 
feld. The CS BS gives you more of an opportunity to explore the feld, since 
the tracks are more fexible, and the CS MS goes into way more depth into a 
single area but has a bit less exploration built in. The biggest question, though, 
would be what other major you’re looking at. If you have multiple interests, a 
major outside of CS and a coterm in CS can be a great option. Just don’t do 
that because you’re nervous about majoring in CS; if you want to do CS but 
feel a bit intimidated, please come talk to me!
 

For that second case: there’s a slight salary diference between BS and MS 
grads, but the opportunity cost of giving up a year’s salary usually will eat it. 
The main reason to do an MS is if you’re really liking what you’re learning and 
want to dive deeper into it.



  

“What are your thoughts on AI?”

It’s really exciting, there’s a ton of new cool technologies 
coming out now, and we’re making a lot of progress in areas 

like vision and translation that have historically been real 
sticking points.

I also think that there’s a bit too much hype and that while 
we are making huge steps forward, there’s still a lot to 

fgure out and in most domains simple heuristics are “good 
enough” for our purposes.

It’s really exciting, there’s a ton of new cool technologies 
coming out now, and we’re making a lot of progress in areas 

like vision and translation that have historically been real 
sticking points.

I also think that there’s a bit too much hype and that while 
we are making huge steps forward, there’s still a lot to 

fgure out and in most domains simple heuristics are “good 
enough” for our purposes.



  

“What motivates you to wake up in the 
morning?”

Circadian 
rhythms and my 
alarm clock. ☺

Circadian 
rhythms and my 
alarm clock. ☺



  

Back to CS103!



  

Prerequisite Structures
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Pancakes
 

Everyone's got a pancake recipe. This one comes from Food Wishes 
(http://foodwishes.blogspot.com/2011/08/grandma-okellys-ogood-oold-o
fashioned.html).
 

Ingredients
 

  · 1 1/2 cups all-opurpose four
  · 3 1/2 tsp baking powder
  · 1 tsp salt
  · 1 tbsp sugar
  · 1 1/4 cup milk
  · 1 egg
  · 3 tbsp butter, melted
 

Directions
 

1. Sift the dry ingredients together.
2. Stir in the butter, egg, and milk. Whisk together to form the batter.
3. Heat a large pan or griddle on medium-ohigh heat. Add some oil.
4. Make pancakes one at a time using 1/4 cup batter each. They're ready
    to fip when the centers of the pancakes start to bubble.



  

Measure
Flour

Measure
Baking Pwdr

Measure
Salt

Measure
Sugar

Measure
Milk

Melt
Butter

Beat Egg

Combine Dry
Ingredients

Heat
Griddle

Oil
Griddle

Add Wet
Ingredients

Make
Pancakes

Serve
Pancakes



  



  

Relations and Prerequisites

● Let's imagine that we have a prerequisite 
structure with no circular dependencies.

● We can think about a binary relation R 
where aRb means

“a must happen before b”
● What properties of R could we deduce 

just from this?



  

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

∀a ∈ A. ∀b ∈ A. (aRb → bRa)



  

Irrefexivity

● Some relations never hold from any element to 
itself.

● As an example, x <≮ x for any x.

● Relations of this sort are called irrefexive.
● Formally speaking, a binary relation R over a 

set A is irrefexive if the following frst-oorder 
logic statement is true about R:

∀a ∈ A. aR̸a   

(“No element is related to itself.”)   



  

Irrefexivity Visualized

∀a ∈ A. aR̸a
(“No element is related to itself.”)



  

∀a ∈ A. aRa
(“Every element is related to itself.”)

Is this relation 
refexive?

Is this relation 
refexive?

Nope!



  

∀a ∈ A. aR̸a
(“No element is related to itself.”)

Is this relation 
irrefexive?

Is this relation 
irrefexive?

Nope!



  

Refexivity and Irrefexivity

● Refexivity and irrefexivity are not opposites!
● Here's the defnition of refexivity:

∀a ∈ A. aRa
● What is the negation of the above statement?

∃a ∈ A. aR̸a
● What is the defnition of irrefexivity?

∀a ∈ A. aR̸a



  

Asymmetry

● In some relations, the relative order of the 
objects can never be reversed.

● As an example, if x < y, then y <≮ x.
● These relations are called asymmetric.
● Formally: a binary relation R over a set A is 

called asymmetric if the following frst-oorder 
logic statement is true about R:

∀a ∈ A. ∀b ∈ A. (aRb → bR̸a)  

(“If a relates to b, then b does not relate to a.”)



  

Asymmetry Visualized

∀a ∈ A. ∀b ∈ A. (aRb → bR̸a)
(“If a relates to b, then b does not relate to a.”)



  

Question to Ponder: Are symmetry and 
asymmetry opposites of one another?



  

Strict Orders

● A strict order is a relation that is irrefexive, 
asymmetric and transitive.

● Some examples:
● x < y.
● a can run faster than b.
● A  ⊊ B (that is, A ⊆ B and A ≠ B).

● Strict orders are useful for representing 
prerequisite structures and have applications in 
complexity theory (measuring notions of relative 
hardness) and algorithms (searching and sorting).



  

Drawing Strict Orders



  

Gold Silver Bronze

46 37 38

27 23 17

26 18 26

19 18 19

17 10 15

12 8 21

10 18 1410 18 14

9 3 9

8 12 8

8 11 10

7 6 6

7 4 6

6 6 1

6 3 2

8 7 4

8 3 4



  

(g₁, s₁, b₁) R (g₂, s₂, b₂)        if        g₁ < g₂  ∧  s₁ < s₂  ∧  b₁ < b₂

(46, 37, 38)

(26, 18, 26) (27, 23, 17)(19, 18, 19)

(17, 10, 15)

(12, 8, 21) (10, 18, 14)



  

(g₁, s₁, b₁) R (g₂, s₂, b₂)        if        g₁ < g₂  ∧  s₁ < s₂  ∧  b₁ < b₂

(46, 37, 38)

(26, 18, 26) (27, 23, 17)(19, 18, 19)

(17, 10, 15)(12, 8, 21) (10, 18, 14)



  

(g₁, s₁, b₁) R (g₂, s₂, b₂)        if        g₁ < g₂  ∧  s₁ < s₂  ∧  b₁ < b₂

(46, 37, 38)

(26, 18, 26) (27, 23, 17)(19, 18, 19)

(17, 10, 15)(12, 8, 21) (10, 18, 14)

More Medals

Fewer Medals



  

Hasse Diagrams

● A Hasse diagram is a graphical representation 
of a strict order.

● Elements are drawn from bottom-oto-otop.
● No self loops are drawn, and none are needed! By 

irrefexivity we know they shouldn’t be there.
● Higher elements are bigger than lower elements: 

by asymmetry, the edges can only go in one 
direction.

● No redundant edges: by transitivity, we can 
infer the missing edges.



  

(46, 37, 38)
379

(26, 18, 26)
210

(27, 23, 17)
221

(19, 18, 19)
168

(17, 10, 15)
130

(12, 8, 21)
105

(10, 18, 14)
118 (g₁, s₁, b₁) T (g₂, s₂, b₂)

if 

5g₁ + 3s₁ + b₁ < 5g₂ + 3s₂ + b₂



  

(46, 37, 38)
121

(27, 23, 17)
67

(26, 18, 26)
72

(19, 18, 19)
56

(17, 10, 15)
42

(12, 8, 21)
41

(10, 18, 14)
42

(g₁, s₁, b₁) U (g₂, s₂, b₂)

if 

g₁ + s₁ + b₁ < g₂ + s₂ + b₂



  

Hasse Artichokes

xRy   if   x must be eaten before y



  

Hasse Artichokes

xRy   if   x must be eaten before y



  

The Meta Strict Order

Irrefexivity

Asymmetry Transitivity Refexivity

Strict Order Equivalence
Relation

Symmetry

aRb      if      a is less specifc than b

Question to 
ponder: why is 
this line here?

Question to 
ponder: why is 
this line here?



  

Next Time

● Functions
● How do we model transformations in a 

mathematical sense?
● Domains and Codomains

● Type theory meets mathematics!
● Injections, Surjections, and 

Bijections
● Three special classes of functions.
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