

Binary Relations
Part II

Outline for Today

● Recap from Last Time
● Where are we, again?

● Properties of Equivalence Relations
● What’s so special about those three rules?

● Strict Orders
● A diferent type of mathematical structure

● Hasse Diagrams
● How to visualize rankings

Recap from Last Time

Binary Relations

● A binary relation over a set A is a predicate
R that can be applied to pairs of elements
drawn from A.

● If R is a binary relation over A and it holds for
the pair (a, b), we write aRb.

3 = 3 5 < 7 Ø ⊆ ℕ
● If R is a binary relation over A and it does not

hold for the pair (a, b), we write aRb.

4 ≠ 3 4 <≮ 3 ℕ ⊆≮ Ø

Refexivity

● Some relations always hold from any element to itself.
● Examples:

● x = x for any x.
● A ⊆ A for any set A.
● x ≡ₖ x for any x.

● Relations of this sort are called refexive.
● Formally speaking, a binary relation R over a set A is

refexive if the following frst-oorder logic statement is
true about R:

∀a ∈ A. aRa

(“Every element is related to itself.”)

Refexivity Visualized

∀a ∈ A. aRa
(“Every element is related to itself.”)

Symmetry

● In some relations, the relative order of the objects
doesn't matter.

● Examples:
● If x = y, then y = x.
● If x ≡ₖ y, then y ≡ₖ x.

● These relations are called symmetric.
● Formally: a binary relation R over a set A is called

symmetric if the following frst-oorder statement is true
about R:

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

(“If a is related to b, then b is related to a.”)

Symmetry Visualized

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

Transitivity

● Many relations can be chained together.
● Examples:

● If x = y and y = z, then x = z.
● If R ⊆ S and S ⊆ T, then R ⊆ T.
● If x ≡ₖ y and y ≡ₖ z, then x ≡ₖ z.

● These relations are called transitive.
● A binary relation R over a set A is called transitive if

the following frst-oorder statement is true about R:

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

(“Whenever a is related to b and b is
related to c, we know a is related to c.)

Transitivity Visualized

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)

New Stuf!

Properties of Equivalence Relations

 xRy if x and y have the same shape

 xTy if x is the same color as y

Equivalence Classes

● Given an equivalence relation R over a set A, for
any x ∈ A, the equivalence class of x is the set

[x]R = { y ∈ A | xRy }

● [x]R is the set of all elements of A that are related
to x by relation R.

● For example, consider the ≡₃ relation over ℕ.
Then
● [0]≡₃ = {0, 3, 6, 9, 12, 15, 18, …}

● [1]≡₃ = {1, 4, 7, 10, 13, 16, 19, …}

● [2]≡₃ = {2, 5, 8, 11, 14, 17, 20, …}

● [3]≡₃ = {0, 3, 6, 9, 12, 15, 18, …}

Notice that [0]≡₃ = [3]≡₃.
These are literally the
same set, so they're just
diferent names for the
same thing.

Notice that [0]≡₃ = [3]≡₃.
These are literally the
same set, so they're just
diferent names for the
same thing.

The Fundamental Theorem of
Equivalence Relations: Let R be an
equivalence relation over a set A. Then
every element a ∈ A belongs to exactly one
equivalence class of R.

How’d We Get Here?

● We discovered equivalence relations by thinking
about partitions of a set of elements.

● We saw that if we had a binary relation that tells
us whether two elements are in the same group,
it had to be refexive, symmetric, and transitive.

● The FToER says that, in some sense, these rules
precisely capture what it means to be a partition.

● Question: What’s so special about these three
rules?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → cRa)

 ∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → cRa)

A binary relation
with this property
is called cyclic.

A binary relation
with this property
is called cyclic.

 ∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → cRa)

Is this an
equivalence
relation?

Is this an
equivalence
relation?

Theorem: A binary relation R over a set A
is an equivalence relation if and only if it is

refexive and cyclic.

Lemma 1: If R is an equivalence relation
over a set A, then R is refexive and cyclic.

Lemma 2: If R is a binary relation over a
set A that is refexive and cyclic, then R is

an equivalence relation.

What We’re Assuming What We Need To Show

Lemma 1: If R is an equivalence relation
over a set A, then R is refexive and cyclic.

● R is an equivalence
relation.

● R is refexive.
● R is symmetric.
● R is transitive.

● R is refexive.
● R is cyclic.

What We’re Assuming What We Need To Show

Lemma 1: If R is an equivalence relation
over a set A, then R is refexive and cyclic.

R is an equivalence
relation.

● R is refexive.

R is symmetric.

R is transitive.

● R is refexive.

R is cyclic.

What We’re Assuming What We Need To Show

Lemma 1: If R is an equivalence relation
over a set A, then R is refexive and cyclic.

● R is an equivalence
relation.

● R is refexive.
● R is symmetric.
● R is transitive.

R is refexive.

R is cyclic.
● If aRb and bRc,
then cRa.

What We’re Assuming What We Need To Show

Lemma 1: If R is an equivalence relation
over a set A, then R is refexive and cyclic.

● R is an equivalence
relation.

● R is refexive.
● R is symmetric.
● R is transitive.

● If aRb and bRc, then
cRa.

a b

c

What We’re Assuming What We Need To Show

Lemma 1: If R is an equivalence relation
over a set A, then R is refexive and cyclic.

R is an equivalence
relation.

R is refexive.

R is symmetric.
● R is transitive.

● If aRb and bRc, then
cRa.

a b

c

What We’re Assuming What We Need To Show

Lemma 1: If R is an equivalence relation
over a set A, then R is refexive and cyclic.

R is an equivalence
relation.

R is refexive.
● R is symmetric.

R is transitive.

● If aRb and bRc, then
cRa.

a b

c

Lemma 1: If R is an equivalence relation over a set A, then R
is refexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some
set A. We need to prove that R is refexive and cyclic.

Since R is an equivalence relation, we know that R is
refexive, symmetric, and transitive. Consequently, we
already know that R is refexive, so we only need to show
that R is cyclic.

To prove that R is cyclic, consider any arbitrary a, b, c ∈ A
where aRb and bRc. We need to prove that cRa holds.
Since R is transitive, from aRb and bRc we see that aRc.
Then, since R is symmetric, from aRc we see that cRa,
which is what we needed to prove. ■

Lemma 1: If R is an equivalence relation over a set A, then R
is refexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some
set A. We need to prove that R is refexive and cyclic.

Since R is an equivalence relation, we know that R is
refexive, symmetric, and transitive. Consequently, we
already know that R is refexive, so we only need to show
that R is cyclic.

To prove that R is cyclic, consider any arbitrary a, b, c ∈ A
where aRb and bRc. We need to prove that cRa holds.
Since R is transitive, from aRb and bRc we see that aRc.
Then, since R is symmetric, from aRc we see that cRa,
which is what we needed to prove. ■

Notice how the frst few sentences of this
proof mirror the structure of what needs
to be proved. We’re just following the
templates from the frst week of class!

Notice how the frst few sentences of this
proof mirror the structure of what needs
to be proved. We’re just following the
templates from the frst week of class!

Lemma 1: If R is an equivalence relation over a set A, then R
is refexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some
set A. We need to prove that R is refexive and cyclic.

Since R is an equivalence relation, we know that R is
refexive, symmetric, and transitive. Consequently, we
already know that R is refexive, so we only need to show
that R is cyclic.

To prove that R is cyclic, consider any arbitrary a, b, c ∈ A
where aRb and bRc. We need to prove that cRa holds.
Since R is transitive, from aRb and bRc we see that aRc.
Then, since R is symmetric, from aRc we see that cRa,
which is what we needed to prove. ■

Notice how this setup mirrors the frst-order
defnition of cyclicity:

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → cRa)

When writing proofs about terms with frst-order
defnitions, it’s critical to call back to those

defnitions!

Notice how this setup mirrors the frst-order
defnition of cyclicity:

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → cRa)

When writing proofs about terms with frst-order
defnitions, it’s critical to call back to those

defnitions!

Lemma 1: If R is an equivalence relation over a set A, then R
is refexive and cyclic.

Proof: Let R be an arbitrary equivalence relation over some
set A. We need to prove that R is refexive and cyclic.

Since R is an equivalence relation, we know that R is
refexive, symmetric, and transitive. Consequently, we
already know that R is refexive, so we only need to show
that R is cyclic.

To prove that R is cyclic, consider any arbitrary a, b, c ∈ A
where aRb and bRc. We need to prove that cRa holds.
Since R is transitive, from aRb and bRc we see that aRc.
Then, since R is symmetric, from aRc we see that cRa,
which is what we needed to prove. ■

Although this proof is deeply informed by the frst-order
defnitions, notice that there is no frst-order logic

notation anywhere in the proof. That’s normal – it’s actually
quite rare to see frst-order logic in written proofs.

Although this proof is deeply informed by the frst-order
defnitions, notice that there is no frst-order logic

notation anywhere in the proof. That’s normal – it’s actually
quite rare to see frst-order logic in written proofs.

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a
set A that is refexive and cyclic, then R is

an equivalence relation.

● R is refexive.
● R is cyclic.

● R is an equivalence
relation.

● R is refexive.
● R is symmetric.
● R is transitive.

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a
set A that is refexive and cyclic, then R is

an equivalence relation.

● R is refexive.

R is cyclic.

R is an equivalence
relation.

● R is refexive.

R is symmetric.

R is transitive.

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a
set A that is refexive and cyclic, then R is

an equivalence relation.

● R is refexive.
● R is cyclic.

● R is an equivalence
relation.

● R is refexive.
● R is symmetric.
● R is transitive.

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a
set A that is refexive and cyclic, then R is

an equivalence relation.

● R is refexive.
● R is cyclic.

R is an equivalence
relation.

R is refexive.
● R is symmetric.

R is transitive.

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a
set A that is refexive and cyclic, then R is

an equivalence relation.

● R is refexive.
● R is cyclic.

● R is symmetric.
● If aRb, then bRa.

a b

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a
set A that is refexive and cyclic, then R is

an equivalence relation.

● R is refexive.
● ∀x ∈ A. xRx

● R is cyclic.
● xRy ∧ yRz → zRx

● R is symmetric.
● If aRb, then bRa.

a b

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a
set A that is refexive and cyclic, then R is

an equivalence relation.

R is refexive.
● ∀x ∈ A. xRx

R is cyclic.

xRy ∧ yRz → zRx

● R is symmetric.
● If aRb, then bRa.

a b

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a
set A that is refexive and cyclic, then R is

an equivalence relation.

R is refexive.

∀x ∈ A. xRx

R is cyclic.
● xRy ∧ yRz → zRx

● R is symmetric.
● If aRb, then bRa.

a b

x
y

z

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a
set A that is refexive and cyclic, then R is

an equivalence relation.

● R is refexive.
● ∀x ∈ A. xRx

● R is cyclic.
● xRy ∧ yRz → zRx

R is an equivalence
relation.

R is refexive.

R is symmetric.
● R is transitive.

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a
set A that is refexive and cyclic, then R is

an equivalence relation.

● R is refexive.
● ∀x ∈ A. xRx

● R is cyclic.
● xRy ∧ yRz → zRx

● R is transitive.
● If aRb and bRc,
then aRc.

a b

c

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a
set A that is refexive and cyclic, then R is

an equivalence relation.

R is refexive.

∀x ∈ A. xRx

R is cyclic.

xRy ∧ yRz → zRx

● R is transitive.
● If aRb and bRc,
then aRc.

a b

c

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a
set A that is refexive and cyclic, then R is

an equivalence relation.

● R is refexive.
● ∀x ∈ A. xRx

● R is cyclic.
● xRy ∧ yRz → zRx

● R is transitive.
● If aRb and bRc,
then aRc.

a b

c

What We’re Assuming What We Need To Show

Lemma 2: If R is a binary relation over a
set A that is refexive and cyclic, then R is

an equivalence relation.

● R is refexive.
● ∀x ∈ A. xRx

● R is cyclic.
● xRy ∧ yRz → zRx

● R is symmetric
● xRy → yRx

● R is transitive.
● If aRb and bRc,
then aRc.

a b

c

Lemma 2: If R is a binary relation over a set A that is cyclic
and refexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that
is cyclic and refexive. We need to prove that R is an
equivalence relation. To do so, we need to show that R is
refexive, symmetric, and transitive. Since we already
know by assumption that R is refexive, we just need to
show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any
arbitrary a, b ∈ A where aRb holds. We need to prove that
bRa is true. Since R is refexive, we know that aRa holds.
Therefore, by cyclicity, since aRa and aRb, we learn that
bRa, as required.

Next, we'll prove that R is transitive. Let a, b, and c be any
elements of A where aRb and bRc. We need to prove that
aRc. Since R is cyclic, from aRb and bRc we see that cRa.
Earlier, we showed that R is symmetric. Therefore, from
cRa we see that aRc is true, as required. ■

Lemma 2: If R is a binary relation over a set A that is cyclic
and refexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that
is cyclic and refexive. We need to prove that R is an
equivalence relation. To do so, we need to show that R is
refexive, symmetric, and transitive. Since we already
know by assumption that R is refexive, we just need to
show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any
arbitrary a, b ∈ A where aRb holds. We need to prove that
bRa is true. Since R is refexive, we know that aRa holds.
Therefore, by cyclicity, since aRa and aRb, we learn that
bRa, as required.

Next, we'll prove that R is transitive. Let a, b, and c be any
elements of A where aRb and bRc. We need to prove that
aRc. Since R is cyclic, from aRb and bRc we see that cRa.
Earlier, we showed that R is symmetric. Therefore, from
cRa we see that aRc is true, as required. ■

Notice how this setup mirrors the frst-order defnition
of symmetry:

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

When writing proofs about terms with frst-order
defnitions, it’s critical to call back to those defnitions!

Notice how this setup mirrors the frst-order defnition
of symmetry:

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

When writing proofs about terms with frst-order
defnitions, it’s critical to call back to those defnitions!

Lemma 2: If R is a binary relation over a set A that is cyclic
and refexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that
is cyclic and refexive. We need to prove that R is an
equivalence relation. To do so, we need to show that R is
refexive, symmetric, and transitive. Since we already
know by assumption that R is refexive, we just need to
show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any
arbitrary a, b ∈ A where aRb holds. We need to prove that
bRa is true. Since R is refexive, we know that aRa holds.
Therefore, by cyclicity, since aRa and aRb, we learn that
bRa, as required.

Next, we'll prove that R is transitive. Let a, b, and c be any
elements of A where aRb and bRc. We need to prove that
aRc. Since R is cyclic, from aRb and bRc we see that cRa.
Earlier, we showed that R is symmetric. Therefore, from
cRa we see that aRc is true, as required. ■

Notice how this setup mirrors the frst-order defnition
of transitivity:

∀a ∈ A. ∀b ∈ A. ∀ c ∈ A. (aRb ∧ bRc → aRc)

When writing proofs about terms with frst-order
defnitions, it’s critical to call back to those defnitions!

Notice how this setup mirrors the frst-order defnition
of transitivity:

∀a ∈ A. ∀b ∈ A. ∀ c ∈ A. (aRb ∧ bRc → aRc)

When writing proofs about terms with frst-order
defnitions, it’s critical to call back to those defnitions!

Lemma 2: If R is a binary relation over a set A that is cyclic
and refexive, then R is an equivalence relation.

Proof: Let R be an arbitrary binary relation over a set A that
is cyclic and refexive. We need to prove that R is an
equivalence relation. To do so, we need to show that R is
refexive, symmetric, and transitive. Since we already
know by assumption that R is refexive, we just need to
show that R is symmetric and transitive.

First, we'll prove that R is symmetric. To do so, pick any
arbitrary a, b ∈ A where aRb holds. We need to prove that
bRa is true. Since R is refexive, we know that aRa holds.
Therefore, by cyclicity, since aRa and aRb, we learn that
bRa, as required.

Next, we'll prove that R is transitive. Let a, b, and c be any
elements of A where aRb and bRc. We need to prove that
aRc. Since R is cyclic, from aRb and bRc we see that cRa.
Earlier, we showed that R is symmetric. Therefore, from
cRa we see that aRc is true, as required. ■

Although this proof is deeply informed by the frst-order
defnitions, notice that there is no frst-order logic

notation anywhere in the proof. That’s normal – it’s actually
quite rare to see frst-order logic in written proofs.

Although this proof is deeply informed by the frst-order
defnitions, notice that there is no frst-order logic

notation anywhere in the proof. That’s normal – it’s actually
quite rare to see frst-order logic in written proofs.

Refning Your Proofwriting

● When writing proofs about terms with formal
defnitions, you must call back to those defnitions.
● Use the frst-oorder defnition to see what you’ll assume and

what you’ll need to prove.
● When writing proofs about terms with formal

defnitions, you must not include any frst-oorder logic
in your proofs.
● Although you won’t use any FOL notation in your proofs,

your proof implicitly calls back to the FOL defnitions.
● You’ll get a lot of practice with this on Problem Set

Three. If you have any questions about how to do this
properly, please feel free to ask on Piazza or stop by
ofice hours!

Time-oOut for Announcements!

0 –
15

16 –
20

21 –
25

26 –
30

31 –
35

36 –
40

41 –
45

46 –
50

51 –
55

56 –
60

61 –
65

66 –
70

70 –

Problem Set One Graded

75th Percentile: 65 / 73
50th Percentile: 58 / 73
25th Percentile: 52 / 73

75th Percentile: 65 / 73
50th Percentile: 58 / 73
25th Percentile: 52 / 73

Pro tips when seeing a grading curve:

1. Standard deviations are malicious lies. Ignore them.
2. The average score is a malicious lie. Ignore it.
3. Raw scores are malicious lies. Ignore them.

Pro tips when seeing a grading curve:

1. Standard deviations are malicious lies. Ignore them.
2. The average score is a malicious lie. Ignore it.
3. Raw scores are malicious lies. Ignore them.

0 –
15

16 –
20

21 –
25

26 –
30

31 –
35

36 –
40

41 –
45

46 –
50

51 –
55

56 –
60

61 –
65

66 –
70

70 –

Problem Set One Graded

75th Percentile: 65 / 73
50th Percentile: 58 / 73
25th Percentile: 52 / 73

75th Percentile: 65 / 73
50th Percentile: 58 / 73
25th Percentile: 52 / 73

“Great job! Look over
your feedback for some
tips on how to tweak
things for next time.”

“Great job! Look over
your feedback for some
tips on how to tweak
things for next time.”

0 –
15

16 –
20

21 –
25

26 –
30

31 –
35

36 –
40

41 –
45

46 –
50

51 –
55

56 –
60

61 –
65

66 –
70

70 –

Problem Set One Graded

75th Percentile: 65 / 73
50th Percentile: 58 / 73
25th Percentile: 52 / 73

75th Percentile: 65 / 73
50th Percentile: 58 / 73
25th Percentile: 52 / 73

“You’re almost there! Review
the feedback on your

submission and see if there’s
anything to focus on for

next time.”

“You’re almost there! Review
the feedback on your

submission and see if there’s
anything to focus on for

next time.”

0 –
15

16 –
20

21 –
25

26 –
30

31 –
35

36 –
40

41 –
45

46 –
50

51 –
55

56 –
60

61 –
65

66 –
70

70 –

Problem Set One Graded

75th Percentile: 65 / 73
50th Percentile: 58 / 73
25th Percentile: 52 / 73

75th Percentile: 65 / 73
50th Percentile: 58 / 73
25th Percentile: 52 / 73

“You’re on the right track, but
there are some areas where you
need to improve. Review your
feedback and ask us questions

about how to improve.”

“You’re on the right track, but
there are some areas where you
need to improve. Review your
feedback and ask us questions

about how to improve.”

0 –
15

16 –
20

21 –
25

26 –
30

31 –
35

36 –
40

41 –
45

46 –
50

51 –
55

56 –
60

61 –
65

66 –
70

70 –

Problem Set One Graded

75th Percentile: 65 / 73
50th Percentile: 58 / 73
25th Percentile: 52 / 73

75th Percentile: 65 / 73
50th Percentile: 58 / 73
25th Percentile: 52 / 73

“You’re not quite there yet, but don’t
worry! Review your feedback in depth and
fnd some concrete areas where you can
improve. Ask us questions, focus on your
weak spots, and you’ll be in great shape.”

“You’re not quite there yet, but don’t
worry! Review your feedback in depth and
fnd some concrete areas where you can
improve. Ask us questions, focus on your
weak spots, and you’ll be in great shape.”

0 –
15

16 –
20

21 –
25

26 –
30

31 –
35

36 –
40

41 –
45

46 –
50

51 –
55

56 –
60

61 –
65

66 –
70

70 –

Problem Set One Graded

75th Percentile: 65 / 73
50th Percentile: 58 / 73
25th Percentile: 52 / 73

75th Percentile: 65 / 73
50th Percentile: 58 / 73
25th Percentile: 52 / 73

“Looks like something hasn’t quite clicked
yet. Get in touch with us and stop by

ofce hours to get some extra feedback
and advice. Don’t get discouraged – you

can do this!”

“Looks like something hasn’t quite clicked
yet. Get in touch with us and stop by

ofce hours to get some extra feedback
and advice. Don’t get discouraged – you

can do this!”

0 –
15

16 –
20

21 –
25

26 –
30

31 –
35

36 –
40

41 –
45

46 –
50

51 –
55

56 –
60

61 –
65

66 –
70

70 –

Problem Set One Graded

75th Percentile: 65 / 73
50th Percentile: 58 / 73
25th Percentile: 52 / 73

75th Percentile: 65 / 73
50th Percentile: 58 / 73
25th Percentile: 52 / 73

“Oops, you
forgot to
submit.”

“Oops, you
forgot to
submit.”

What Not to Think

● “Well, I guess I’m just not good at math.”
● For most of you, this is your frst time doing any rigorous

proof-obased math.
● Don’t judge your future performance based on a single

data point.
● Life advice: avoid “minivanning.”
● Life advice: have a growth mindset!

● “Hey, I did above the median. That’s good enough.”
● Unless you literally earned every single point on this

problem set – and even in that case – there’s some area
where the course staf thinks you need to improve. Take
the time to see what that is.

 THE ROAD TO WISDOM

The road to wisdom?—Well, it's plain
and simple to express:

Err
and err

and err again,
but less
and less
and less.

 — Piet Hein
CS legend Don Knuth
has this poem on the
wall of his house.

CS legend Don Knuth
has this poem on the
wall of his house.

And this guy is
interesting. You should

look him up.

And this guy is
interesting. You should

look him up.

Problem Set Two

● Problem Set Two is due on Friday at
2:30.
● Have questions? Stop by ofice hours or ask

on Piazza!
● Reminder: check your frst-oorder logic

translations using our handy checklist!
It’s up on the course website.

Your Questions

“What are the pros and cons for a masters
in CS vs. a B.S. in CS?”

I think there are two main contexts in which you could ask this question. First,
should you do a CS major (BS), or do something else and get a coterm in CS
(MS)? Second, if you already have a CS undergrad (BS), should you then go on
to do a master’s in it (MS)?

For that frst case: both a CS BS and a CS MS will teach you a ton about the
feld. The CS BS gives you more of an opportunity to explore the feld, since
the tracks are more fexible, and the CS MS goes into way more depth into a
single area but has a bit less exploration built in. The biggest question, though,
would be what other major you’re looking at. If you have multiple interests, a
major outside of CS and a coterm in CS can be a great option. Just don’t do
that because you’re nervous about majoring in CS; if you want to do CS but
feel a bit intimidated, please come talk to me!

For that second case: there’s a slight salary diference between BS and MS
grads, but the opportunity cost of giving up a year’s salary usually will eat it.
The main reason to do an MS is if you’re really liking what you’re learning and
want to dive deeper into it.

I think there are two main contexts in which you could ask this question. First,
should you do a CS major (BS), or do something else and get a coterm in CS
(MS)? Second, if you already have a CS undergrad (BS), should you then go on
to do a master’s in it (MS)?

For that frst case: both a CS BS and a CS MS will teach you a ton about the
feld. The CS BS gives you more of an opportunity to explore the feld, since
the tracks are more fexible, and the CS MS goes into way more depth into a
single area but has a bit less exploration built in. The biggest question, though,
would be what other major you’re looking at. If you have multiple interests, a
major outside of CS and a coterm in CS can be a great option. Just don’t do
that because you’re nervous about majoring in CS; if you want to do CS but
feel a bit intimidated, please come talk to me!

For that second case: there’s a slight salary diference between BS and MS
grads, but the opportunity cost of giving up a year’s salary usually will eat it.
The main reason to do an MS is if you’re really liking what you’re learning and
want to dive deeper into it.

“What are your thoughts on AI?”

It’s really exciting, there’s a ton of new cool technologies
coming out now, and we’re making a lot of progress in areas

like vision and translation that have historically been real
sticking points.

I also think that there’s a bit too much hype and that while
we are making huge steps forward, there’s still a lot to

fgure out and in most domains simple heuristics are “good
enough” for our purposes.

It’s really exciting, there’s a ton of new cool technologies
coming out now, and we’re making a lot of progress in areas

like vision and translation that have historically been real
sticking points.

I also think that there’s a bit too much hype and that while
we are making huge steps forward, there’s still a lot to

fgure out and in most domains simple heuristics are “good
enough” for our purposes.

“What motivates you to wake up in the
morning?”

Circadian
rhythms and my
alarm clock. ☺

Circadian
rhythms and my
alarm clock. ☺

Back to CS103!

Prerequisite Structures

CS106B
Programming
Abstractions

CS107
Computer

Organization and
Systems

CS110
Principles of

Computer Systems

CS103
Mathematical

Foundations of
Computing

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
T

h
e
o
ry

S
ys

te
m

s

Pancakes

Everyone's got a pancake recipe. This one comes from Food Wishes
(http://foodwishes.blogspot.com/2011/08/grandma-okellys-ogood-oold-o
fashioned.html).

Ingredients

 · 1 1/2 cups all-opurpose four
 · 3 1/2 tsp baking powder
 · 1 tsp salt
 · 1 tbsp sugar
 · 1 1/4 cup milk
 · 1 egg
 · 3 tbsp butter, melted

Directions

1. Sift the dry ingredients together.
2. Stir in the butter, egg, and milk. Whisk together to form the batter.
3. Heat a large pan or griddle on medium-ohigh heat. Add some oil.
4. Make pancakes one at a time using 1/4 cup batter each. They're ready
 to fip when the centers of the pancakes start to bubble.

Measure
Flour

Measure
Baking Pwdr

Measure
Salt

Measure
Sugar

Measure
Milk

Melt
Butter

Beat Egg

Combine Dry
Ingredients

Heat
Griddle

Oil
Griddle

Add Wet
Ingredients

Make
Pancakes

Serve
Pancakes

Relations and Prerequisites

● Let's imagine that we have a prerequisite
structure with no circular dependencies.

● We can think about a binary relation R
where aRb means

“a must happen before b”
● What properties of R could we deduce

just from this?

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

Irrefexivity

● Some relations never hold from any element to
itself.

● As an example, x <≮ x for any x.

● Relations of this sort are called irrefexive.
● Formally speaking, a binary relation R over a

set A is irrefexive if the following frst-oorder
logic statement is true about R:

∀a ∈ A. aR̸a

(“No element is related to itself.”)

Irrefexivity Visualized

∀a ∈ A. aR̸a
(“No element is related to itself.”)

∀a ∈ A. aRa
(“Every element is related to itself.”)

Is this relation
refexive?

Is this relation
refexive?

Nope!

∀a ∈ A. aR̸a
(“No element is related to itself.”)

Is this relation
irrefexive?

Is this relation
irrefexive?

Nope!

Refexivity and Irrefexivity

● Refexivity and irrefexivity are not opposites!
● Here's the defnition of refexivity:

∀a ∈ A. aRa
● What is the negation of the above statement?

∃a ∈ A. aR̸a
● What is the defnition of irrefexivity?

∀a ∈ A. aR̸a

Asymmetry

● In some relations, the relative order of the
objects can never be reversed.

● As an example, if x < y, then y <≮ x.
● These relations are called asymmetric.
● Formally: a binary relation R over a set A is

called asymmetric if the following frst-oorder
logic statement is true about R:

∀a ∈ A. ∀b ∈ A. (aRb → bR̸a)

(“If a relates to b, then b does not relate to a.”)

Asymmetry Visualized

∀a ∈ A. ∀b ∈ A. (aRb → bR̸a)
(“If a relates to b, then b does not relate to a.”)

Question to Ponder: Are symmetry and
asymmetry opposites of one another?

Strict Orders

● A strict order is a relation that is irrefexive,
asymmetric and transitive.

● Some examples:
● x < y.
● a can run faster than b.
● A ⊊ B (that is, A ⊆ B and A ≠ B).

● Strict orders are useful for representing
prerequisite structures and have applications in
complexity theory (measuring notions of relative
hardness) and algorithms (searching and sorting).

Drawing Strict Orders

Gold Silver Bronze

46 37 38

27 23 17

26 18 26

19 18 19

17 10 15

12 8 21

10 18 1410 18 14

9 3 9

8 12 8

8 11 10

7 6 6

7 4 6

6 6 1

6 3 2

8 7 4

8 3 4

(g₁, s₁, b₁) R (g₂, s₂, b₂) if g₁ < g₂ ∧ s₁ < s₂ ∧ b₁ < b₂

(46, 37, 38)

(26, 18, 26) (27, 23, 17)(19, 18, 19)

(17, 10, 15)

(12, 8, 21) (10, 18, 14)

(g₁, s₁, b₁) R (g₂, s₂, b₂) if g₁ < g₂ ∧ s₁ < s₂ ∧ b₁ < b₂

(46, 37, 38)

(26, 18, 26) (27, 23, 17)(19, 18, 19)

(17, 10, 15)(12, 8, 21) (10, 18, 14)

(g₁, s₁, b₁) R (g₂, s₂, b₂) if g₁ < g₂ ∧ s₁ < s₂ ∧ b₁ < b₂

(46, 37, 38)

(26, 18, 26) (27, 23, 17)(19, 18, 19)

(17, 10, 15)(12, 8, 21) (10, 18, 14)

More Medals

Fewer Medals

Hasse Diagrams

● A Hasse diagram is a graphical representation
of a strict order.

● Elements are drawn from bottom-oto-otop.
● No self loops are drawn, and none are needed! By

irrefexivity we know they shouldn’t be there.
● Higher elements are bigger than lower elements:

by asymmetry, the edges can only go in one
direction.

● No redundant edges: by transitivity, we can
infer the missing edges.

(46, 37, 38)
379

(26, 18, 26)
210

(27, 23, 17)
221

(19, 18, 19)
168

(17, 10, 15)
130

(12, 8, 21)
105

(10, 18, 14)
118 (g₁, s₁, b₁) T (g₂, s₂, b₂)

if

5g₁ + 3s₁ + b₁ < 5g₂ + 3s₂ + b₂

(46, 37, 38)
121

(27, 23, 17)
67

(26, 18, 26)
72

(19, 18, 19)
56

(17, 10, 15)
42

(12, 8, 21)
41

(10, 18, 14)
42

(g₁, s₁, b₁) U (g₂, s₂, b₂)

if

g₁ + s₁ + b₁ < g₂ + s₂ + b₂

Hasse Artichokes

xRy if x must be eaten before y

Hasse Artichokes

xRy if x must be eaten before y

The Meta Strict Order

Irrefexivity

Asymmetry Transitivity Refexivity

Strict Order Equivalence
Relation

Symmetry

aRb if a is less specifc than b

Question to
ponder: why is
this line here?

Question to
ponder: why is
this line here?

Next Time

● Functions
● How do we model transformations in a

mathematical sense?
● Domains and Codomains

● Type theory meets mathematics!
● Injections, Surjections, and

Bijections
● Three special classes of functions.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

