Direct Proofs



Outline for Today

« Mathematical Proof

« What is a mathematical proof? What does a
proof look like?

 Direct Proofs
* A versatile, powertful proof technique.
 Universal and Existential Statements
« What exactly are we trying to prove?
 Proofs on Set Theory

 Formalizing our reasoning.



What is a Proof?



A proofis an argument that
demonstrates why a conclusion is true,
subject to certain standards of truth.



A mathematical proof is an argument

that demonstrates why a mathematical

statement is true, following the rules ot
mathematics.






Modern Proofs



Two Quick Definitions

* An integer n is even if there is some
integer k such that n = 2k.

 This means that O is even.

* An integer n is odd it there is some
integer k such that n = 2k + 1.

* This means that 0 is not odd.
 We'll assume the following for now:

 Every integer is either even or odd.
 No integer is both even and odd.
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Proof: Let n be an even integer.
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such that n = 2k.
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M obtained above, Giving names 1o quantities,
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To variables in programs.,
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Our First Direct Proof

Theorem: 1 n| our ultimate goal is to prove that i,
Proof: Let n bl n*is even, This means thal we
need o find some m such fhat
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showing how we can do Thaf,
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That wasn't so bad! Let's do another one.
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For any integers m and n

How do we prove
that This is true for
any infegers?




Proving Something Always Holds

 Many statements have the form
For any x, [some-property] holds of x.
 Examples:

For all integers n, if n is even, n2 is even.
For any sets A, B,and C,if A C Band B C C, then A C C.
For all sets S, |S| < |(S)]|.
Everything that drowns me makes me wanna fly.

« How do we prove these statements when there
are (potentially) infinitely many cases to check?



Arbitrary Choices

* To prove that some property holds true for all
possible x, show that no matter what choice
of x you make, that property must be true.

» Start the proot by choosing x arbitrarily:

 “Let x be an arbitrary even integer.”
 “Let x be any set containing 137.”
 “Consider any x.”

* “Pick an odd integer x.”

 Demonstrate that the property holds true for
this choice of x.



ar-bi-trar-y
adjective /['arbitrere/

1. Based on random choice or personal whim, rather than
any reason or system - “his mealtimes were entirely
arbitrary”

2. (of power or a ruling body) Unrestrained and autocratic
in the use of authority - “arbitrary rule by King and
bishops has been made impossible”

3. (of a constant or other quantity) Of unspecified value

Source: Google



ar-bi-trar-y
adjective /['arbitrere/

1. Based on random choice or personal whim, rather than

any reason or system - “his mealtimes were entirely
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in the use of authority - “arbitrary rule by King and
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Use This
definifion..
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Theorem: For any integers m and n, if m and n are odd, then
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Proof:



Theorem: For any integers m and n, if m and n are odd, then
m + n 1s even.

Proof: Consider any arbitrary integers m and n where m and n are
odd.



For any integers m and n

Consider any arbitrary integers m and n

By picking m and n arbitrarily,
anything we prove about m and n
will generalize To all possible

choices we could have made,




if m and n are odd, then

m + nis even

odd

where m and n are

To prove a statement of the form
“If P, then Q”

Assume That P is True, then show
That Q@ must be frue as well,
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Numbering these equalities lets us
reter back to them later on,
making The tlow of the proot a bif
easier To understand.,

m =2k + 1. (1)

n =2r+1. (2)
By adding equations (1) and (2)

m -+ n

=2(k+r+1). (3)
Equation (3) tells us



m =2k + 1

n =2r+1

Notice that we use k in the first
equality and r in The second
equality, Thal’s because we know
that n is twice something plus one,
but we can't say tor sure that it’s
k specifically,




Since m is odd, we know that there is an integer k where

m = 2k + 1.

This is a grammafically correct and complete
sentencer Proots are expected 1o be writfen
in complefe senfences, so yowll offen use
punctuation at fhe end of formulas.

We recommend using The *mugga mugga“ test
~ if you read a proot and replace all the
mathemaTical notation with *mugga mugga,”

what comes back should be a valid senfence,
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Theorem: For any integers m and n, if m and n are odd, then
m + n 1s even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. Since m is odd, we know that there is an integer k where

m = 2k + 1. (1)
Similarly, because n is odd there must be some integer r such
that ( Trace through this
n =2r+ 1. proofif m =7

and n = 9. What
By adding equations (1) and (2) we learn that is the resulting

m+n=2k+1+2r+1 Vahj_:(;fs?
=2k + 2r + 2 2
=2(k +r+1). C. 17

Equation (3) tells us that there is an integer s (namely, kK + r + 1)
such that m + n = 2s. Therefore, we see that m + n is even, as

required. M Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, B, or C.




Proof by Exhaustion



Theorem: The product of any two consecutive integers is even.



Theorem: The product of any two consecutive integers is even.

.-3-2-10123456789 1011 ...



Theorem: The product of any two consecutive integers is even.

.-3-2-10123456789 1011 ...



Theorem: The product of any two consecutive integers is even.

.-3-2-10123456789 1011 ...



Theorem: The product of any two consecutive integers is even.

.-3-2-10123456789 1011 ...



Theorem: The product of any two consecutive integers is even.

.-3-2-10123456789 1011 ...



Theorem: The product of any two consecutive integers is even.
Proof:



Theorem: The product of any two consecutive integers is even.

Proof: Pick any two consecutive integers n and n+1.



any two consecutive integers

Pick any two consecutive integers n and n+1.



Theorem: The product of any two consecutive integers is even.

Proof: Pick any two consecutive integers n and n+1.



Theorem: The product of any two consecutive integers is even.

Proof: Pick any two consecutive integers n and n+1. We’ll prove
that their product n(n+1) is even.



Theorem: The product of any two consecutive integers is even.

Proof: Pick any two consecutive integers n and n+1. We’ll prove
that their product n(n+1) is even. Let’s consider two cases:

Case 1: n is even.

Case 2: n is odd.



Case 1: n is even.

Case 2: n is odd.

[.et’s consider two cases:

This is called a proot by cases
(alfernafively, a proof by exhaustion)
and works by showing thal the theorem

is true regardless of what specific

oufcome arises,
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so n(n+1) is even.

After splitting into cases, if's a
good idea To summarize whal you

just did so that the reader knows
what fo fake away from if,
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needed to show. B



Some Little Exercises

« Here’s a list of other theorems that are true about odd
and even numbers:

« Theorem: The sum and difference of any two even numbers
1S even.

e Theorem: The sum and difference of an odd number and an
even number is odd.

« Theorem: The product of any integer and an even number
1S even.

« Theorem: The product of any two odd numbers is odd.
* Feel free to use these results going forward.

 If you’d like to practice the techniques from today, try
your hand at proving some of these results!



Universal and Existential Statements



Theorem: For any odd integer n, there exist integers
r and s where r2 - s2 = n.



Theorem: For any odd integer n, there exist integers
r and s where r2 - s2 = n.

Proof:

-
Which of the following should be the next

sentence of this proot?

A. “Pick any odd integer, n = 137.”

B. “Pick any odd integer n.”

C. “Pick any odd integer n and arbitrary integers r and s
where r* - s* = n.”

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, B, or C.



Theorem: For any odd integer n, there exist integers
r and s where r2 - s2 = n.

Proof: Pick any odd integer n.



For any odd integer n

Pick any odd integer n



there exist integers
r and s where r2 - s2 = n.

This is a very ditfferent sort of
requesT Than whal we've seen in the
past, How on earth do we go
about proving something like this?




Universal vs. Existential Statements

A universal statement is a statement of
the form

For all x, [some-property] holds for x.
« We've seen how to prove these statements.

 An existential statement is a statement of
the form

There is some x where [some-property] holds for x.

« How do you prove an existential statement?



Proving an Existential Statement

* Over the course of the quarter, we will
see several different ways to prove an
existential statement of the form

There is an x where [some-property] holds for x.

 Simplest approach: Search far and
wide, find an x that has the right
property, then show why your choice is
correct.
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Proof: Pick any odd integer n.
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know there is some integer k where n = 2k + 1.
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know there is some integer k where n = 2k + 1.




Theorem: For any odd integer n, there exist integers
r and s where r2 - s2 = n.

Proof: Pick any odd integer n. Since n is odd, we
know there is some integer k where n = 2k + 1.




Theorem: For any odd integer n, there exist integers
r and s where r2 - s2 = n.

Proof: Pick any odd integer n. Since n is odd, we
know there is some integer k where n = 2k + 1.

k+1

AL

Our quess:

(k+1)?-Kk*=n




Theorem: For any odd integer n, there exist integers
r and s where r2 - s2 = n.

Proof: Pick any odd integer n. Since n is odd, we
know there is some integer k where n = 2k + 1.

Now, let r = k+1 and s = k.



Theorem: For any odd integer n, there exist integers
r and s where r2 - s2 = n.

Proof: Pick any odd integer n. Since n is odd, we
know there is some integer k where n = 2k + 1.

Now, let r = k+1 and s = k. Then we see that
rz-s2 = (k+1)2-k>



Theorem: For any odd integer n, there exist integers
r and s where r2 - s2 = n.

Proof: Pick any odd integer n. Since n is odd, we
know there is some integer k where n = 2k + 1.

Now, let r = k+1 and s = k. Then we see that
rz-s2 = (k+1)2-k>
= k2+2k+1-k2



Theorem: For any odd integer n, there exist integers
r and s where r2 - s2 = n.

Proof: Pick any odd integer n. Since n is odd, we
know there is some integer k where n = 2k + 1.

Now, let r = k+1 and s = k. Then we see that
rz-s2 = (k+1)2-k2
= k2+ 2k + 1 - k2
= 2k +1



Theorem: For any odd integer n, there exist integers
r and s where r2 - s2 = n.

Proof: Pick any odd integer n. Since n is odd, we
know there is some integer k where n = 2k + 1.

Now, let r = k+1 and s = k. Then we see that
rz-s2 = (k+1)2-k2
= k2+ 2k + 1 - k2
= 2k +1

= 1.



Theorem: For any odd integer n, there exist integers
r and s where r2 - s2 = n.

Proof: Pick any odd integer n. Since n is odd, we
know there is some integer k where n = 2k + 1.

Now, let r = k+1 and s = k. Then we see that
rz-s2 = (k+1)2-k2
= k2+ 2k + 1 - k2
= 2k +1
= 1.

This means that 2 - s2 = n, which is what we
needed to show.



Theorem: For any odd integer n, there exist integers
r and s where r2 - s2 = n.

Proof: Pick any odd integer n. Since n is odd, we
know there is some integer k where n = 2k + 1.

Now, let r = k+1 and s = k. Then we see that
rz-s2 = (k+1)2-k2
= k2+ 2k + 1 - k2
= 2k +1
= 1.

This means that 2 - s2 = n, which is what we
needed to show. B



Follow-Up Question: There are some
integers that can’t be written as r* - s for
any integers r and s.

Can you prove that every integer can be
formed by adding and subtracting some
combination of at most three pertfect
squares?



Time-Out for Announcements!



Are you curious about computer science? Excited about the WICS
mission? Searching for a community on campus?

The Stanford Women in Computer Science Freshman Intern
Application is CURRENTLY LIVE:
https:/goo.gl/forms/bhvnAFF1JgkEKFJc2

The WICS frosh intern program allows interns to rotate through
different teams on WICS, work on meaningful projects, and join the
WICS family. Interns will work on two different projects throughout

the year (one in fall, one in winter/spring) with teams of current

WIiCS members, as well as participate in intern social and career
development events. We organize company tours, social events, and

more for our frosh interns exclusively.

Check out our project descriptions & teams for this year's program
and make sure to apply by January 12 at 11:59pm!

If you have questions, please don't hesitate to reach out to
Stephanie Campa (scampa@stanford.edu) and Neehar Banerjee
(heehar@stanford.edu).


https://goo.gl/forms/bhvnAFF1JqkEKFJc2
https://drive.google.com/open?id=1SF1zqKUMxTfuEbvPpz_xXuhcF0_HI5KG
https://goo.gl/forms/bhvnAFF1JqkEKFJc2
mailto:scampa@stanford.edu
mailto:neehar@stanford.edu

Get your resumes ready.... The Computer Forum Career
Fair is held NEXT WEDNESDAY, January 17, from
11:00am - 4:00pm. Over sixty affiliated companies will
gather on the lawn between the CS and EE Buildings.

Computer Forum Career Fair
Date: Wednesday, Jan. 17
Time: 11:00am - 4:00pm
Location: Lawn between the Gates and Packard Buildings

Please Register Via Handshake at
https:/stanford.joinhandshake.com/events/115612

Stanford Students only and a valid Stanford Student |ID
will be required at check-in.



https://stanford.joinhandshake.com/events/115612

Reading Recommendations

« We've released two handouts online that you
should read over:

 Handout 06: How to Succeed in CS103
 Handout 07: Set Theory Definitions.

« Additionally, if you haven’t yet read over the
Guide to Elements and Subsets, we’d
recommend doing so.

* Finally, we strongly recommend reading over
Chapter 1 and Chapter 2 of the online course
reader to get some more background with
proofs and set theory.



Piazza

e We have a Piazza site for CS103.

* Sign in to www.piazza.com and search
for the course CS103 to sign in.

» Feel free to ask us questions!

 Use the site to find a partner for the
problem sets!


http://www.piazza.com/

Problem Set O

 Problem Set 0 went out on Monday. It’s due
this Friday at 2:30PM.

 Even though this just involves setting up your
compiler and submitting things, please start this
one early. If you start things on Friday morning,
we can’t help you troubleshoot Qt Creator issues!

 There’s a very detailed troubleshooting guide up
on the CS103 website and a Piazza post detailing
common fixes. If you're still having trouble,
please feel tfree to ask on Piazza!



Back to CS103!



Proofs on Sets



Set Theory Review

« Recall from last time that we write x € S if x
1S an element of set S and x € S if x is not an
element of set S.

* If S and T are sets, we say that S is a subset
of T (denoted S C T) if the following
statement is true:

For every object x, if x € S, then x € T.

* Let's explore some properties of the subset
relation.



Theorem: For any sets A, B, and C, it A C B and
B CC,thenA C C.



Theorem: For any sets A, B, and C, it A C B and
B CC,thenA C C.

Proof: Let A, B, and C be arbitrary sets where A C B
and B C C.



For any sets A, B, and C

Let A, B, and C be arbitrary sets

We "re showing here That
reqgardless ot what A, B,
and C you pick, the
result will sTill be true,




if A € B and
BCCcC

where A C B
and B C C

To prove a stafement of the
form

“If P, then Q”

Assume Thal P is True, Then show
that Q@ must be True as well,




Theorem: For any sets A, B, and C, it A C B and
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Proof: Let A, B, and C be arbitrary sets where A C B
and B C C. We need to prove that A C C.



Theorem: For any sets A, B, and C, it A C B and
B CC,thenA C C.

Proof: Let A, B, and C be arbitrary sets where A C B
and B C C. We need to prove that A € C. To do so,
we will prove that for every x, if x € A, then x € C.



for every x, if x € A, then x € C.

This is, by definifion, what if
means for A € C 1o be
True, Our Job will be 1o

prove this statement,




Theorem: For any sets A, B, and C, it A C B and
B CC,thenA C C.

Proof: Let A, B, and C be arbitrary sets where A C B
and B C C. We need to prove that A € C. To do so,
we will prove that for every x, if x € A, then x € C.



Theorem: For any sets A, B, and C, it A C B and
B CC,thenA C C.

Proof: Let A, B, and C be arbitrary sets where A C B
and B C C. We need to prove that A € C. To do so,
we will prove that for every x, if x € A, then x € C.

Consider any x where x € A.



for every x
Consider any x

We 've showing here that

reqgardless of what x you

pick, the result will sfill
be True.




ifx €A, thenx € C
where x € A

To prove a statement of the form
“If P, then Q”

Assume Thal P is True, Then show
That Q@ must be true as well,




Theorem: For any sets A, B, and C, it A C B and
B CC,thenA C C.

Proof: Let A, B, and C be arbitrary sets where A C B
and B C C. We need to prove that A € C. To do so,
we will prove that for every x, if x € A, then x € C.

Consider any x where x € A. Since A C B and
X € A, we see that x € B.



Theorem: For any sets A, B, and C, it A C B and
B CC,thenA C C.

Proof: Let A, B, and C be arbitrary sets where A C B
and B C C. We need to prove that A € C. To do so,
we will prove that for every x, if x € A, then x € C.

Consider any x where x € A. Since A C B and
X € A, we see that x € B. Similarly, since B C C
and x € B, we see that x € C, which is what we

needed to show.



Theorem: For any sets A, B, and C, if A C B and
B CC,thenA C C.

Proof: Let A, B, and C be arbitrary sets where A C B
and B C C. We need to prove that A € C. To do so,
we will prove that for every x, if x € A, then x € C.

Consider any x where x € A. Since A C B and
X € A, we see that x € B. Similarly, since B C C
and x € B, we see that x € C, which is what we

needed to show. B

This property ot the subset relafion
is called transitivity, We'll revisit
Transitivity in a couple of weeks,




Theorem: For any sets A, B, and C, if A C B and
B CC,thenA C C.

Question to ponder: is this theorem
still true it we replace < with €?



Set Equality and Lemmas



Set Equality

 As we mentioned on Monday, two sets A and B are
equal when they have exactly the same elements.

 Here’s a little theorem that’s very usetul for
showing that two sets are equal:

Theorem: If A and B are sets where A C B
and B C A, then A = B.

 We’ve included a proof of this result as an
appendix to this slide deck. You should read over
1t on your own time.



A Trickier Theorem

* Qur last theorem for today is this one, which
comes to us from the annals of set theory:

Theorem: If A and B are sets and
AUB CANB, then A = B.

* Unlike our previous theorem, this one is a lot
harder to see using Venn diagrams alone.




Tackling our Theorem

Theorem: If A and B are sets and
AUB CANB, then A = B.

e Before we Flail and Panic, let’s see if we
can tease out some info about what this
proot might look like.



Tackling our Theorem

If A and B are sets



Tackling our Theorem

If A and B are sets

 We're going to pick arbitrary sets A and B.
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If A and B are sets and
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* We're going to assume A U B C A N B.
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Theorem: If A and B are sets and
AUB CANB, then A = B.

e Before we Flail and Panic, let’s see if we
can tease out some info about what this
proot might look like.

 We're going to pick arbitrary sets A and B.
* We're going to assume A U B C A N B.



Tackling our Theorem
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Tackling our Theorem

then A = B

 We’'re going to prove that A = B.



Tackling our Theorem

Theorem: If A and B are sets and
AUB CANB, then A = B.

e Before we Flail and Panic, let’s see if we
can tease out some info about what this
proot might look like.

 We're going to pick arbitrary sets A and B.
* We're going to assume A U B C A N B.
 We're going to prove that A = B.



Tackling our Theorem

Reasonable guess: let’s fry
proving That A < B and
thal B < A,

 We're going to prove that A = B.



Lemma: If Sand T aresetsand SUT CSNT,thenS CT.

A lemma is a smaller proot
that’s designed o build into
a larger one, Think of it
like program decomposition,
excepl tor proofs:




Lemma: If Sand Taresetsand SUT CSNT,thenS CT.
Proof:



Lemma: If S and T are setsand SUT CSNT,thenS CT.
Proof: Let S and T be any sets where SUT C SN T.
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Lemma: If Sand Taresetsand SUT CSNT,thenS CT.

Proof: Let S and T be any sets where SUT C SN T. We
will prove that S C T. To do so, consider any x € S. We
will prove that x € T.

Since x € S, we know that x € SU T because x belongs
to at least one of S and T. We then seethat x € SNT
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Overall, we’ve started with an arbitrary choice of x € S
and concluded that x € T. Therefore, we see that S C T
holds, which is what we needed to prove.
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Proof: Let S and T be any sets where SUT C SN T. We
will prove that S C T. To do so, consider any x € S. We
will prove that x € T.

Since x € S, we know that x € SU T because x belongs
to at least one of S and T. We then seethat x € SNT
because x €e SUT and SUT C SN T. Finally, since

x € SNT, we learn that x € T, since x belongs to both §

and T.

Overall, we’ve started with an arbitrary choice of x € S
and concluded that x € T. Therefore, we see that S C T
holds, which is what we needed to prove. R



Lemma: If Sand T aresetsand SUT CSNT,thenS C T.

Theorem:If A and B are setsand AuUB C AN B, then
A =B.



Lemma: If Sand T aresetsand SUT CSNT,thenS C T.

Theorem:If A and B are setsand AuUB C AN B, then
A =B.

Proof:



Lemma: If Sand Taresetsand SUT CSNT,thenS CT.

Theorem:If A and B are setsand AuUB C AN B, then
A = B.

Proof: Let A and B be any sets where AUB C ANB.



Lemma: If Sand Taresetsand SUT CSNT,thenS CT.

Theorem:If A and B are setsand AuUB C AN B, then
A = B.

Proof: Let A and B be any sets where AUB C AN B. We
will prove that A =B by showing A C B and B C A.



Lemma: If Sand Taresetsand SUT CSNT,thenS CT.

Theorem:If A and B are setsand AuUB C AN B, then
A = B.

Proof: Let A and B be any sets where AUB C AN B. We
will prove that A =B by showing A C B and B C A.

First, notice that by our lemma, since AUB C ANB, we
know that A C B.



surcsntT SCT

AUBCANB
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AUB CANBwe learn that BUA C BNA. Applying our
lemma again in this case tells us that B C A.
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Theorem:1f A and B are setsand AuUuB C ANB, then
A = B.

Proof: Let A and B be any sets where AUB C AN B. We
will prove that A =B by showing A C B and B C A.

First, notice that by our lemma, since AUB C ANB, we
know that A C B.

Next, since AUB=BUAand ANnB =BnNA, from
AUB CANBwe learn that BUA C BNA. Applying our
lemma again in this case tells us that B C A.

Since both A € B and B C A, we conclude that A = B,
which is what we needed to show.



What We've Covered

- What is a mathematical proof?

 An argument - mostly written in English - outlining a
mathematical argument.

 What is a direct proof?

 It's a proof where you begin from some initial
assumptions and reason your way to the conclusion.

 What are universal and existential statements?

« Universal statements make a claim about all objects of
one type. Existential statements make claims about at
least one object of some type.

« How do we write proofs about set theory?

« By calling back to definitions! Definitions are key.



Next Time

 Indirect Proofs

« How do you prove something without actually proving
it?

« Mathematical Implications

 What exactly does “if P, then Q” mean?
* Proof by Contrapositive

« A helpful technique for proving implications.
* Proof by Contradiction

* Proving something is true by showing it can't be false.



Appendix: Set Equality



Set Equality

* If A and B are sets, we say that A = B precisely
when the following statement is true:

For any object x, x € A if and only if x € B.
* (This is called the axiom of extensionality.)

* In practice, this definition is tricky to work
with.

 It's often easier to use the following result to
show that two sets are equal:

For any sets A and B,
ifACBandB CA, then A = B.



Theorem: For any sets Aand B,ifA C Band B C A,
then A = B.
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Theorem: For any sets Aand B,ifA C Band B C A,
then A = B.
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