

Mathematical Logic
Part One

Question: How do we formalize the
defnitions and reasoning we use in our

proofs?

Where We're Going

● Propositional Logic (Today)
● Basic logical connectives.
● Truth tables.
● Logical equivalences.

● First-Order Logic (Friday/Monday)
● Reasoning about properties of multiple

objects.

Propositional Logic

A proposition is a statement that is,
by itself, either true or false.

Some Sample Propositions

● Puppies are cuter than kittens.
● Kittens are cuter than puppies.
● Usain Bolt can outrun everyone in this

room.
● CS103 is useful for cocktail parties.
● This is the last entry on this list.

Things That Aren't Propositions

Commands
cannot be true

or false.

Commands
cannot be true

or false.

Things That Aren't Propositions

Questions
cannot be true

or false.

Questions
cannot be true

or false.

Propositional Logic

● Propositional logic is a mathematical system
for reasoning about propositions and how they
relate to one another.

● Every statement in propositional logic consists
of propositional variables combined via
propositional connectives.
● Each variable represents some proposition, such as

“You liked it” or “You should have put a ring on it.”
● Connectives encode how propositions are related,

such as “If you liked it, then you should have put a
ring on it.”

Propositional Variables

● Each proposition will be represented by a
propositional variable.

● Propositional variables are usually
represented as lower-case letters, such
as p, q, r, s, etc.

● Each variable can take one one of two
values: true or false.

Propositional Connectives

● Logical NOT: ¬p
● Read “not p”
● ¬p is true if and only if p is false.
● Also called logical negation.

● Logical AND: p ∧ q
● Read “p and q.”
● p ∧ q is true if and only if both p and q are true.
● Also called logical conjunction.

● Logical OR: p ∨ q
● Read “p or q.”
● p ∨ q is true if and only if at least one of p or q are true

(inclusive OR)
● Also called logical disjunction.

Truth Tables

● A truth table is a table showing the
truth value of a propositional logic
formula as a function of its inputs.

● Useful for several reasons:
● They give a formal defnition of what a

connective “means.”
● They give us a way to fgure out what a

complex propositional formula says.

The Truth Table Tool

Summary of Important Points

● The ∨ connective is an inclusive “or.” It's
true if at least one of the operands is
true.
● Similar to the || operator in C, C++, Java and

the or operator in Python.
● If we need an exclusive “or” operator, we

can build it out of what we already have.

Truth Table for XOR

p q p XOR q

F F F

F T T

T F T

T T F

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, B, or C.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, B, or C.

This is the truth table
for XOR. You choose
how we can write XOR
using the other logical
operators:

(A) (p ∧ q) ∨ (p ∨ q)
(B) (p ∧ q) ∨ ¬(p ∨ q)
(C) (p ∨ q) ∧ ¬(p ∧ q)
(D) (p ∧ q) ∧ (p ∨ q)

This is the truth table
for XOR. You choose
how we can write XOR
using the other logical
operators:

(A) (p ∧ q) ∨ (p ∨ q)
(B) (p ∧ q) ∨ ¬(p ∨ q)
(C) (p ∨ q) ∧ ¬(p ∧ q)
(D) (p ∧ q) ∧ (p ∨ q)

Mathematical Implication

Implication

● The → connective is used to represent
implications.
● Its technical name is the material

conditional operator.
● What is its truth table?
● Pull out a sheet of paper, make a guess,

and talk things over with your neighbors!

Truth Table for p → q (implies)

p q p → q

F F

F T

T F

T T

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then your response.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then your response.

What is the correct
truth table for
implication? Enter
your guess as a list
of four values to fll in
the rightmost column
of the table.
(ex: F, T, ?, F)

What is the correct
truth table for
implication? Enter
your guess as a list
of four values to fll in
the rightmost column
of the table.
(ex: F, T, ?, F)

T
F
T
T

Truth Table for Implication

p q p → q
F
F
T
T

F

F
T

T

T
F
T
T

Truth Table for Implication

p q p → q
F
F
T
T

F

F
T

T

● Bad bracket, don’t get A
● Bad bracket, get A
● Perfect bracket, don’t get A
● Perfect bracket, get A

Why This Truth Table?

● The truth values of the → are the way they are
because they're defned that way.

● The intuition:
● Every propositional formula should be either true

or false – that’s just a guiding design principle
behind propositional logic.

● We want p → q to be false only when p ∧ ¬q is true.
● In other words, p → q should be true whenever

¬(p ∧ ¬q) is true.
● What's the truth table for ¬(p ∧ ¬q)?

T
F
T
T

Truth Table for Implication

p q p → q
F
F
T
T

F

F
T

T

The implication is only false
if p is true and q isn’t.

It’s true otherwise.

The implication is only false
if p is true and q isn’t.

It’s true otherwise.

T
F
T
T

Truth Table for Implication

p q p → q
F
F
T
T

F

F
T

T

The implication is only false
if p is true and q isn’t.

It’s true otherwise.

The implication is only false
if p is true and q isn’t.

It’s true otherwise.

You will need to commit this table to
memory. We’re going to be using it a lot

over the rest of the week.

You will need to commit this table to
memory. We’re going to be using it a lot

over the rest of the week.

The Biconditional Connective

The Biconditional Connective

● The biconditional connective ↔ is used to
represent a two-directional implication.

● Specifcally, p ↔ q means both that p → q
and that q → p.

● Based on that, what should its truth table
look like?

● Take a guess, and talk it over with your
neighbor!

Biconditionals

● The biconditional connective p ↔ q is
read “p if and only if q.”

● Here's its truth table:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T

Biconditionals

● The biconditional connective p ↔ q is
read “p if and only if q.”

● Here's its truth table:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T

One interpretation of ↔
is to think of it as
equality: the two

propositions must have
equal truth values.

One interpretation of ↔
is to think of it as
equality: the two

propositions must have
equal truth values.

True and False

● There are two more “connectives” to
speak of: true and false.
● The symbol ⊤ is a value that is always true.
● The symbol ⊥ is value that is always false.

● These are often called connectives,
though they don't connect anything.
● (Or rather, they connect zero things.)

Proof by Contradiction

● Suppose you want to prove p is true using a
proof by contradiction.

● The setup looks like this:
● Assume p is false.
● Derive something that we know is false.
● Conclude that p is true.

● In propositional logic:

(¬p → ⊥) → p

Operator Precedence

● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● The main points to remember:
● ¬ binds to whatever immediately follows it.
● ∧ and ∨ bind more tightly than →.

● We will commonly write expressions like
p ∧ q → r without adding parentheses.

● For more complex expressions, we'll try to
add parentheses.

● Confused? Just ask!

The Big Table

Connective Read As C++ Version Fancy Name

¬

∧

∨

→

↔

⊤

⊥

“not”

“and”

“or”

“implies”

“if and only if”

“true”

“false”

!

&&

||

see PS2!

see PS2!

true

false

Negation

Conjunction

Disjunction

Implication

Biconditional

Truth

Falsity

Recap So Far

● A propositional variable is a variable that is
either true or false.

● The propositional connectives are
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥

Translating into Propositional Logic

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

Some Sample Propositions

“I won't see a total solar
eclipse if I'm not in the

path of totality.”

“I won't see a total solar
eclipse if I'm not in the

path of totality.”

a: I will be in the path of totality.

b: I will see a total solar eclipse.

Some Sample Propositions

“I won't see a total solar
eclipse if I'm not in the

path of totality.”

“I won't see a total solar
eclipse if I'm not in the

path of totality.”

¬a → ¬b

a: I will be in the path of totality.

b: I will see a total solar eclipse.

“p if q”

translates to

q → p

It does not translate to

p → q

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

c: There is a total solar eclipse today.

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

c: There is a total solar eclipse today.

“If I will be in the path of
totality, but there's no solar
eclipse today, I won't see a

total solar eclipse.”

“If I will be in the path of
totality, but there's no solar
eclipse today, I won't see a

total solar eclipse.”

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

c: There is a total solar eclipse today.

“If I will be in the path of
totality, but there's no solar
eclipse today, I won't see a

total solar eclipse.”

“If I will be in the path of
totality, but there's no solar
eclipse today, I won't see a

total solar eclipse.”

a ∧ ¬c → ¬b

“p, but q”

translates to

p ∧ q

The Takeaway Point

● When translating into or out of
propositional logic, be very careful not to
get tripped up by nuances of the English
language.
● In fact, this is one of the reasons we have a

symbolic notation in the frst place!
● Many prepositional phrases lead to

counterintuitive translations; make sure
to double-check yourself!

Propositional Equivalences

Quick Question:

What would I have to show you to convince
you that the statement p ∧ q is false?

Quick Question:

What would I have to show you to convince
you that the statement p ∨ q is false?

De Morgan's Laws

● Using truth tables, we concluded that

¬(p ∧ q)

is equivalent to

¬p ∨ ¬q
● We also saw that

¬(p ∨ q)

is equivalent to

¬p ∧ ¬q
● These two equivalences are called De Morgan's

Laws.

De Morgan's Laws in Code

● Pro tip: Don't write this:

 if (!(p() && q()) {

 /* … */

 }

● Write this instead:

 if (!p() || !q()) {

 /* … */

 }

● (This even short-circuits correctly!)

Logical Equivalence

● Because ¬(p ∧ q) and ¬p ∨ ¬q have the same truth
tables, we say that they're equivalent to one another.

● We denote this by writing

 ¬(p ∧ q) ≡ ¬p ∨ ¬q
● The ≡ symbol is not a connective.

● The statement ¬(p ∧ q) ↔ (¬p ∨ ¬q) is a propositional formula.
If you plug in diferent values of p and q, it will evaluate to a
truth value. It just happens to evaluate to true every time.

● The statement ¬(p ∧ q) ≡ ¬p ∨ ¬q means “these two formulas
have exactly the same truth table.”

● In other words, the notation φ ≡ ψ means “φ and ψ
always have the same truth values, regardless of how the
variables are assigned.”

An Important Equivalence

● Earlier, we talked about the truth table
for p → q. We chose it so that

 p → q ≡ ¬(p ∧ ¬q)
● Later on, this equivalence will be

incredibly useful:

¬(p → q) ≡ p ∧ ¬q

Another Important Equivalence

● Here's a useful equivalence. Start with

 p → q ≡ ¬(p ∧ ¬q)
● By De Morgan's laws:

 p → q ≡ ¬(p ∧ ¬q)

 p → q≡ ¬p ∨ ¬¬q

 p → q≡ ¬p ∨ q
● Thus p → q ≡ ¬p ∨ q

Another Important Equivalence

● Here's a useful equivalence. Start with

 p → q ≡ ¬(p ∧ ¬q)
● By De Morgan's laws:

 p → q ≡ ¬(p ∧ ¬q)

 p → q≡ ¬p ∨ ¬¬q

 p → q≡ ¬p ∨ q
● Thus p → q ≡ ¬p ∨ q

If p is false, then
¬p q∨ is true. If p is
true, then q has to be
true for the whole

expression to be true.

If p is false, then
¬p q∨ is true. If p is
true, then q has to be
true for the whole

expression to be true.

One Last Equivalence

The Contrapositive

● The contrapositive of the statement

p → q

is the statement

¬q → ¬p
● These are logically equivalent, which is

why proof by contrapositive works:

p → q ≡ ¬q → ¬p

Why All This Matters

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 → x ≥ 8 ∨ y ≥ 8

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 → x ≥ 8 ∨ y ≥ 8

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → ¬(x + y = 16)

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → ¬(x + y = 16)

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → ¬(x + y = 16)

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

“If x < 8 and y < 8, then x + y ≠ 16”

Theorem: If x + y = 16, then x ≥ 8 or y ≥ 8.

Proof: By contrapositive. We will prove that if x < 8 and
y < 8, then x + y ≠ 16. Let x and y be arbitrary
numbers such that x < 8 and y < 8.

Note that

x + y < 8 + y
 < 8 + 8

= 16.

This means that x + y < 16, so x + y ≠ 16, which is
what we needed to show. ■

Why This Matters

● Propositional logic is a tool for reasoning
about how various statements afect one
another.

● To better understand how to prove a result,
it often helps to translate what you're
trying to prove into propositional logic frst.

● That said, propositional logic isn't
expressive enough to capture all
statements. For that, we need something
more powerful.

Next Time

● First-Order Logic
● Reasoning about groups of objects.

● First-Order Translations
● Expressing yourself in symbolic math!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

