
  

Mathematical Logic
Part One



  

Question: How do we formalize the 
defnitions and reasoning we use in our 

proofs?



  

Where We're Going

● Propositional Logic (Today)
● Basic logical connectives.
● Truth tables.
● Logical equivalences.

● First-Order Logic (Friday/Monday)
● Reasoning about properties of multiple 

objects.



  

Propositional Logic



  

A proposition is a statement that is,
by itself, either true or false.



  

Some Sample Propositions

● Puppies are cuter than kittens.
● Kittens are cuter than puppies.
● Usain Bolt can outrun everyone in this 

room.
● CS103 is useful for cocktail parties.
● This is the last entry on this list.



  

Things That Aren't Propositions

Commands 
cannot be true 

or false.

Commands 
cannot be true 

or false.



  

Things That Aren't Propositions

Questions 
cannot be true 

or false.

Questions 
cannot be true 

or false.



  

Propositional Logic

● Propositional logic is a mathematical system 
for reasoning about propositions and how they 
relate to one another.

● Every statement in propositional logic consists 
of propositional variables combined via 
propositional connectives.
● Each variable represents some proposition, such as 

“You liked it” or “You should have put a ring on it.”
● Connectives encode how propositions are related, 

such as “If you liked it, then you should have put a 
ring on it.”



  

Propositional Variables

● Each proposition will be represented by a 
propositional variable.

● Propositional variables are usually 
represented as lower-case letters, such 
as p, q, r, s, etc.

● Each variable can take one one of two 
values: true or false.



  

Propositional Connectives

● Logical NOT: ¬p
● Read “not p”
● ¬p is true if and only if p is false.
● Also called logical negation.

● Logical AND: p ∧ q
● Read “p and q.”
● p ∧ q is true if and only if both p and q are true.
● Also called logical conjunction.

● Logical OR: p ∨ q
● Read “p or q.”
● p ∨ q is true if and only if at least one of p or q are true 

(inclusive OR)
● Also called logical disjunction.



  

Truth Tables

● A truth table is a table showing the 
truth value of a propositional logic 
formula as a function of its inputs.

● Useful for several reasons:
● They give a formal defnition of what a 

connective “means.”
● They give us a way to fgure out what a 

complex propositional formula says.



  

The Truth Table Tool



  

Summary of Important Points

● The ∨ connective is an inclusive “or.” It's 
true if at least one of the operands is 
true.
● Similar to the || operator in C, C++, Java and 

the or operator in Python.
● If we need an exclusive “or” operator, we 

can build it out of what we already have.



  

Truth Table for XOR

p q p  XOR  q

F F F

F T T

T F T

T T F

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, B, or C.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, B, or C.

This is the truth table 
for XOR. You choose 
how we can write XOR 
using the other logical 
operators:
 
(A)  (p ∧ q) ∨ (p ∨ q)
(B)  (p ∧ q) ∨ ¬(p ∨ q)
(C)  (p ∨ q) ∧ ¬(p ∧ q)
(D)  (p ∧ q) ∧ (p ∨ q)

This is the truth table 
for XOR. You choose 
how we can write XOR 
using the other logical 
operators:
 
(A)  (p ∧ q) ∨ (p ∨ q)
(B)  (p ∧ q) ∨ ¬(p ∨ q)
(C)  (p ∨ q) ∧ ¬(p ∧ q)
(D)  (p ∧ q) ∧ (p ∨ q)



  

Mathematical Implication



  

Implication

● The → connective is used to represent 
implications.
● Its technical name is the material 

conditional operator.
● What is its truth table?
● Pull out a sheet of paper, make a guess, 

and talk things over with your neighbors!



  

Truth Table for p → q (implies)

p q p → q

F F

F T

T F

T T

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then your response.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then your response.

What is the correct 
truth table for 
implication? Enter
your guess as a list
of four values to fll in 
the rightmost column 
of the table. 
(ex: F, T, ?, F)

What is the correct 
truth table for 
implication? Enter
your guess as a list
of four values to fll in 
the rightmost column 
of the table. 
(ex: F, T, ?, F)



  

T
F
T
T

Truth Table for Implication

p q p → q
F
F
T
T

F

F
T

T



  

T
F
T
T

Truth Table for Implication

p q p → q
F
F
T
T

F

F
T

T

● Bad bracket, don’t get A
● Bad bracket, get A
● Perfect bracket, don’t get A
● Perfect bracket, get A



  

Why This Truth Table?

● The truth values of the → are the way they are 
because they're defned that way.

● The intuition:
● Every propositional formula should be either true 

or false – that’s just a guiding design principle 
behind propositional logic.

● We want p → q to be false only when p ∧ ¬q is true.
● In other words, p → q should be true whenever

¬(p ∧ ¬q) is true.
● What's the truth table for ¬(p ∧ ¬q)?



  

T
F
T
T

Truth Table for Implication

p q p → q
F
F
T
T

F

F
T

T

The implication is only false 
if p is true and q isn’t. 

It’s true otherwise.

The implication is only false 
if p is true and q isn’t. 

It’s true otherwise.



  

T
F
T
T

Truth Table for Implication

p q p → q
F
F
T
T

F

F
T

T

The implication is only false 
if p is true and q isn’t. 

It’s true otherwise.

The implication is only false 
if p is true and q isn’t. 

It’s true otherwise.

You will need to commit this table to 
memory. We’re going to be using it a lot 

over the rest of the week.

You will need to commit this table to 
memory. We’re going to be using it a lot 

over the rest of the week.



  

The Biconditional Connective



  

The Biconditional Connective

● The biconditional connective ↔ is used to 
represent a two-directional implication.

● Specifcally, p ↔ q means both that p → q 
and that q → p.

● Based on that, what should its truth table 
look like?

● Take a guess, and talk it over with your 
neighbor!



  

Biconditionals

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Here's its truth table:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T



  

Biconditionals

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Here's its truth table:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T

One interpretation of  ↔
is to think of it as 
equality: the two 

propositions must have 
equal truth values.

One interpretation of  ↔
is to think of it as 
equality: the two 

propositions must have 
equal truth values.



  

True and False

● There are two more “connectives” to 
speak of: true and false.
● The symbol ⊤ is a value that is always true.
● The symbol ⊥ is value that is always false.

● These are often called connectives, 
though they don't connect anything.
● (Or rather, they connect zero things.)



  

Proof by Contradiction

● Suppose you want to prove p is true using a 
proof by contradiction.

● The setup looks like this:
● Assume p is false.
● Derive something that we know is false.
● Conclude that p is true.

● In propositional logic:

(¬p → ⊥) → p  



  

Operator Precedence

● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?
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Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● The main points to remember:
● ¬ binds to whatever immediately follows it.
● ∧ and ∨ bind more tightly than →.

● We will commonly write expressions like 
p ∧ q → r without adding parentheses.

● For more complex expressions, we'll try to 
add parentheses.

● Confused? Just ask!



  

The Big Table

Connective Read As C++ Version Fancy Name

¬

∧

∨

→

↔

⊤

⊥

“not”

“and”

“or”

“implies”

“if and only if”

“true”

“false”

!

&&

||

see PS2!

see PS2!

true

false

Negation

Conjunction

Disjunction

Implication

Biconditional

Truth

Falsity



  

Recap So Far

● A propositional variable is a variable that is 
either true or false.

● The propositional connectives are
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥



  

Translating into Propositional Logic



  

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.



  

Some Sample Propositions

“I won't see a total solar 
eclipse if I'm not in the 

path of totality.”

“I won't see a total solar 
eclipse if I'm not in the 

path of totality.”

a: I will be in the path of totality.

b: I will see a total solar eclipse.



  

Some Sample Propositions

“I won't see a total solar 
eclipse if I'm not in the 

path of totality.”

“I won't see a total solar 
eclipse if I'm not in the 

path of totality.”

¬a → ¬b

a: I will be in the path of totality.

b: I will see a total solar eclipse.



  

“p if q”

translates to

q → p

It does not translate to

p → q



  

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

c: There is a total solar eclipse today.



  

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

c: There is a total solar eclipse today.

“If I will be in the path of 
totality, but there's no solar 
eclipse today, I won't see a 

total solar eclipse.”

“If I will be in the path of 
totality, but there's no solar 
eclipse today, I won't see a 

total solar eclipse.”



  

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

c: There is a total solar eclipse today.

“If I will be in the path of 
totality, but there's no solar 
eclipse today, I won't see a 

total solar eclipse.”

“If I will be in the path of 
totality, but there's no solar 
eclipse today, I won't see a 

total solar eclipse.”

a ∧ ¬c → ¬b



  

“p, but q”

translates to

p ∧ q



  

The Takeaway Point

● When translating into or out of 
propositional logic, be very careful not to 
get tripped up by nuances of the English 
language.
● In fact, this is one of the reasons we have a 

symbolic notation in the frst place!
● Many prepositional phrases lead to 

counterintuitive translations; make sure 
to double-check yourself!



  

Propositional Equivalences



  

Quick Question:

What would I have to show you to convince 
you that the statement p ∧ q is false?



  

Quick Question:

What would I have to show you to convince 
you that the statement p ∨ q is false?



  

De Morgan's Laws

● Using truth tables, we concluded that

¬(p ∧ q)

is equivalent to

¬p ∨ ¬q  
● We also saw that

¬(p ∨ q)

is equivalent to

¬p ∧ ¬q  
● These two equivalences are called De Morgan's 

Laws.



  

De Morgan's Laws in Code

● Pro tip: Don't write this:

            if (!(p() && q()) {

                /* … */

            }

● Write this instead:

            if (!p() || !q()) {

                /* … */

            }

● (This even short-circuits correctly!)



  

Logical Equivalence

● Because ¬(p ∧ q) and ¬p ∨ ¬q have the same truth 
tables, we say that they're equivalent to one another.

● We denote this by writing

 ¬(p ∧ q)  ≡  ¬p ∨ ¬q  
● The ≡ symbol is not a connective.

● The statement ¬(p ∧ q) ↔ (¬p ∨ ¬q) is a propositional formula. 
If you plug in diferent values of p and q, it will evaluate to a 
truth value. It just happens to evaluate to true every time.

● The statement ¬(p ∧ q)  ≡  ¬p ∨ ¬q means “these two formulas 
have exactly the same truth table.”

● In other words, the notation φ ≡ ψ means “φ and ψ 
always have the same truth values, regardless of how the 
variables are assigned.”



  

An Important Equivalence

● Earlier, we talked about the truth table 
for p → q. We chose it so that

    p → q    ≡    ¬(p ∧ ¬q)
● Later on, this equivalence will be 

incredibly useful:

¬(p → q)    ≡    p ∧ ¬q      



  

Another Important Equivalence

● Here's a useful equivalence. Start with

     p → q ≡ ¬(p ∧ ¬q)
● By De Morgan's laws:

     p → q ≡ ¬(p ∧ ¬q)

      p → q≡ ¬p ∨ ¬¬q

      p → q≡ ¬p ∨ q
● Thus p → q ≡ ¬p ∨ q



  

Another Important Equivalence

● Here's a useful equivalence. Start with

     p → q ≡ ¬(p ∧ ¬q)
● By De Morgan's laws:

     p → q ≡ ¬(p ∧ ¬q)

      p → q≡ ¬p ∨ ¬¬q

      p → q≡ ¬p ∨ q
● Thus p → q ≡ ¬p ∨ q

If p is false, then 
¬p   q∨  is true. If p is 
true, then q has to be 
true for the whole 

expression to be true.

If p is false, then 
¬p   q∨  is true. If p is 
true, then q has to be 
true for the whole 

expression to be true.



  

One Last Equivalence



  

The Contrapositive

● The contrapositive of the statement

p → q 

is the statement

¬q → ¬p 
● These are logically equivalent, which is 

why proof by contrapositive works:

p → q    ≡    ¬q → ¬p 



  

Why All This Matters



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   
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statement:
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x + y = 16 → x ≥ 8 ∨ y ≥ 8
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statement:
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Why All This Matters

● Suppose we want to prove the following 
statement:
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Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

¬(x ≥ 8 ∨ y ≥ 8) → ¬(x + y = 16)



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ y < 8 → x + y ≠ 16



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ y < 8 → x + y ≠ 16



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ y < 8 → x + y ≠ 16

“If x < 8 and y < 8, then x + y ≠ 16”



  

Theorem: If x + y = 16, then x ≥ 8 or y ≥ 8.

Proof: By contrapositive. We will prove that if x < 8 and
y < 8, then x + y ≠ 16. Let x and y be arbitrary
numbers such that x < 8 and y < 8. 

Note that
 

x + y < 8 + y
         < 8 + 8

= 16.
 

This means that x + y < 16, so x + y ≠ 16, which is
what we needed to show. ■



  

Why This Matters

● Propositional logic is a tool for reasoning 
about how various statements afect one 
another.

● To better understand how to prove a result, 
it often helps to translate what you're 
trying to prove into propositional logic frst.

● That said, propositional logic isn't 
expressive enough to capture all 
statements. For that, we need something 
more powerful.



  

Next Time

● First-Order Logic
● Reasoning about groups of objects.

● First-Order Translations
● Expressing yourself in symbolic math!
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