## Mathematical Logic Part One

# **Question:** How do we formalize the definitions and reasoning we use in our proofs?

#### Where We're Going

- **Propositional Logic** (Today)
  - Basic logical connectives.
  - Truth tables.
  - Logical equivalences.
- *First-Order Logic* (Friday/Monday)
  - Reasoning about properties of multiple objects.

## Propositional Logic

A *proposition* is a statement that is, by itself, either true or false.

#### Some Sample Propositions

- Puppies are cuter than kittens.
- Kittens are cuter than puppies.
- Usain Bolt can outrun everyone in this room.
- CS103 is useful for cocktail parties.
- This is the last entry on this list.

#### Things That Aren't Propositions



#### Things That Aren't Propositions



## Propositional Logic

- **Propositional logic** is a mathematical system for reasoning about propositions and how they relate to one another.
- Every statement in propositional logic consists of *propositional variables* combined via *propositional connectives*.
  - Each variable represents some proposition, such as "You liked it" or "You should have put a ring on it."
  - Connectives encode how propositions are related, such as "If you liked it, then you should have put a ring on it."

#### **Propositional Variables**

- Each proposition will be represented by a propositional variable.
- Propositional variables are usually represented as lower-case letters, such as p, q, r, s, etc.
- Each variable can take one one of two values: true or false.

### **Propositional Connectives**

#### • Logical NOT: ¬*p*

- Read "*not p*"
- $\neg p$  is true if and only if p is false.
- Also called *logical negation*.
- Logical AND: р л q
  - Read "p **and** q."
  - $p \land q$  is true if and only if both p and q are true.
  - Also called *logical conjunction*.

#### • Logical OR: p v q

- Read "p or q."
- *p* v *q* is true if and only if at least one of *p* or *q* are true (inclusive OR)
- Also called *logical disjunction*.

#### Truth Tables

- A *truth table* is a table showing the truth value of a propositional logic formula as a function of its inputs.
- Useful for several reasons:
  - They give a formal definition of what a connective "means."
  - They give us a way to figure out what a complex propositional formula says.

#### The Truth Table Tool

## Summary of Important Points

- The v connective is an *inclusive* "or." It's true if at least one of the operands is true.
  - Similar to the || operator in C, C++, Java and the **or** operator in Python.
- If we need an exclusive "or" operator, we can build it out of what we already have.

#### Truth Table for XOR

This is the truth table for XOR. *You choose* how we can write XOR using the other logical operators:

(A) (p ∧ q) ∨ (p ∨ q)
(B) (p ∧ q) ∨ ¬(p ∨ q)
(C) (p ∨ q) ∧ ¬(p ∧ q)
(D) (p ∧ q) ∧ (p ∨ q)

| р | q | p XOR q |
|---|---|---------|
| F | F | F       |
| F | Т | т       |
| Т | F | т       |
| Т | т | F       |

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **A**, **B**, or **C**.

#### Mathematical Implication

### Implication

- The  $\rightarrow$  connective is used to represent implications.
  - Its technical name is the *material conditional* operator.
- What is its truth table?
- Pull out a sheet of paper, make a guess, and talk things over with your neighbors!

### Truth Table for $p \rightarrow q$ (implies)

What is the correct truth table for implication? Enter your guess as a list of four values to fill in the rightmost column of the table. (ex: F, T, ?, F)

| р | q | p → q |
|---|---|-------|
| F | F |       |
| F | Т |       |
| т | F |       |
| т | Т |       |

#### Answer at **PollEv.com/cs103** or

text **CS103** to **22333** once to join, then your response.

#### **Truth Table for Implication**



#### **Truth Table for Implication**



## Why This Truth Table?

- The truth values of the  $\rightarrow$  are the way they are because they're defined that way.
- The intuition:
  - Every propositional formula should be either true or false – that's just a guiding design principle behind propositional logic.
  - We want  $p \rightarrow q$  to be false only when  $p \land \neg q$  is true.
  - In other words,  $p \rightarrow q$  should be true whenever  $\neg(p \land \neg q)$  is true.
  - What's the truth table for  $\neg(p \land \neg q)$ ?

#### **Truth Table for Implication**



#### **Truth Table for Implication**



You will need to commit this table to memory. We're going to be using it a lot over the rest of the week.

#### The Biconditional Connective

#### The Biconditional Connective

- The biconditional connective  $\leftrightarrow$  is used to represent a two-directional implication.
- Specifically,  $p \leftrightarrow q$  means both that  $p \rightarrow q$  and that  $q \rightarrow p$ .
- Based on that, what should its truth table look like?
- Take a guess, and talk it over with your neighbor!

#### Biconditionals

- The **biconditional** connective  $p \leftrightarrow q$  is read "p if and only if q."
- Here's its truth table:

| р | q | $p \leftrightarrow q$ |
|---|---|-----------------------|
| F | F | Т                     |
| F | Т | F                     |
| Т | F | F                     |
| Т | Т | Т                     |

#### Biconditionals

- The **biconditional** connective  $p \leftrightarrow q$  is read "p if and only if q."
- Here's its truth table:



#### True and False

- There are two more "connectives" to speak of: true and false.
  - The symbol  $\top$  is a value that is always true.
  - The symbol  $\perp$  is value that is always false.
- These are often called connectives, though they don't connect anything.
  - (Or rather, they connect zero things.)

## Proof by Contradiction

- Suppose you want to prove *p* is true using a proof by contradiction.
- The setup looks like this:
  - Assume *p* is false.
  - Derive something that we know is false.
  - Conclude that *p* is true.
- In propositional logic:

 $(\neg p \rightarrow \bot) \rightarrow p$ 

• How do we parse this statement?

$$\neg x \to y \lor z \to x \lor y \land z$$



- All operators are right-associative.
- We can use parentheses to disambiguate.

• How do we parse this statement?

$$\neg x \to y \lor z \to x \lor y \land z$$



- All operators are right-associative.
- We can use parentheses to disambiguate.

• How do we parse this statement?

$$(\neg x) \rightarrow y \lor z \rightarrow x \lor y \land z$$



- All operators are right-associative.
- We can use parentheses to disambiguate.

• How do we parse this statement?

$$(\neg x) \rightarrow y \lor z \rightarrow x \lor y \land z$$



- All operators are right-associative.
- We can use parentheses to disambiguate.

• How do we parse this statement?

$$(\neg x) \rightarrow y \lor z \rightarrow x \lor (y \land z)$$



- All operators are right-associative.
- We can use parentheses to disambiguate.

• How do we parse this statement?

$$(\neg x) \rightarrow y \lor z \rightarrow x \lor (y \land z)$$



- All operators are right-associative.
- We can use parentheses to disambiguate.

• How do we parse this statement?

$$(\neg x) \to (y \lor z) \to (x \lor (y \land z))$$



- All operators are right-associative.
- We can use parentheses to disambiguate.
• How do we parse this statement?

$$(\neg x) \rightarrow (y \lor z) \rightarrow (x \lor (y \land z))$$

• Operator precedence for propositional logic:



- All operators are right-associative.
- We can use parentheses to disambiguate.

• How do we parse this statement?

$$(\neg x) \to ((y \lor z) \to (x \lor (y \land z)))$$

• Operator precedence for propositional logic:



- All operators are right-associative.
- We can use parentheses to disambiguate.

• How do we parse this statement?

$$(\neg x) \to ((y \lor z) \to (x \lor (y \land z)))$$

• Operator precedence for propositional logic:



- All operators are right-associative.
- We can use parentheses to disambiguate.

- The main points to remember:
  - $\neg$  binds to whatever immediately follows it.
  - A and V bind more tightly than  $\rightarrow$ .
- We will commonly write expressions like  $p \land q \rightarrow r$  without adding parentheses.
- For more complex expressions, we'll try to add parentheses.
- Confused? Just ask!

# The Big Table

| Connective        | Read As          | C++ Version | Fancy Name    |
|-------------------|------------------|-------------|---------------|
| -                 | "not"            | !           | Negation      |
| ۸                 | "and"            | &&          | Conjunction   |
| V                 | "or"             |             | Disjunction   |
| $\rightarrow$     | "implies"        | see PS2!    | Implication   |
| $\leftrightarrow$ | "if and only if" | see PS2!    | Biconditional |
| Т                 | "true"           | true        | Truth         |
| L                 | "false"          | false       | Falsity       |

## Recap So Far

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are
  - Negation:  $\neg p$
  - Conjunction:  $p \land q$
  - Disjunction:  $p \vee q$
  - Implication:  $p \rightarrow q$
  - Biconditional:  $p \leftrightarrow q$
  - True: T
  - False:  $\bot$

#### Translating into Propositional Logic

- *a*: I will be in the path of totality.
- *b*: I will see a total solar eclipse.

*a*: I will be in the path of totality.

*b*: I will see a total solar eclipse.

"I won't see a total solar eclipse if I'm not in the path of totality."

*a*: I will be in the path of totality.

*b*: I will see a total solar eclipse.

"I won't see a total solar eclipse if I'm not in the path of totality."

$$\neg a \rightarrow \neg b$$

# "*p* if *q*"

translates to

#### $q \rightarrow p$

#### It does not translate to

### $p \rightarrow q$

- *a*: I will be in the path of totality.
- *b*: I will see a total solar eclipse.
- *c*: There is a total solar eclipse today.

- *a*: I will be in the path of totality.
- *b*: I will see a total solar eclipse.
- *c*: There is a total solar eclipse today.

"If I will be in the path of totality, but there's no solar eclipse today, I won't see a total solar eclipse."

- *a*: I will be in the path of totality.
- b: I will see a total solar eclipse.
- *c*: There is a total solar eclipse today.

"If I will be in the path of totality, but there's no solar eclipse today, I won't see a total solar eclipse."

$$a \wedge \neg c \rightarrow \neg b$$

# "*p*, but *q*"

translates to

 $p \land q$ 

## The Takeaway Point

- When translating into or out of propositional logic, be very careful not to get tripped up by nuances of the English language.
  - In fact, this is one of the reasons we have a symbolic notation in the first place!
- Many prepositional phrases lead to counterintuitive translations; make sure to double-check yourself!

#### **Propositional Equivalences**

#### **Quick Question:**

What would I have to show you to convince you that the statement **p** ∧ **q** is false?

#### **Quick Question:**

What would I have to show you to convince you that the statement **p v q** is false?

## De Morgan's Laws

• Using truth tables, we concluded that

 $\neg(p \land q)$ 

is equivalent to

$$\neg p \lor \neg q$$

• We also saw that

 $\neg(p \lor q)$ 

is equivalent to

$$\neg p \land \neg q$$

 These two equivalences are called *De Morgan's Laws*.

## De Morgan's Laws in Code

• **Pro tip:** Don't write this:

if (!(p() && q()) {
 /\* ... \*/
}

• Write this instead:

if (!p() || !q()) {
 /\* ... \*/
}

• (This even short-circuits correctly!)

# Logical Equivalence

- Because ¬(p ∧ q) and ¬p ∨ ¬q have the same truth tables, we say that they're *equivalent* to one another.
- We denote this by writing

 $\neg (p \land q) \equiv \neg p \lor \neg q$ 

- The  $\equiv$  symbol is not a connective.
  - The statement  $\neg(p \land q) \leftrightarrow (\neg p \lor \neg q)$  is a propositional formula. If you plug in different values of p and q, it will evaluate to a truth value. It just happens to evaluate to true every time.
  - The statement  $\neg(p \land q) \equiv \neg p \lor \neg q$  means "these two formulas have exactly the same truth table."
- In other words, the notation  $\varphi \equiv \psi$  means " $\varphi$  and  $\psi$  always have the same truth values, regardless of how the variables are assigned."

## An Important Equivalence

• Earlier, we talked about the truth table for  $p \rightarrow q$ . We chose it so that

#### $p \rightarrow q \equiv \neg (p \land \neg q)$

• Later on, this equivalence will be incredibly useful:

 $\neg (p \rightarrow q) \equiv p \land \neg q$ 

### Another Important Equivalence

• Here's a useful equivalence. Start with

 $p \rightarrow q \equiv \neg (p \land \neg q)$ 

• By De Morgan's laws:

 $p \rightarrow q \equiv \neg (p \land \neg q)$  $\equiv \neg p \lor \neg \neg q$  $\equiv \neg p \lor q$ 

• Thus  $p \rightarrow q \equiv \neg p \lor q$ 

### Another Important Equivalence

• Here's a useful equivalence. Start with

$$p \rightarrow q \equiv \neg (p \land \neg q)$$

• By De Morgan's laws:

 $p \rightarrow q \equiv \neg (p \land \neg q)$   $\equiv \neg p \lor \neg \neg q$   $\equiv \neg p \lor \neg p \lor q \text{ is false, then}$   $\neg p \lor q \text{ is true. If } p \text{ is}$  true, then q has to be true for the wholeexpression to be true.

#### One Last Equivalence

### The Contrapositive

• The contrapositive of the statement

 $p \rightarrow q$ 

is the statement

 $\neg q \rightarrow \neg p$ 

• These are logically equivalent, which is why proof by contrapositive works:

 $p \rightarrow q \equiv \neg q \rightarrow \neg p$ 

• Suppose we want to prove the following statement:

"If x + y = 16, then  $x \ge 8$  or  $y \ge 8$ "

• Suppose we want to prove the following statement:

"If x + y = 16, then  $x \ge 8$  or  $y \ge 8$ "

#### $x + y = 16 \rightarrow x \ge 8 \ \forall \ y \ge 8$

• Suppose we want to prove the following statement:

"If x + y = 16, then  $x \ge 8$  or  $y \ge 8$ "

$$x + y = 16 \rightarrow x \ge 8 \lor y \ge 8$$

• Suppose we want to prove the following statement:

"If x + y = 16, then  $x \ge 8$  or  $y \ge 8$ "

 $\neg(x \ge 8 \lor y \ge 8) \rightarrow \neg(x + y = 16)$ 

• Suppose we want to prove the following statement:

"If x + y = 16, then  $x \ge 8$  or  $y \ge 8$ "

$$\neg(x \ge 8 \lor y \ge 8) \rightarrow \neg(x + y = 16)$$

• Suppose we want to prove the following statement:

"If x + y = 16, then  $x \ge 8$  or  $y \ge 8$ "

$$\neg(x \ge 8 \lor y \ge 8) \rightarrow \neg(x + y = 16)$$

• Suppose we want to prove the following statement:

"If x + y = 16, then  $x \ge 8$  or  $y \ge 8$ "

#### $\neg(x \geq 8 \lor y \geq 8) \rightarrow x + y \neq 16$

• Suppose we want to prove the following statement:

"If x + y = 16, then  $x \ge 8$  or  $y \ge 8$ "

#### $\neg(x \geq 8 \lor y \geq 8) \rightarrow x + y \neq 16$
• Suppose we want to prove the following statement:

"If x + y = 16, then  $x \ge 8$  or  $y \ge 8$ "

 $\neg (x \ge 8 \lor y \ge 8) \rightarrow x + y \neq 16$ 

• Suppose we want to prove the following statement:

"If x + y = 16, then  $x \ge 8$  or  $y \ge 8$ "

 $\neg(x \geq 8) \land \neg(y \geq 8) \rightarrow x + y \neq 16$ 

• Suppose we want to prove the following statement:

$$\neg(x \ge 8) \land \neg(y \ge 8) \rightarrow x + y \neq 16$$

• Suppose we want to prove the following statement:

"If x + y = 16, then  $x \ge 8$  or  $y \ge 8$ "

 $\neg(x \geq 8) \land \neg(y \geq 8) \rightarrow x + y \neq 16$ 

• Suppose we want to prove the following statement:

$$x < 8 \land \neg (y \ge 8) \rightarrow x + y \neq 16$$

• Suppose we want to prove the following statement:

$$x < 8 \land \neg (y \ge 8) \rightarrow x + y \neq 16$$

• Suppose we want to prove the following statement:

"If x + y = 16, then  $x \ge 8$  or  $y \ge 8$ "

 $x < 8 \land \neg (y \ge 8) \rightarrow x + y \neq 16$ 

• Suppose we want to prove the following statement:

$$x < 8 \land y < 8 \rightarrow x + y \neq 16$$

• Suppose we want to prove the following statement:

$$x < 8 \land y < 8 \rightarrow x + y \neq 16$$

• Suppose we want to prove the following statement:

"If x + y = 16, then  $x \ge 8$  or  $y \ge 8$ "

$$x < 8 \land y < 8 \rightarrow x + y \neq 16$$

"If x < 8 and y < 8, then  $x + y \neq 16$ "

**Theorem:** If x + y = 16, then  $x \ge 8$  or  $y \ge 8$ .

**Proof:** By contrapositive. We will prove that if x < 8 and y < 8, then  $x + y \neq 16$ . Let x and y be arbitrary numbers such that x < 8 and y < 8.

Note that

$$x + y < 8 + y 
 < 8 + 8 
 = 16.$$

This means that x + y < 16, so  $x + y \neq 16$ , which is what we needed to show.

# Why This Matters

- Propositional logic is a tool for reasoning about how various statements affect one another.
- To better understand how to prove a result, it often helps to translate what you're trying to prove into propositional logic first.
- That said, propositional logic isn't expressive enough to capture all statements. For that, we need something more powerful.

#### Next Time

- First-Order Logic
  - Reasoning about groups of objects.
- First-Order Translations
  - Expressing yourself in symbolic math!