

Mathematical Logic
Part Three

Recap from Last Time

What is First-Order Logic?

● First-order logic is a logical system for
reasoning about properties of objects.

● Augments the logical connectives from
propositional logic with
● predicates that describe properties of

objects,
● functions that map objects to one another,

and
● quantifers that allow us to reason about

many objects at once.

∃ is the existential quantifer
and says “for some choice of
m, the following is true.”

∃ is the existential quantifer
and says “for some choice of
m, the following is true.”

Some muggle is intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))

“For any natural number n,
n is even if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

 ∀ is the universal quantifer
and says “for any choice of n,

the following is true.”

 ∀ is the universal quantifer
and says “for any choice of n,

the following is true.”

“All A's are B's”

translates as

∀x. (A(x) → B(x))

Useful Intuition:

Universally-quantifed statements are true
unless there's a counterexample.

∀x. (A(x) → B(x))

If x is a counterexample, it
must have property A but

not have property B.

If x is a counterexample, it
must have property A but

not have property B.

“Some A is a B”

translates as

∃x. (A(x) ∧ B(x))

Useful Intuition:

Existentially-quantifed statements are
false unless there's a positive example.

∃x. (A(x) ∧ B(x))

If x is an example, it must
have property A on top of

property B.

If x is an example, it must
have property A on top of

property B.

The Aristotelian Forms

“All As are Bs”

∀x. (A(x) → B(x))

“Some As are Bs”

∃x. (A(x) ∧ B(x))

“No As are Bs”

∀x. (A(x) → ¬B(x))

“Some As aren’t Bs”

∃x. (A(x) ∧ ¬B(x))

It is worth committing these patterns to
memory. We’ll be using them throughout
the day and they form the backbone of

many frst-order logic translations.

It is worth committing these patterns to
memory. We’ll be using them throughout
the day and they form the backbone of

many frst-order logic translations.

The Art of Translation

Using the predicates

 - Person(p), which states that p is a person, and
 - Loves(x, y), which states that x loves y,

write a sentence in frst-order logic that means “everybody
loves someone else.”

Everybody loves someone else

Every person loves some other person

Every person p loves some other person

Every person p loves some other person

“All As are Bs”

∀x. (A(x) → B(x))

“All As are Bs”

∀x. (A(x) → B(x))

∀p. (Person(p) →
p loves some other person

)

“All As are Bs”

∀x. (A(x) → B(x))

“All As are Bs”

∀x. (A(x) → B(x))

∀p. (Person(p) →
p loves some other person

)

∀p. (Person(p) →
there is some other person that p loves

)

∀p. (Person(p) →
there is a person other than p that p loves

)

∀p. (Person(p) →
there is a person q, other than p, where p loves q

)

∀p. (Person(p) →
there is a person q, other than p, where

p loves q

)

∀p. (Person(p) →
there is a person q, other than p, where

p loves q

)
“Some As are Bs”

∃x. (A(x) ∧ B(x))

“Some As are Bs”

∃x. (A(x) ∧ B(x))

∀p. (Person(p) →
∃q. (Person(q) ∧, other than p, where

p loves q
)

)
“Some As are Bs”

∃x. (A(x) ∧ B(x))

“Some As are Bs”

∃x. (A(x) ∧ B(x))

∀p. (Person(p) →
∃q. (Person(q) ∧, other than p, where

p loves q
)

)

∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

p loves q
)

)

∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

)

 Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then 0, 1, 2, 3, or 4.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then 0, 1, 2, 3, or 4.

How many of the following frst-order logic statements are
correct translations of “everyone loves someone else?”

How many of the following frst-order logic statements are
correct translations of “everyone loves someone else?”

∀p. (Person(p) →
 ∃q. (Person(q) ∧
 Loves(p, q)
)
)

∀p. (Person(p) ∧
 ∃q. (Person(q) ∧ p ≠ q ∧
 Loves(p, q)
)
)

∀p. (Person(p) →
 ∃q. (Person(q) ∧ p ≠ q →
 Loves(p, q)
)
)

∃p. (Person(p) →
 ∀q. (Person(q) ∧ p ≠ q ∧
 Loves(p, q)
)
)

Using the predicates

 - Person(p), which states that p is a person, and
 - Loves(x, y), which states that x loves y,

write a sentence in frst-order logic that means “there is a
person that everyone else loves.”

There is a person that everyone else loves

There is a person p where everyone else loves p

There is a person p where everyone else loves p

“Some As are Bs”

∃x. (A(x) ∧ B(x))

“Some As are Bs”

∃x. (A(x) ∧ B(x))

∃p. (Person(p) ∧
everyone else loves p

)
“Some As are Bs”

∃x. (A(x) ∧ B(x))

“Some As are Bs”

∃x. (A(x) ∧ B(x))

∃p. (Person(p) ∧
everyone else loves p

)

∃p. (Person(p) ∧
every other person q loves p

)

∃p. (Person(p) ∧
every person q, other than p, loves p

)

∃p. (Person(p) ∧
every person q, other than p, loves p

)
“All As are Bs”

∀x. (A(x) → B(x))

“All As are Bs”

∀x. (A(x) → B(x))

∃p. (Person(p) ∧
∀q. (Person(q) ∧ p ≠ q →

q loves p
)

)
“All As are Bs”

∀x. (A(x) → B(x))

“All As are Bs”

∀x. (A(x) → B(x))

∃p. (Person(p) ∧
∀q. (Person(q) ∧ p ≠ q →

q loves p
)

)

∃p. (Person(p) ∧
∀q. (Person(q) ∧ p ≠ q →

Loves(q, p)
)

)

Combining Quantifers

● Most interesting statements in frst-order
logic require a combination of
quantifers.

● Example: “Everyone loves someone else.”

Combining Quantifers

● Most interesting statements in frst-order
logic require a combination of
quantifers.

● Example: “Everyone loves someone else.”

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

Combining Quantifers

● Most interesting statements in frst-order
logic require a combination of
quantifers.

● Example: “Everyone loves someone else.”

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,

Combining Quantifers

● Most interesting statements in frst-order
logic require a combination of
quantifers.

● Example: “Everyone loves someone else.”

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

Combining Quantifers

● Most interesting statements in frst-order
logic require a combination of
quantifers.

● Example: “Everyone loves someone else.”

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them

Combining Quantifers

● Most interesting statements in frst-order
logic require a combination of
quantifers.

● Example: “Everyone loves someone else.”

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.

Combining Quantifers

● Most interesting statements in frst-order
logic require a combination of
quantifers.

● Example: “There is someone everyone
else loves.”

Combining Quantifers

● Most interesting statements in frst-order
logic require a combination of
quantifers.

● Example: “There is someone everyone
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

Combining Quantifers

● Most interesting statements in frst-order
logic require a combination of
quantifers.

● Example: “There is someone everyone
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person

Combining Quantifers

● Most interesting statements in frst-order
logic require a combination of
quantifers.

● Example: “There is someone everyone
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

Combining Quantifers

● Most interesting statements in frst-order
logic require a combination of
quantifers.

● Example: “There is someone everyone
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them

Combining Quantifers

● Most interesting statements in frst-order
logic require a combination of
quantifers.

● Example: “There is someone everyone
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

For Comparison

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.

Everyone Loves Someone Else

Everyone Loves Someone Else

No one here
is universally

loved.

No one here
is universally

loved.

There is Someone Everyone Else Loves

There is Someone Everyone Else Loves

This person
does not

love anyone
else.

This person
does not

love anyone
else.

Everyone Loves Someone Else and
There is Someone Everyone Else Loves

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.

∧

Quantifer Ordering

● The statement

 ∀x. ∃y. P(x, y)

means “for any choice of x, there's some
choice of y where P(x, y) is true.”

● The choice of y can be diferent every
time and can depend on x.

Quantifer Ordering

● The statement

 ∃x. ∀y. P(x, y)

means “there is some x where for any
choice of y, we get that P(x, y) is true.”

● Since the inner part has to work for any
choice of y, this places a lot of
constraints on what x can be.

Order matters when mixing existential
and universal quantifers!

A

B

D

C

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, B, C, or D.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, B, C, or D.

Which person in this
diagram do you most aspire

to be?

Which person in this
diagram do you most aspire

to be?

Time-Out for Announcements!

Problem Set Two

● Problem Set Two is due this Friday at 2:30PM.
● Once we’re done with this lecture, you’ll know

everything you need to complete it!
● Have questions? Feel free to stop by ofice hours or to

ask on Piazza.
● Hopefully you’ve taken a few minutes to read

over all the problems by now. If not, we’d
strongly recommend doing so.

● Good idea: Aim to complete Q1 – Q5 by the end
of the evening.

Problem Set One Solutions

● Problem Set One solutions are now available.
● Please take the time to read over these

solutions.
● For non-proof questions, make sure that you understand

the intuition behind the answers. If they match yours,
great! If not, that would be a great question to ask us.

● For proofs, look over the style and formatting. Compare
them against yours. How do they compare?

● Each question has a “Why We Asked This Question”
section at the end. Make sure you read over it – it would
be a shame if you did a problem and didn’t hit the key
insight we wanted you to have.

Apply to Section Lead!

● Want to teach a CS106A/B/X section? Already
completed CS106B or CS106X? Apply to section
lead at

https://cs198.stanford.edu
● Application is due Thursday, February 1st.
● There’s a second round of hiring later this quarter

for folks currently in CS106B/X – stay tuned!
● This is an amazing program. Highly

recommended!

https://cs198.stanford.edu/

Back to CS103!

Set Translations

Using the predicates

 - Set(S), which states that S is a set, and
 - x ∈ y, which states that x is an element of y,

write a sentence in frst-order logic that means “the empty
set exists.”

Using the predicates

 - Set(S), which states that S is a set, and
 - x ∈ y, which states that x is an element of y,

write a sentence in frst-order logic that means “the empty
set exists.”

First-order logic doesn't have set
operators or symbols “built in.” If we
only have the predicates given above,

how might we describe this?

First-order logic doesn't have set
operators or symbols “built in.” If we
only have the predicates given above,

how might we describe this?

The empty set exists.(
(
(

There is some set S that is empty.(
(
(

∃S. (Set(S) ∧
S is empty. ∧

)

∃S. (Set(S) ∧
there are no elements in S∧

)

∃S. (Set(S) ∧
¬there is an element in S

)

∃S. (Set(S) ∧
¬there is an element x in S

)

∃S. (Set(S) ∧
¬∃x. x ∈ S

)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧
there are no elements in S(

)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧
every object does not belong to S(

)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧
every object x does not belong to S(

)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧
∀x. x ∉ S

)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ∀x. x ∉ S)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ∀x. x ∉ S)

Both of these translations are correct.
Just like in propositional logic, there are

many different equivalent ways of
expressing the same statement in frst-

order logic.

Both of these translations are correct.
Just like in propositional logic, there are

many different equivalent ways of
expressing the same statement in frst-

order logic.

Using the predicates

 - Set(S), which states that S is a set, and
 - x ∈ y, which states that x is an element of y,

write a sentence in frst-order logic that means “two sets are
equal if and only if they contain the same elements.”

Two sets are equal if and only if they have the same elements.
)
)
)
)
)

Any two sets are equal if and only if they have the same
elements.)
)
)
)
)

Any two sets S and T are equal if and only if they have the same
elements.)
)
)
)
)

∀S. (Set(S) →
∀T. (Set(T) →

) S and T are equal if and only if they have the same
) elements.)

)
)

∀S. (Set(S) →
∀T. (Set(T) →

(S = T if and only if they have the same elements.))

)
)

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ they have the same elements.))

)
)

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ S and T have the same elements.))

)
)

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ every element of S is an element of T and
 vice-versa)

)
)

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ x is an element of S if and only if x is an
 element of T)

)
)

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))
)

)

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))
)

)

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))
)

)

You sometimes see the universal quantifer pair with
the connective. This is especially common when ↔

talking about sets because two sets are equal when
they have precisely the same elements.

You sometimes see the universal quantifer pair with
the connective. This is especially common when ↔

talking about sets because two sets are equal when
they have precisely the same elements.

∀S. (Set(S) →
∀T. (Set(T) →

(S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))
)

)

Mechanics: Negating Statements

Answer at PollEv.com/cs103 or

text CS103 to 22333 once to join, then A, B, C, D, E, or F.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, B, C, D, E, or F.

Which of the following is the negation of the statement
∀x. ∃y. Loves(x, y)?

A. ∀x. ∀y. ¬Loves(x, y)
B. ∀x. ∃y. ¬Loves(x, y)
C. ∃x. ∀y. ¬Loves(x, y)
D. ∃x. ∃y. ¬Loves(x, y)
E. None of these.
F. Two or more of these.

Which of the following is the negation of the statement
∀x. ∃y. Loves(x, y)?

A. ∀x. ∀y. ¬Loves(x, y)
B. ∀x. ∃y. ¬Loves(x, y)
C. ∃x. ∀y. ¬Loves(x, y)
D. ∃x. ∃y. ¬Loves(x, y)
E. None of these.
F. Two or more of these.

An Extremely Important Table

For any choice of x,
P(x)

For some choice of x,
¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x)

For some choice of x,
¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x) ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x) ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

Negating First-Order Statements

● Use the equivalences

¬∀x. A ≡ ∃x. ¬A

¬∃x. A ≡ ∀x. ¬A

to negate quantifers.
● Mechanically:

● Push the negation across the quantifer.
● Change the quantifer from ∀ to ∃ or vice-versa.

● Use techniques from propositional logic to
negate connectives.

Taking a Negation

∀x. ∃y. Loves(x, y)
(“Everyone loves someone.”)

¬∀x. ∃y. Loves(x, y)
∃x. ¬∃y. Loves(x, y)
∃x. ∀y. ¬Loves(x, y)

(“There's someone who doesn't love anyone.”)

Two Useful Equivalences

● The following equivalences are useful when
negating statements in frst-order logic:

¬(p ∧ q) ≡ p → ¬q

¬(p → q) ≡ p ∧ ¬q
● These identities are useful when negating

statements involving quantifers.
● ∧ is used in existentially-quantifed statements.
● → is used in universally-quantifed statements.

● When pushing negations across quantifers, we
strongly recommend using the above equivalences
to keep → with ∀ and ∧ with ∃.

Negating Quantifers

● What is the negation of the following statement, which
says “there is a cute puppy”?

∃x. (Puppy(x) ∧ Cute(x))
● We can obtain it as follows:

¬∃x. (Puppy(x) ∧ Cute(x))

∀x. ¬(Puppy(x) ∧ Cute(x))

∀x. (Puppy(x) → ¬Cute(x))
● This says “no puppy is cute.”
● Do you see why this is the negation of the original

statement from both an intuitive and formal
perspective?

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
(“There is a set with no elements.”)

¬∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
∀S. ¬(Set(S) ∧ ∀x. ¬(x ∈ S))
∀S. (Set(S) → ¬∀x. ¬(x ∈ S))
∀S. (Set(S) → ∃x. ¬¬(x ∈ S))

∀S. (Set(S) → ∃x. x ∈ S)
(“Every set contains at least one element.”)

These two statements are not negations of
one another. Can you explain why?

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
(“There is a set that doesn't contain anything”)

∀S. (Set(S) ∧ ∃x. (x ∈ S))
(“Everything is a set that contains something”)

Remember: usually ∀

goes with , not → ∧

Remember: usually ∀

goes with , not → ∧

Restricted Quantifers

Quantifying Over Sets

● The notation

∀x ∈ S. P(x)

means “for any element x of set S, P(x)
holds.” (It’s vacuously true if S is empty.)

● The notation

∃x ∈ S. P(x)

means “there is an element x of set S
where P(x) holds.” (It’s false if S is empty.)

Quantifying Over Sets

● The syntax

∀x ∈ S. φ

∃x ∈ S. φ

is allowed for quantifying over sets.
● In CS103, feel free to use these restricted quantifers, but

please do not use variants of this syntax.
● For example, don't do things like this:

⚠ ∀x with P(x). Q(x) ⚠

⚠ ∀y such that P(y) ∧ Q(y). R(y). ⚠

⚠ ∃P(x). Q(x) ⚠

Expressing Uniqueness

Using the predicate

 - Level(l), which states that l is a level,

write a sentence in frst-order logic that means “there is only
one level.”

A fun diversion:

http://www.onemorelevel.com/game/there_is_only_one_level

A fun diversion:

http://www.onemorelevel.com/game/there_is_only_one_level

http://www.onemorelevel.com/game/there_is_only_one_level
http://www.onemorelevel.com/game/there_is_only_one_level

There is only one level. ∀
∀
∀

Something is a level, and nothing else is. ∀
∀
∀

Some thing l is a level, and nothing else is. ∀
∀
∀

Some thing l is a level, and nothing besides l is a level∀
∀
∀

∃l. (Level(l) ∧
nothing besides l is a level. ∀

)

∃l. (Level(l) ∧
anything that isn't l isn't a level ∀

)

∃l. (Level(l) ∧
any thing x that isn't l isn't a level ∀

)

∃l. (Level(l) ∧
∀x. (x ≠ l → x isn't a level)

)

∃l. (Level(l) ∧
∀x. (x ≠ l → ¬Level(x))

)

∃l. (Level(l) ∧
∀x. (x ≠ l → ¬Level(x))

)

∃l. (Level(l) ∧
∀x. (Level(x) → x = l)

)

Expressing Uniqueness

● To express the idea that there is exactly one object
with some property, we write that
● there exists at least one object with that property, and that
● there are no other objects with that property.

● You sometimes see a special “uniqueness quantifer”
used to express this:

∃!x. P(x)
● For the purposes of CS103, please do not use this

quantifer. We want to give you more practice using
the regular ∀ and ∃ quantifers.

Next Time

● Binary Relations
● How do we model connections between objects?

● Equivalence Relations
● How do we model the idea that objects can be

grouped into clusters?
● First-Order Defnitions

● Where does frst-order logic come into all of this?
● Proofs with Defnitions

● How does frst-order logic interact with proofs?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138

