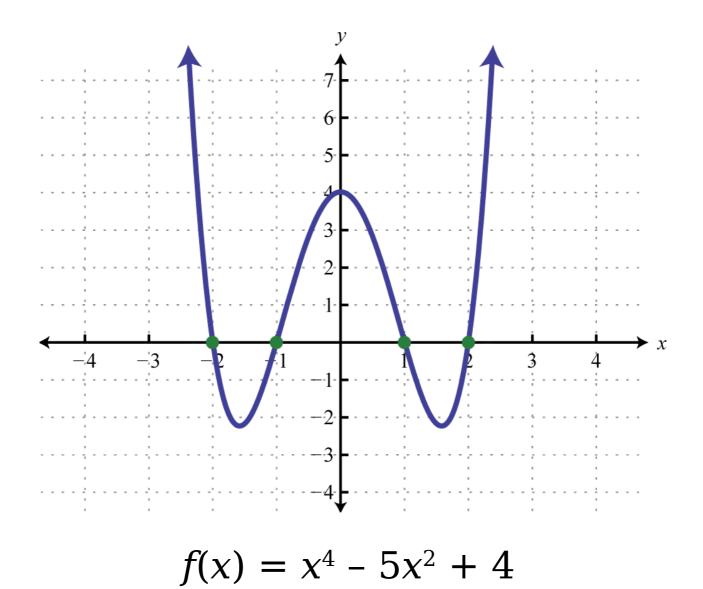
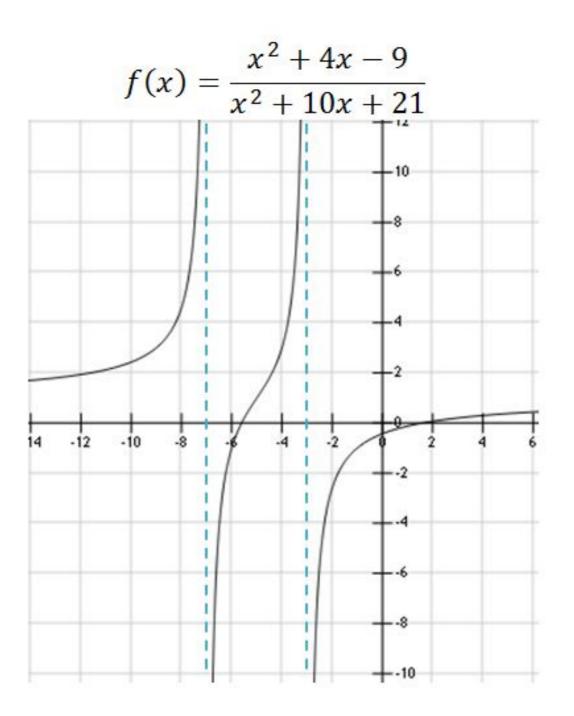
Functions

What is a function?

Functions, High-School Edition



source: https://saylordotorg.github.io/text_intermediate-algebra/section_07/6aaf3a5ab540885474d58855068b64ce.png



Functions, High-School Edition

• In high school, functions are usually given as objects of the form

$$f(x) = \frac{x^3 + 3x^2 + 15x + 7}{1 - x^{137}}$$

- What does a function do?
 - It takes in as input a real number.
 - It outputs a real number
 - ... except when there are vertical asymptotes or other discontinuities, in which case the function doesn't output anything.

Functions, CS Edition

```
int flipUntil(int n) {
  int numHeads = 0;
  int numTries = 0;
  while (numHeads < n) {</pre>
    if (randomBoolean()) numHeads++;
    numTries++;
  return numTries;
```

Functions, CS Edition

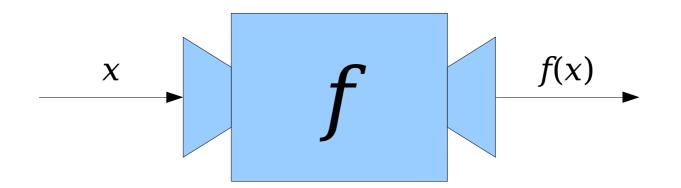
- In programming, functions
 - might take in inputs,
 - might return values,
 - might have side effects,
 - might never return anything,
 - might crash, and
 - might return different values when called multiple times.

What's Common?

- Although high-school math functions and CS functions are pretty different, they have two key aspects in common:
 - They take in inputs.
 - They produce outputs.
- In math, we like to keep things easy, so that's pretty much how we're going to define a function.

Rough Idea of a Function:

A function is an object *f* that takes in an input and produces exactly one output.



(This is not a complete definition – we'll revisit this in a bit.)

High School versus CS Functions

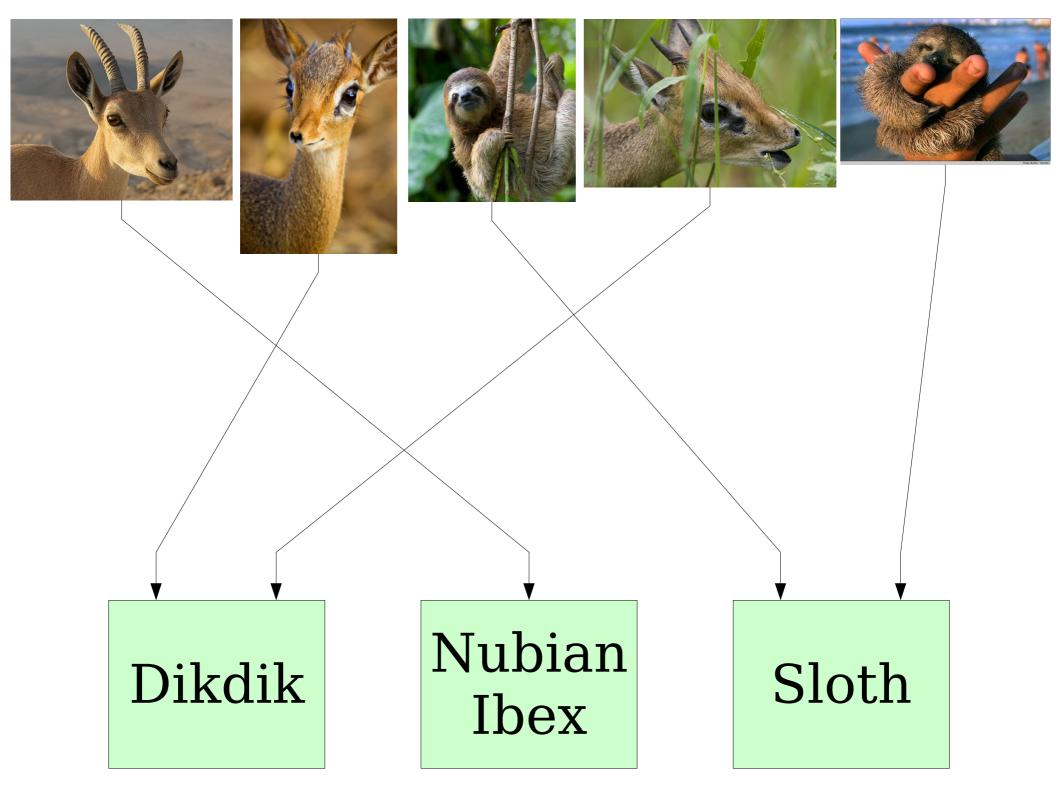
• In high school, functions usually were given by a rule:

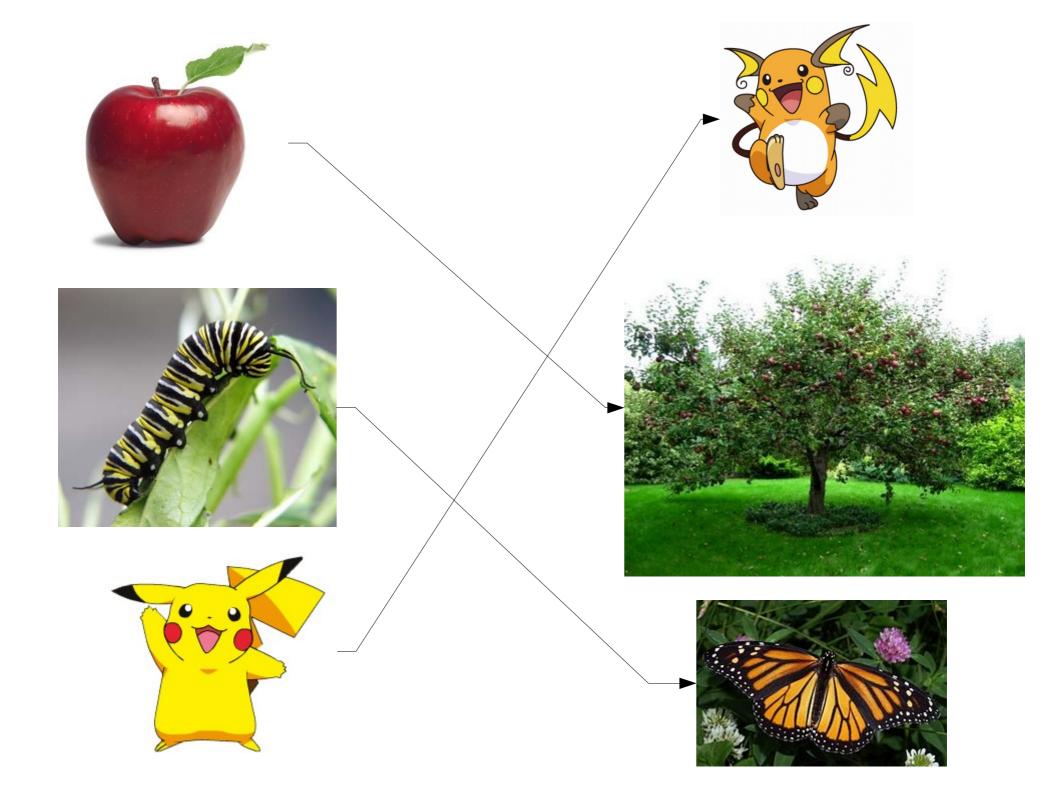
```
f(x) = 4x + 15
```

• In CS, functions are usually given by code:

```
int factorial(int n) {
    int result = 1;
    for (int i = 1; i <= n; i++) {
        result *= i;
    }
    return result;
}</pre>
```

• What sorts of functions are we going to allow from a mathematical perspective?





... but also ...

$f(x) = x^2 + 3x - 15$

$f(n) = \begin{cases} -n/2 & \text{if } n \text{ is even} \\ (n+1)/2 & \text{otherwise} \end{cases}$

Functions like these are called *piecewise functions*. To define a function, you will typically either

- \cdot draw a picture, or
- \cdot give a rule for determining the output.

In mathematics, functions are *deterministic*.

That is, given the same input, a function must always produce the same output.

The following is a perfectly valid piece of C++ code, but it's not a valid function under our definition:

int randomNumber(int numOutcomes) {
 return rand() % numOutcomes;
}

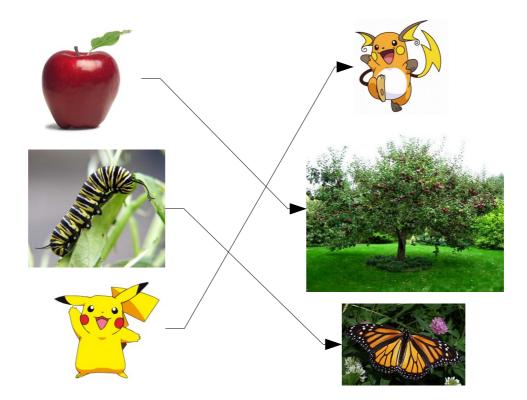
One Challenge

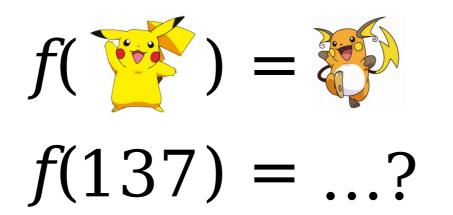
 $f(x) = x^2 + 2x + 5$

$f(x) = x^2 + 2x + 5$ $f(3) = 3^2 + 3 \cdot 2 + 5 = 20$

 $f(x) = x^2 + 2x + 5$ $f(3) = 3^2 + 3 \cdot 2 + 5 = 20$ $f(0) = 0^2 + 0 \cdot 2 + 5 = 5$

 $f(x) = x^{2} + 2x + 5$ $f(3) = 3^{2} + 3 \cdot 2 + 5 = 20$ $f(0) = 0^{2} + 0 \cdot 2 + 5 = 5$ $f(\checkmark) = \dots ?$

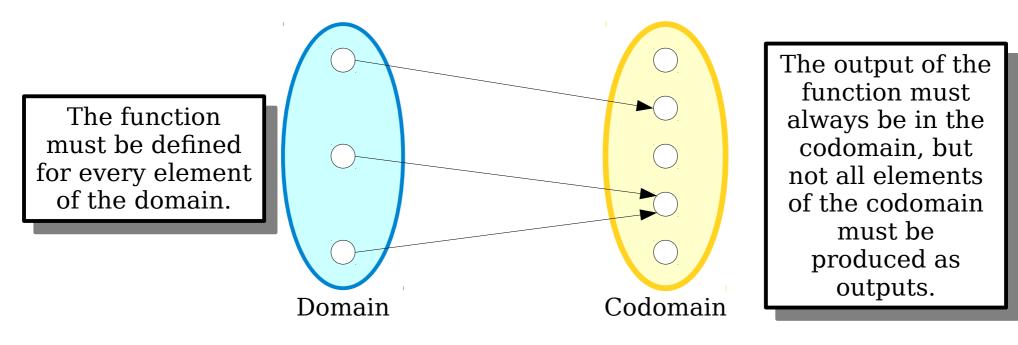




We need to make sure we can't apply functions to meaningless inputs.

Domains and Codomains

- Every function *f* has two sets associated with it: its *domain* and its *codomain*.
- A function *f* can only be applied to elements of its domain. For any *x* in the domain, *f*(*x*) belongs to the codomain.



Domains and Codomains

- Every function *f* has two sets associated with it: its *domain* and its *codomain*.
- A function *f* can only be applied to elements of its domain. For any *x* in the domain, *f*(*x*) belongs to the codomain.

The codomain of this function is \mathbb{R} . Everything produced is a real number, but not all real numbers can be produced.

The domain of this function is \mathbb{R} . Any real number can be provided as input.

```
private double absoluteValueOf(double x) {
    if (x >= 0) {
        return x;
    } else {
        return -x;
    }
}
```

Domains and Codomains

- If *f* is a function whose domain is *A* and whose codomain is *B*, we write $f : A \rightarrow B$.
- This notation just says what the domain and codomain of the function are. It doesn't say how the function is evaluated.
- Think of it like a "function prototype" in C or C++. The notation $f : ArgType \rightarrow RetType$ is like writing

RetType f(ArgType argument);

We know that *f* takes in an *ArgType* and returns a *RetType*, but we don't know exactly which *RetType* it's going to return for a given *ArgType*.

The Official Rules for Functions

- Formally speaking, we say that $f: A \rightarrow B$ if the following two rules hold.
- First, *f* must be obey its domain/codomain rules:

 $\forall a \in A. \exists b \in B. f(a) = b$

("Every input in A maps to some output in B.")

• Second, *f* must be deterministic:

 $\forall a_1 \in A. \forall a_2 \in A. (a_1 = a_2 \rightarrow f(a_1) = f(a_2))$ ("Equal inputs produce equal outputs.")

- If you're ever curious about whether something is a function, look back at these rules and check! For example:
 - Can a function have an empty domain?
 - Can a function with a nonempty domain have an empty codomain?

Defining Functions

- Typically, we specify a function by describing a rule that maps every element of the domain to some element of the codomain.
- Examples:
 - f(n) = n + 1, where $f : \mathbb{Z} \to \mathbb{Z}$
 - $f(x) = \sin x$, where $f : \mathbb{R} \to \mathbb{R}$
 - f(x) = [x], where $f : \mathbb{R} \to \mathbb{Z}$
- Notice that we're giving both a rule and the domain/codomain.

Defining Functions

Typically, we specify a function by describing a rule that maps every element of the domain to some codomain. This is the ceiling function the smallest integer greater

Examples:

This is the ceiling function the smallest integer greater than or equal to x. For example, [1] = 1, [1.37] = 2, and $[\pi] = 4$.

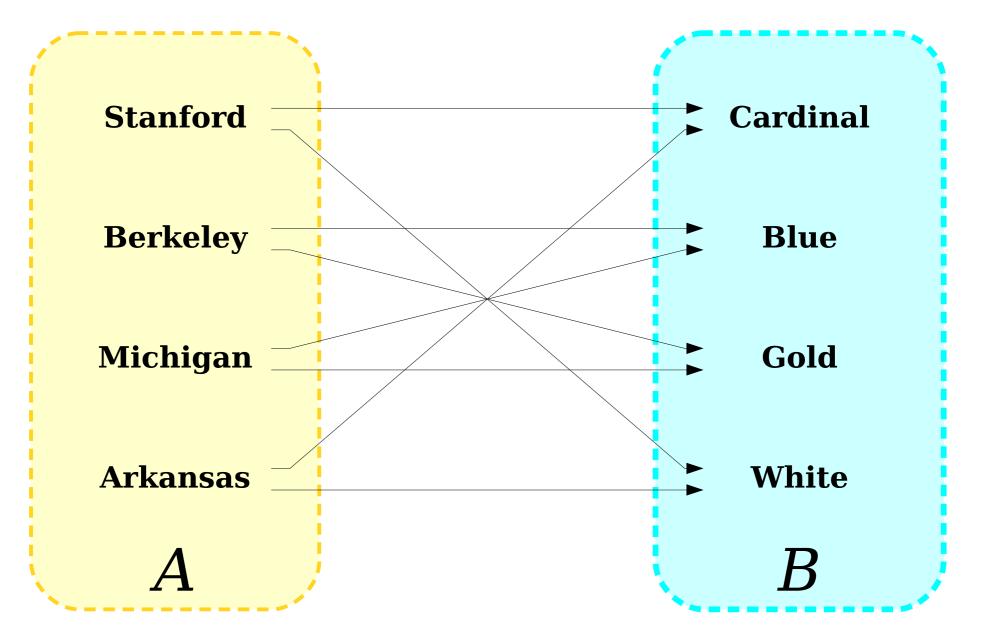
f(n) = n + 1, where f : 1

 $f(x) = \sin x$, where $f : \mathbb{R} \to \mathbb{R}$

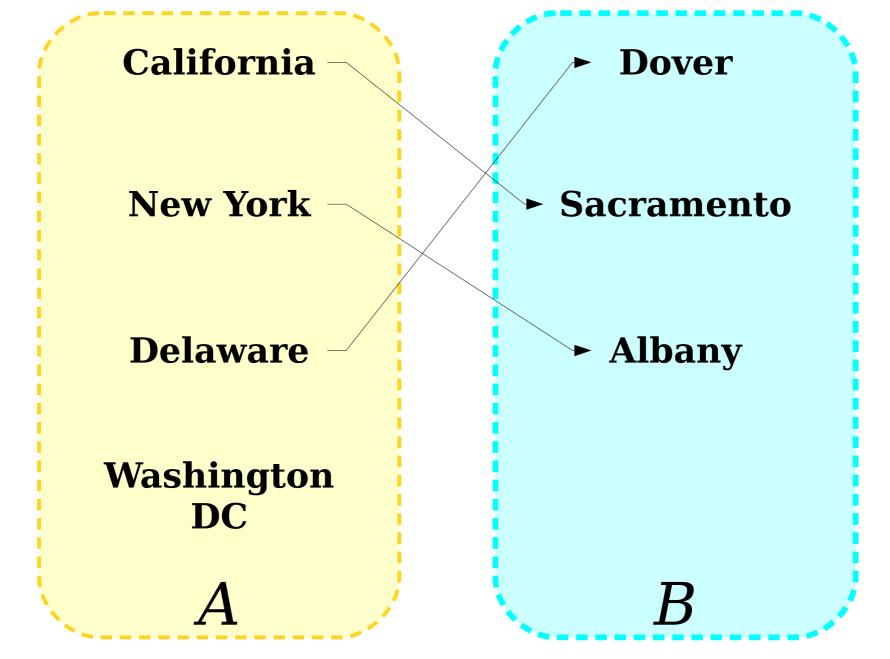
• f(x) = [x], where $f : \mathbb{R} \to \mathbb{Z}$

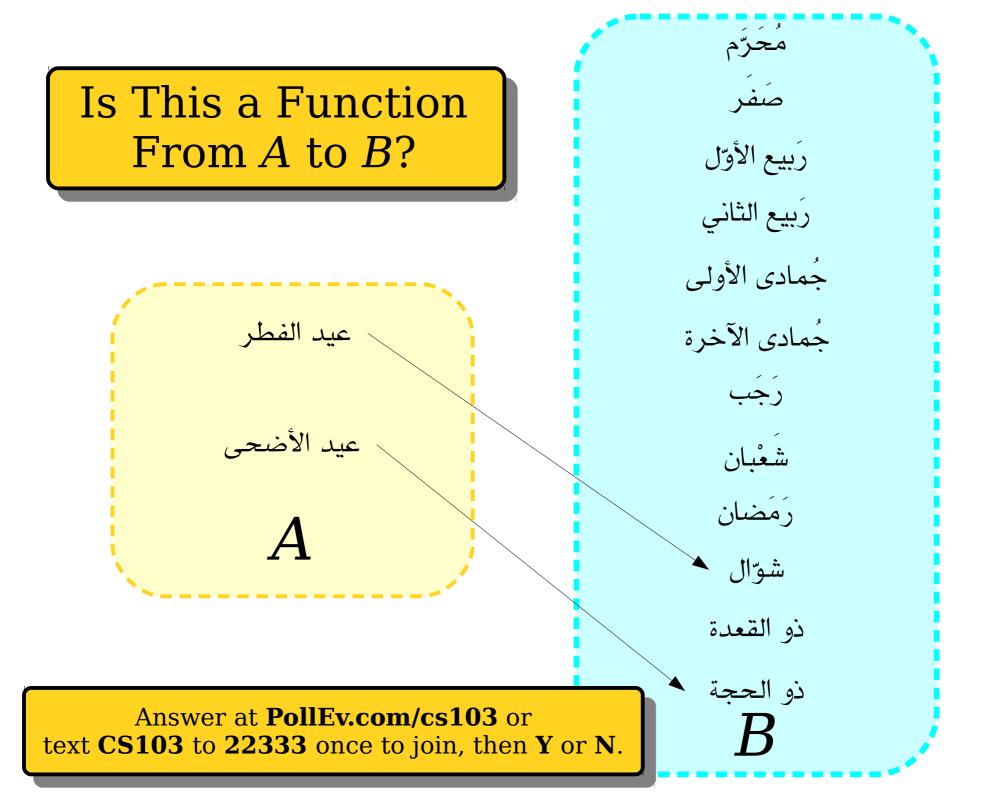
Notice that we're giving both a rule and the domain/codomain.

Is This a Function From *A* to *B*?

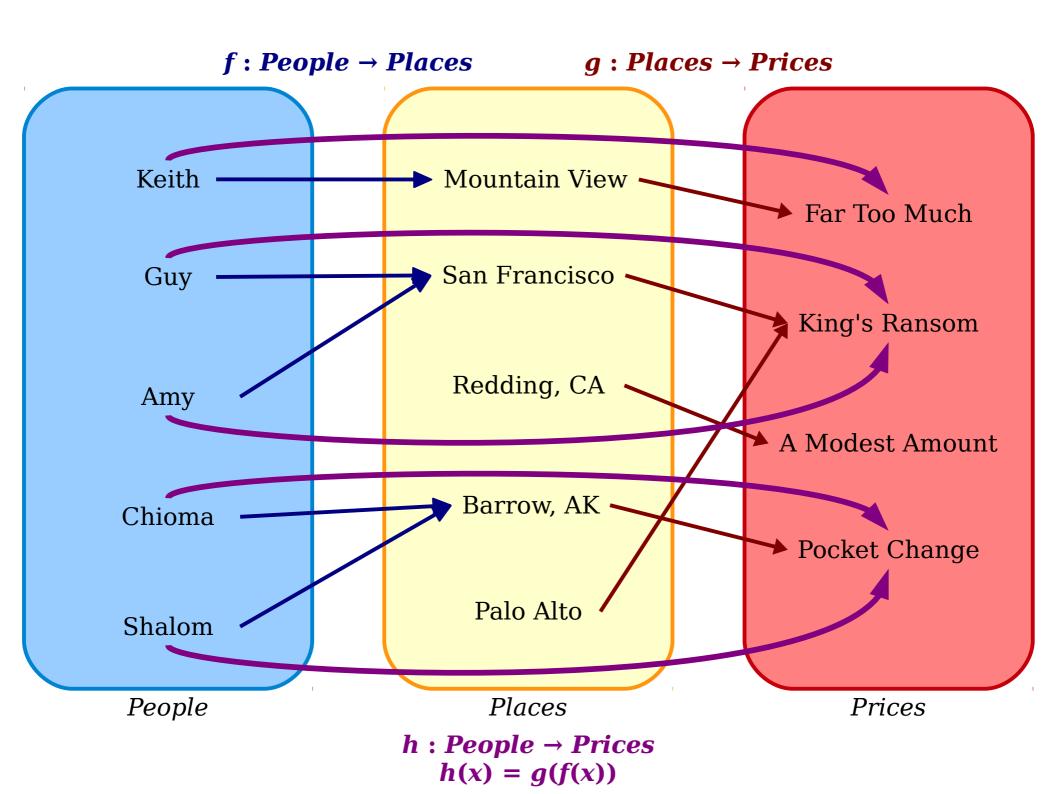


Is This a Function From A to B?



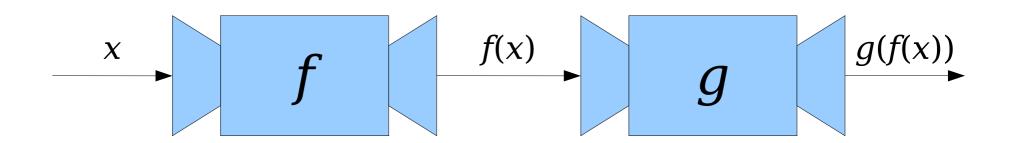


Combining Functions



Function Composition

- Suppose that we have two functions $f: A \rightarrow B$ and $g: B \rightarrow C$.
- Notice that the codomain of *f* is the domain of *g*. This means that we can use outputs from *f* as inputs to *g*.



Function Composition

- Suppose that we have two functions $f : A \rightarrow B$ and $g : B \rightarrow C$.
- The *composition of f and g*, denoted *g f*, is a function where
 - $g \circ f : A \to C$, and
 - $(g \circ f)(x) = g(f(x)).$

• A few things to notice:

The name of the function is $g \circ f$. When we apply it to an input x, we write $(g \circ f)(x)$. I don't know why, but that's what we do.

- The domain of $g \circ f$ is the domain of f. Its codomain is the codomain of g.
- Even though the composition is written $g \circ f$, when evaluating $(g \circ f)(x)$, the function f is evaluated first.

Time-Out for Announcements!

Problem Set Three

- The Problem Set Three checkpoint problem was due at 2:30PM today.
 - We'll aim to get feedback to you by Wednesday.
 - Solutions are now available.
- The remaining problems are due on Friday at 2:30PM.
- As always, feel free to ask questions on Piazza or to stop by office hours with questions!
- PS2 solutions are now available. We'll get your work graded and returned by Wednesday.

APPLY TO BE A MENTOR BY 2/18

ONE DAY WORKSHOP TEACH WHAT YOU KNOW AND LOVE MINIMUM CO-REQUISITE: CS106A

APPLY HERE: HTTP://BIT.LY/GTGTCMENTOR2018

HUU

Midterm Exam Logistics

- Our first midterm exam is next *Monday, February 5th*, from 7:00PM - 10:00PM. Locations are divvied up by last (family) name:
 - A H: Go to Cubberley Auditorium.
 - I Z: Go to 320-105.
- You're responsible for Lectures 00 05 and topics covered in PS1 – PS2. Later lectures (relations forward) and problem sets (PS3 onward) won't be tested here.
- The exam is closed-book, closed-computer, and limitednote. You can bring a double-sided, $8.5'' \times 11''$ sheet of notes with you to the exam, decorated however you'd like.
- Students with OAE accommodations: please contact us *immediately* if you haven't yet done so. We'll ping you about setting up alternate exams.

Midterm Exam

- We want you to do well on this exam. We're not trying to weed out weak students. We're not trying to enforce a curve where there isn't one. We want you to show what you've learned up to this point so that you get a sense for where you stand and where you can improve.
- The purpose of this midterm is to give you a chance to show what you've learned in the past few weeks. It is not designed to assess your "mathematical potential" or "innate mathematical ability."

Practice Midterm Exam

- To help you prepare for the midterm, we'll be holding a practice midterm exam on *Wednedsay, January 31st* from 7PM 10PM in Cemex Auditorium.
 - The exam we'll use isn't one of the ones posted up on the course website, so feel free to use those as practice in the meantime.
- The practice midterm exam is an actual midterm we gave out in a previous quarter. It's probably the best indicator of what you should expect to see.
- Course staff will be on hand to answer your questions.
- Can't make it? We'll release that practice exam and solutions online. Set up your own practice exam time with a small group and work through it under realistic conditions!

Extra Practice Problems

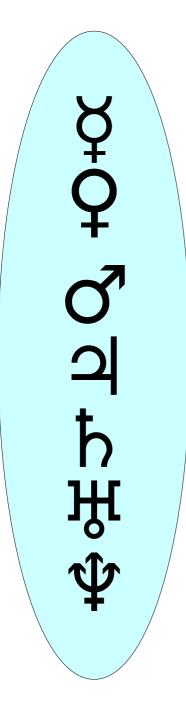
- Up on the course website, you'll find
 - Extra Practice Problems 1 (a set of cumulative review problems), and
 - three practice midterm exams, each of which is a (slightly modified) version of a real exam we've given out in a previous quarter.
- Use these resources strategically. Give these problems your best effort, and, importantly, have the course staff review your work. Ask for polite but honest feedback. ☺

Preparing for the Exam

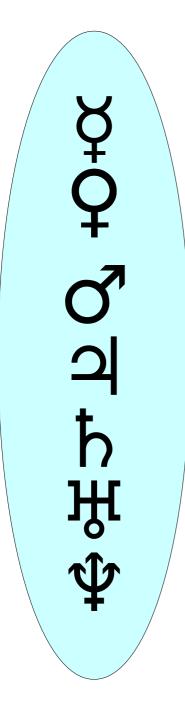
- We've released a handout (Handout 21) containing advice about how to prepare for the exam, along with advice from previous CS103 students.
- Read over it... there's good advice there!

Back to CS103!

Special Types of Functions

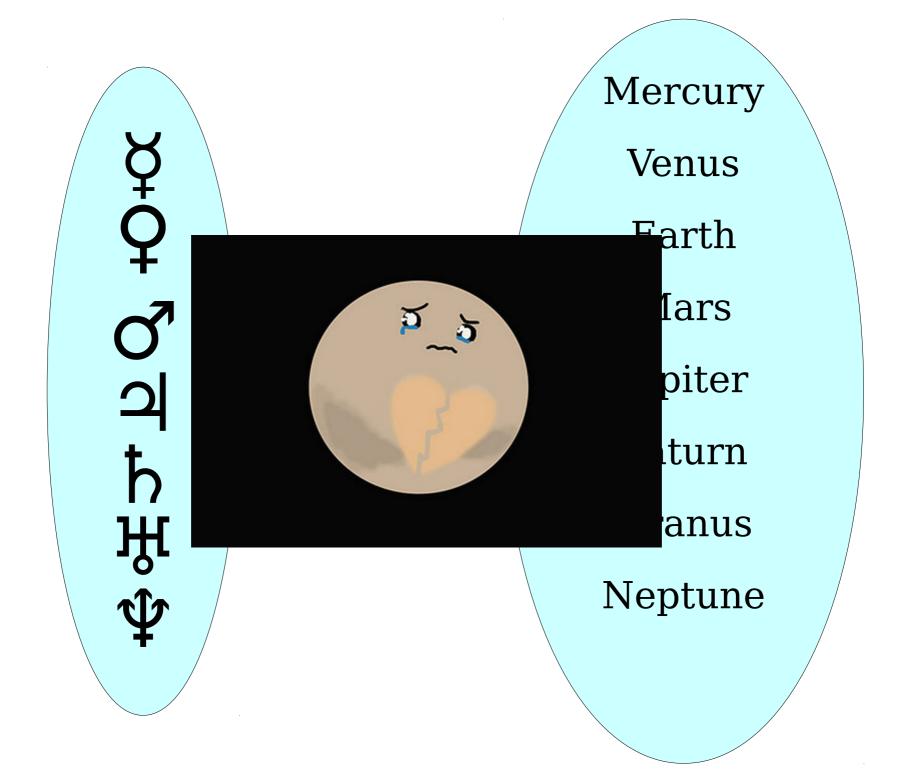


Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto

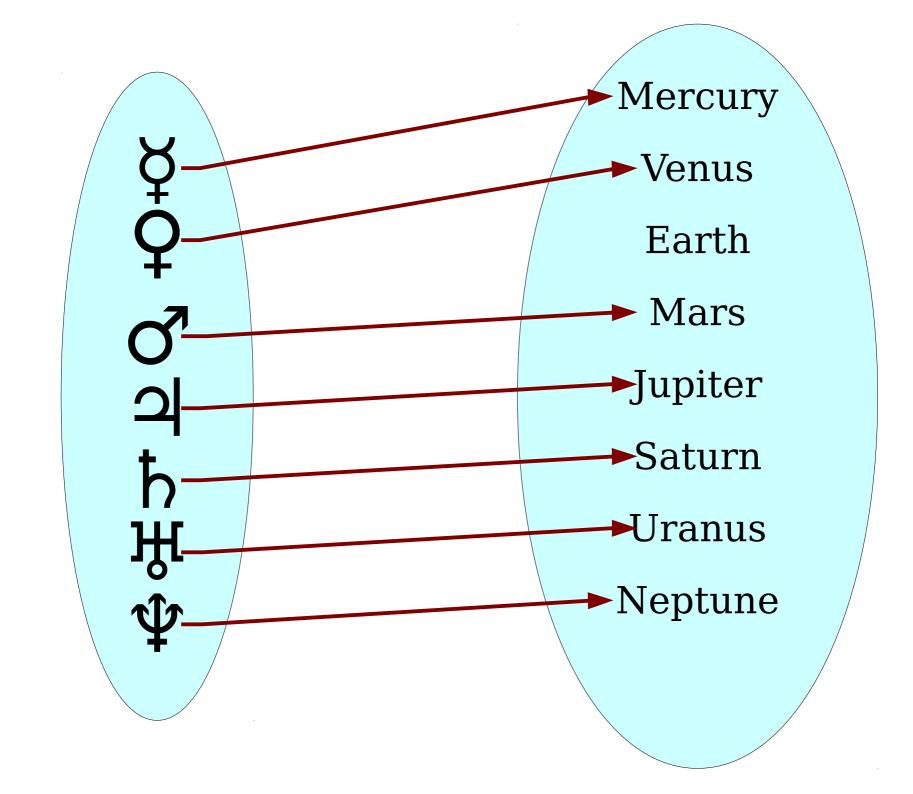


Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune **Pluto**

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune



Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune



• A function $f: A \rightarrow B$ is called *injective* (or *one-to-one*) if the following statement is true about f:

 $\forall a_1 \in A. \ \forall a_2 \in A. \ (a_1 \neq a_2 \rightarrow f(a_1) \neq f(a_2))$

("If the inputs are different, the outputs are different.")

• The following first-order definition is equivalent and is often useful in proofs.

 $\forall a_1 \in A. \ \forall a_2 \in A. \ (f(a_1) = f(a_2) \rightarrow a_1 = a_2)$

("If the outputs are the same, the inputs are the same.")

- A function with this property is called an *injection*.
- How does this compare to our second rule for functions?

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Proof:

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Proof:

How many of the following are correct ways of starting off this proof?

Consider any $n_1, n_2 \in \mathbb{N}$ where $n_1 = n_2$. We will prove that $f(n_1) = f(n_2)$. Consider any $n_1, n_2 \in \mathbb{N}$ where $n_1 \neq n_2$. We will prove that $f(n_1) \neq f(n_2)$. Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) = f(n_2)$. We will prove that $n_1 = n_2$. Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) \neq f(n_2)$. We will prove that $n_1 \neq n_2$.

Answer at **PollEv.com/cs103** or

text **CS103** to **22333** once to join, then a number between **0** and **4**.

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Proof:

What does it mean for the function f to be injective?

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Proof:

What does it mean for the function f to be injective?

 $\forall n_1 \in \mathbb{N}. \ \forall n_2 \in \mathbb{N}. \ (f(n_1) = f(n_2) \rightarrow n_1 = n_2)$ $\forall n_1 \in \mathbb{N}. \ \forall n_2 \in \mathbb{N}. \ (n_1 \neq n_2 \rightarrow f(n_1) \neq f(n_2))$

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Proof:

What does it mean for the function f to be injective?

 $\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. (f(n_1) = f(n_2) \rightarrow n_1 = n_2)$ $\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. (n_1 \neq n_2 \rightarrow f(n_1) \neq f(n_2))$

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Proof:

What does it mean for the function f to be injective?

 $\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. (f(n_1) = f(n_2) \rightarrow n_1 = n_2)$ $\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. (n_1 \neq n_2 \rightarrow f(n_1) \neq f(n_2))$

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Proof:

What does it mean for the function f to be injective?

 $\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. (f(n_1) = f(n_2) \rightarrow n_1 = n_2)$ $\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. (n_1 \neq n_2 \rightarrow f(n_1) \neq f(n_2))$

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Proof:

What does it mean for the function f to be injective?

 $\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. (f(n_1) = f(n_2) \rightarrow n_1 = n_2)$ $\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. (n_1 \neq n_2 \rightarrow f(n_1) \neq f(n_2))$

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Proof:

What does it mean for the function f to be injective?

 $\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. (f(n_1) = f(n_2) \rightarrow n_1 = n_2)$ $\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. (n_1 \neq n_2 \rightarrow f(n_1) \neq f(n_2))$

- **Theorem:** Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.
- **Proof:** Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) = f(n_2)$. We will prove that $n_1 = n_2$.

- **Theorem:** Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.
- **Proof:** Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) = f(n_2)$. We will prove that $n_1 = n_2$.

Since $f(n_1) = f(n_2)$, we see that

 $2n_1 + 7 = 2n_2 + 7.$

- **Theorem:** Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.
- **Proof:** Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) = f(n_2)$. We will prove that $n_1 = n_2$.

Since $f(n_1) = f(n_2)$, we see that

```
2n_1 + 7 = 2n_2 + 7.
```

This in turn means that

$$2n_1 = 2n_2$$

- **Theorem:** Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.
- **Proof:** Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) = f(n_2)$. We will prove that $n_1 = n_2$.

Since $f(n_1) = f(n_2)$, we see that

```
2n_1 + 7 = 2n_2 + 7.
```

This in turn means that

$$2n_1 = 2n_2$$

so $n_1 = n_2$, as required.

- **Theorem:** Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.
- **Proof:** Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) = f(n_2)$. We will prove that $n_1 = n_2$.

Since $f(n_1) = f(n_2)$, we see that

```
2n_1 + 7 = 2n_2 + 7.
```

This in turn means that

$$2n_1 = 2n_2$$

so $n_1 = n_2$, as required.

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as f(n) = 2n + 7. Then f is injective.

Proof: Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) = f(n_2)$. We will prove that $n_1 = n_2$.

How many of the following are correct ways of starting off this proof?

Consider any $n_1, n_2 \in \mathbb{N}$ where $n_1 = n_2$. We will prove that $f(n_1) = f(n_2)$. Consider any $n_1, n_2 \in \mathbb{N}$ where $n_1 \neq n_2$. We will prove that $f(n_1) \neq f(n_2)$. Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) = f(n_2)$. We will prove that $n_1 = n_2$. Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) \neq f(n_2)$. We will prove that $n_1 \neq n_2$.

Good exercise: Repeat this proof using the other definition of injectivity!

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

How many of the following are correct ways of starting off this proof? Assume for the sake of contradiction that *f* is not injective. Assume for the sake of contradiction that there are integers x_1 and x_2 where $f(x_1) = f(x_2)$ but $x_1 \neq x_2$. Consider arbitrary integers x_1 and x_2 where $x_1 \neq x_2$. We will prove that $f(x_1) = f(x_2)$. Consider arbitrary integers x_1 and x_2 where $f(x_1) = f(x_2)$. We will prove that $x_1 \neq x_2$.

Answer at **PollEv.com/cs103** or

text **CS103** to **22333** once to join, then a number between **0** and **4**.

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for f to be injective?

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for f to be injective?

 $\forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for f to be injective?

 $\forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$

What is the negation of this statement?

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for f to be injective?

 $\forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$

What is the negation of this statement?

 $\neg \forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for f to be injective? $\forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ What is the negation of this statement? $\neg \forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \neg \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

```
What does it mean for f to be injective?

\forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))

What is the negation of this statement?

\neg \forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))

\exists x_1 \in \mathbb{Z}. \neg \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))

\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. \neg (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))
```

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

```
What does it mean for f to be injective?
                 \forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))
What is the negation of this statement?
             \neg \forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))
             \exists x_1 \in \mathbb{Z}. \ \neg \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))
             \exists x_1 \in \mathbb{Z}. \ \exists x_2 \in \mathbb{Z}. \ \neg (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))
             \exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. (x_1 \neq x_2 \land \neg(f(x_1) \neq f(x_2)))
```

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

```
What does it mean for f to be injective?
                 \forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))
What is the negation of this statement?
              \neg \forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))
              \exists x_1 \in \mathbb{Z}. \ \neg \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))
              \exists x_1 \in \mathbb{Z}. \ \exists x_2 \in \mathbb{Z}. \ \neg (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))
              \exists x_1 \in \mathbb{Z}. \ \exists x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \land \neg(f(x_1) \neq f(x_2)))
              \exists x_1 \in \mathbb{Z}. \ \exists x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \land f(x_1) = f(x_2))
```

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for f to be injective? $\forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ What is the negation of this statement? $\neg \forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \ \neg \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \ \exists x_2 \in \mathbb{Z}. \ \neg (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \ \exists x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \land \neg(f(x_1) \neq f(x_2)))$ $\exists x_1 \in \mathbb{Z}. \ \exists x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \land f(x_1) = f(x_2))$ Therefore, we need to find $x_1, x_2 \in \mathbb{Z}$ such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$. Can we do that?

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for f to be injective? $\forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ What is the negation of this statement? $\neg \forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \ \neg \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. \neg (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}$. $\exists x_2 \in \mathbb{Z}$. $(x_1 \neq x_2 \land \neg(f(x_1) \neq f(x_2)))$ $\exists x_1 \in \mathbb{Z}$. $\exists x_2 \in \mathbb{Z}$. $(x_1 \neq x_2 \land f(x_1) = f(x_2))$ Therefore, we need to find $x_1, x_2 \in \mathbb{Z}$ such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$. Can we do that?

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for f to be injective? $\forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ What is the negation of this statement? $\neg \forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \ \neg \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. \neg (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}$. $\exists x_2 \in \mathbb{Z}$. $(x_1 \neq x_2 \land \neg(f(x_1) \neq f(x_2)))$ $\exists x_1 \in \mathbb{Z}. \ \exists x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \land f(x_1) = f(x_2))$ Therefore, we need to find $x_1, x_2 \in \mathbb{Z}$ such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$. Can we do that?

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for f to be injective? $\forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ What is the negation of this statement? $\neg \forall x_1 \in \mathbb{Z}. \ \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \ \neg \forall x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \ \exists x_2 \in \mathbb{Z}. \ \neg (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$ $\exists x_1 \in \mathbb{Z}. \ \exists x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \land \neg(f(x_1) \neq f(x_2)))$ $\exists x_1 \in \mathbb{Z}. \ \exists x_2 \in \mathbb{Z}. \ (x_1 \neq x_2 \land f(x_1) = f(x_2))$ Therefore, we need to find $x_1, x_2 \in \mathbb{Z}$ such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$. Can we do that?

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof: We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

- **Theorem:** Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.
- **Proof:** We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

Let $x_1 = -1$ and $x_2 = +1$.

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof: We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

Let $x_1 = -1$ and $x_2 = +1$.

$$f(x_1) = f(-1) = (-1)^4 = 1$$

- **Theorem:** Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.
- **Proof:** We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

Let $x_1 = -1$ and $x_2 = +1$.

$$f(x_1) = f(-1) = (-1)^4 = 1$$

and

$$f(x_2) = f(1) = 1^4 = 1$$

- **Theorem:** Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.
- **Proof:** We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

Let $x_1 = -1$ and $x_2 = +1$.

$$f(x_1) = f(-1) = (-1)^4 = 1$$

and

$$f(x_2) = f(1) = 1^4 = 1,$$

so $f(x_1) = f(x_2)$ even though $x_1 \neq x_2$, as required.

- **Theorem:** Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.
- **Proof:** We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

Let $x_1 = -1$ and $x_2 = +1$.

$$f(x_1) = f(-1) = (-1)^4 = 1$$

and

$$f(x_2) = f(1) = 1^4 = 1,$$

so $f(x_1) = f(x_2)$ even though $x_1 \neq x_2$, as required.

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof: We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

How many of the following are correct ways of starting off this proof? Assume for the sake of contradiction that f is not injective. Assume for the sake of contradiction that there are integers x_1 and x_2 where $f(x_1) = f(x_2)$ but $x_1 \neq x_2$.

Consider arbitrary integers x_1 and x_2 where $x_1 \neq x_2$. We will prove that $f(x_1) = f(x_2)$.

Consider arbitrary integers x_1 and x_2 where $f(x_1) = f(x_2)$. We will prove that $x_1 \neq x_2$.

- **Theorem:** Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.
- **Proof:** We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

Let $x_1 = -1$ and $x_2 = +1$.

$$f(x_1) = f(-1) = (-1)^4 = 1$$

and

$$f(x_2) = f(1) = 1^4 = 1,$$

so $f(x_1) = f(x_2)$ even though $x_1 \neq x_2$, as required.

Injections and Composition

Injections and Composition

- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is an injection.
- Our goal will be to prove this result. To do so, we're going to have to call back to the formal definitions of injectivity and function composition.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary injections.

- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective.

There are two definitions of injectivity that we can use here: $\forall a_1 \in A. \forall a_2 \in A. ((g \circ f)(a_1) = (g \circ f)(a_2) \rightarrow a_1 = a_2)$ $\forall a_1 \in A. \forall a_2 \in A. (a_1 \neq a_2 \rightarrow (g \circ f)(a_1) \neq (g \circ f)(a_2))$

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective.

There are two definitions of injectivity that we can use here: $\forall a_1 \in A. \forall a_2 \in A. ((g \circ f)(a_1) = (g \circ f)(a_2) \rightarrow a_1 = a_2)$ $\forall a_1 \in A. \forall a_2 \in A. (a_1 \neq a_2 \rightarrow (g \circ f)(a_1) \neq (g \circ f)(a_2))$

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective.

There are two definitions of injectivity that we can use here: $\forall a_1 \in A. \forall a_2 \in A. ((g \circ f)(a_1) = (g \circ f)(a_2) \rightarrow a_1 = a_2)$ $\forall a_1 \in A. \forall a_2 \in A. (a_1 \neq a_2 \rightarrow (g \circ f)(a_1) \neq (g \circ f)(a_2))$ Therefore, we'll choose an arbitrary $a_1, a_2 \in A$ where $a_1 \neq a_2$, then prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$.

- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$.

- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$.

- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$.

How is $(g \circ f)(x)$ defined?

- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$.

How is $(g \circ f)(x)$ defined?

 $(g \circ f)(x) = g(f(x))$

- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$.

How is $(g \circ f)(x)$ defined?

 $(g\circ f)(x)=g(f(x))$

So we need to prove that $g(f(a_1)) \neq g(f(a_2))$.

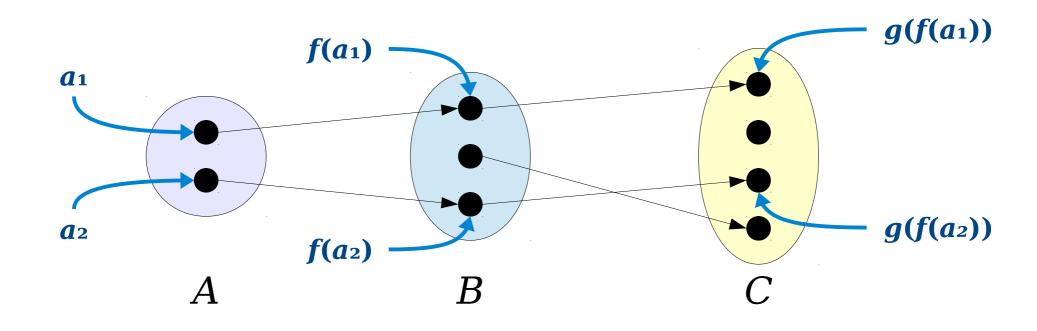
- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$. Equivalently, we need to show that $g(f(a_1)) \neq g(f(a_2))$.

How is $(g \circ f)(x)$ defined?

$(g \circ f)(x) = g(f(x))$

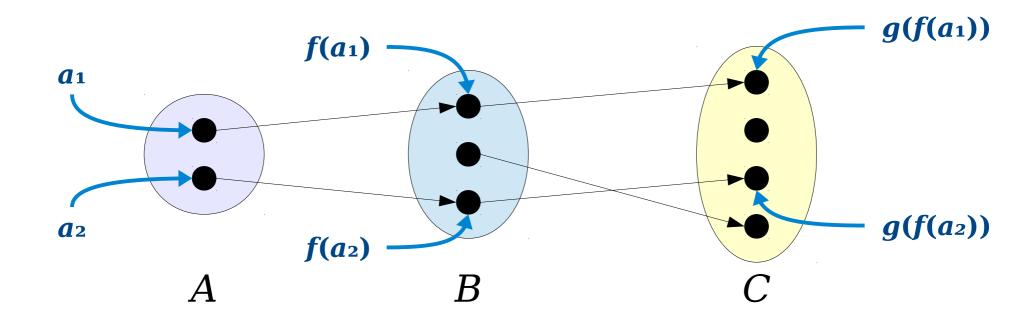
So we need to prove that $g(f(a_1)) \neq g(f(a_2))$.

- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$. Equivalently, we need to show that $g(f(a_1)) \neq g(f(a_2))$.



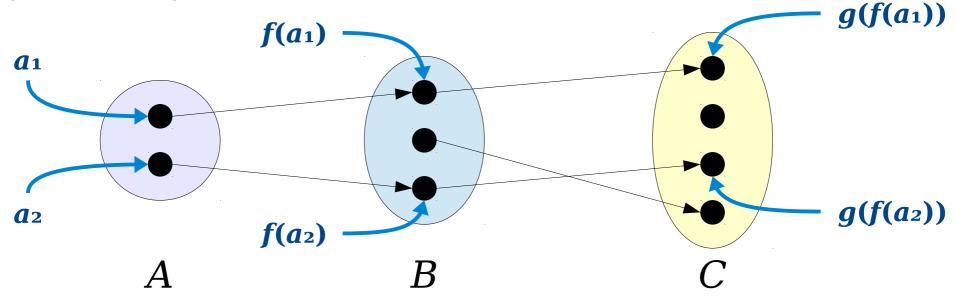
- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$. Equivalently, we need to show that $g(f(a_1)) \neq g(f(a_2))$.

Since *f* is injective and $a_1 \neq a_2$, we see that $f(a_1) \neq f(a_2)$.



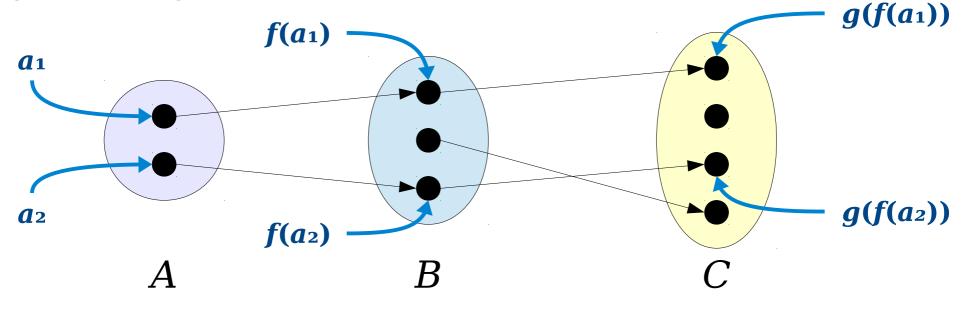
- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$. Equivalently, we need to show that $g(f(a_1)) \neq g(f(a_2))$.

Since *f* is injective and $a_1 \neq a_2$, we see that $f(a_1) \neq f(a_2)$. Then, since *g* is injective and $f(a_1) \neq f(a_2)$, we see that $g(f(a_1)) \neq g(f(a_2))$, as required.



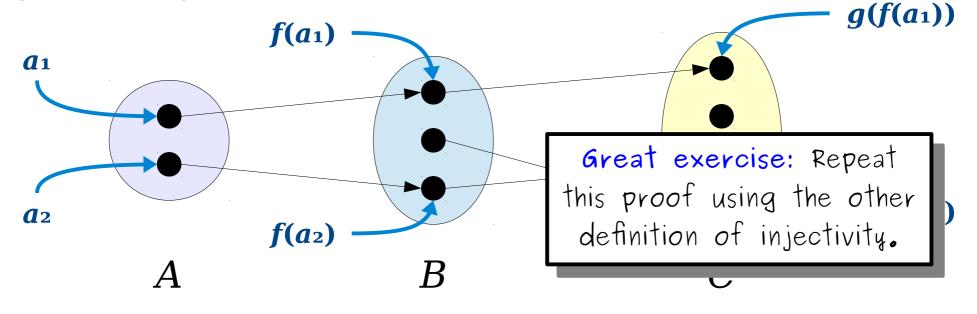
- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$. Equivalently, we need to show that $g(f(a_1)) \neq g(f(a_2))$.

Since *f* is injective and $a_1 \neq a_2$, we see that $f(a_1) \neq f(a_2)$. Then, since *g* is injective and $f(a_1) \neq f(a_2)$, we see that $g(f(a_1)) \neq g(f(a_2))$, as required.

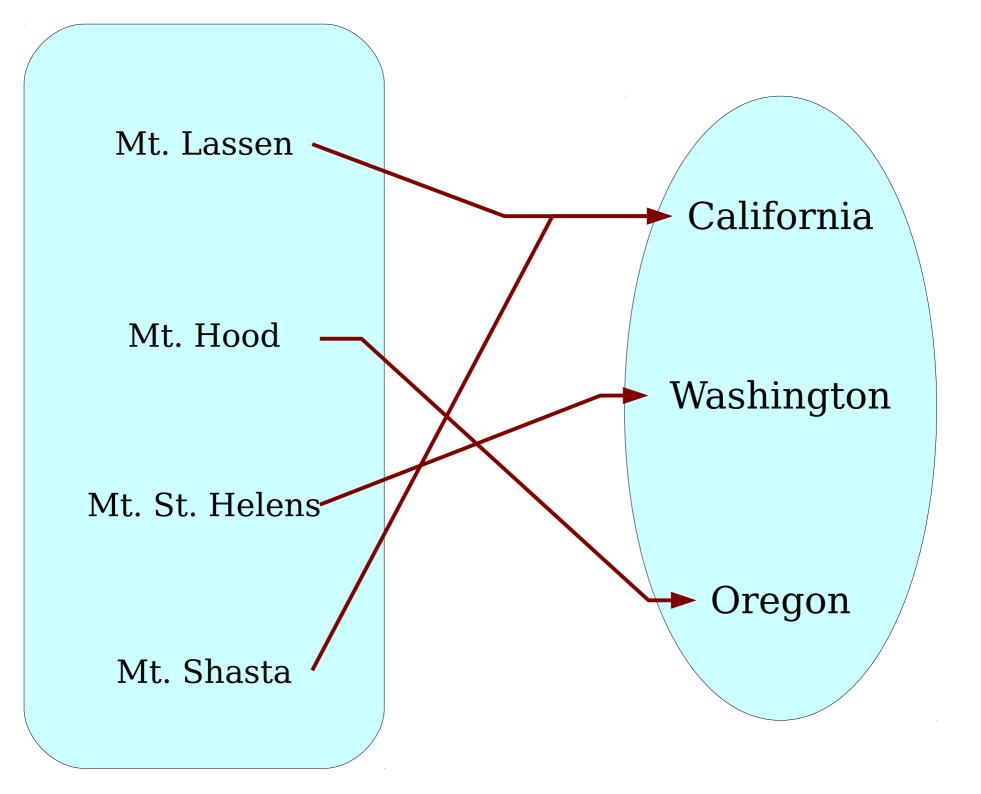


- **Theorem:** If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.
- **Proof:** Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$. Equivalently, we need to show that $g(f(a_1)) \neq g(f(a_2))$.

Since *f* is injective and $a_1 \neq a_2$, we see that $f(a_1) \neq f(a_2)$. Then, since *g* is injective and $f(a_1) \neq f(a_2)$, we see that $g(f(a_1)) \neq g(f(a_2))$, as required.



Another Class of Functions



• A function $f : A \rightarrow B$ is called *surjective* (or *onto*) if this first-order logic statement is true about f:

$\forall b \in B. \exists a \in A. f(a) = b$

("For every possible output, there's at least one possible input that produces it")

- A function with this property is called a *surjection*.
- How does this compare to our first rule of functions?

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof:

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof:

What does it mean for f to be surjective?

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof:

What does it mean for f to be surjective? $\forall y \in \mathbb{R}. \exists x \in \mathbb{R}. f(x) = y$

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof:

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof:

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof:

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof:

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof: Consider any $y \in \mathbb{R}$.

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof: Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that f(x) = y.

- **Theorem:** Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.
- **Proof:** Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that f(x) = y.

Let x = 2y.

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof: Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that f(x) = y.

Let x = 2y. Then we see that

f(x) = f(2y)

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof: Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that f(x) = y.

Let x = 2y. Then we see that

f(x) = f(2y) = 2y / 2

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof: Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that f(x) = y.

Let x = 2y. Then we see that

$$f(x) = f(2y) = 2y / 2 = y.$$

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof: Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that f(x) = y.

Let x = 2y. Then we see that

$$f(x) = f(2y) = 2y / 2 = y.$$

So f(x) = y, as required.

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x / 2. Then f(x) is surjective.

Proof: Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that f(x) = y.

Let x = 2y. Then we see that

$$f(x) = f(2y) = 2y / 2 = y.$$

So f(x) = y, as required.

Composing Surjections

Proof:

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective.

What does it mean for $g \circ f : A \rightarrow C$ to be surjective?

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective.

What does it mean for $g \circ f : A \rightarrow C$ to be surjective? $\forall c \in C. \exists a \in A. (g \circ f)(a) = c$

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective.

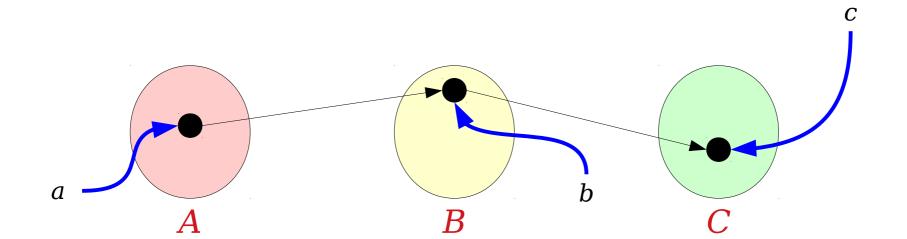
What does it mean for $g \circ f : A \rightarrow C$ to be surjective?

$\forall c \in C. \exists a \in A. (g \circ f)(a) = c$

Therefore, we'll choose arbitrary $c \in C$ and prove that there is some $a \in A$ such that $(g \circ f)(a) = c$.

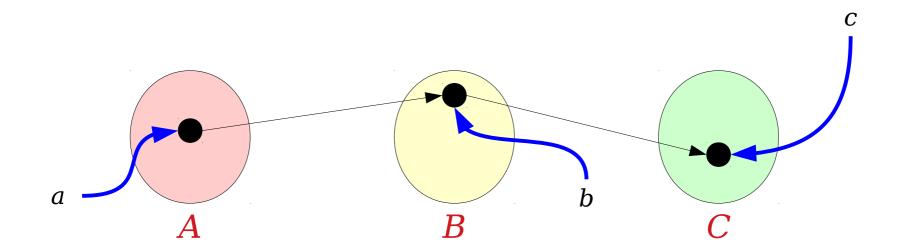
Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that g(f(a)) = c.



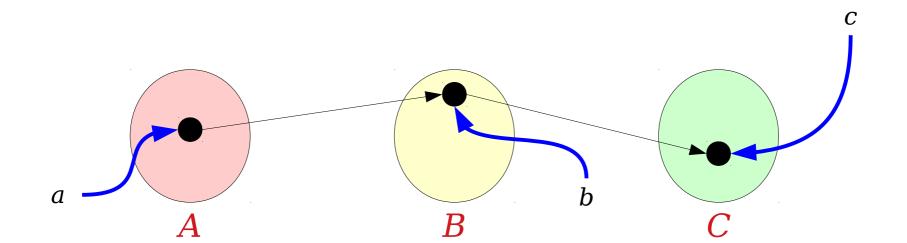
Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that g(f(a)) = c.

Consider any $c \in C$.



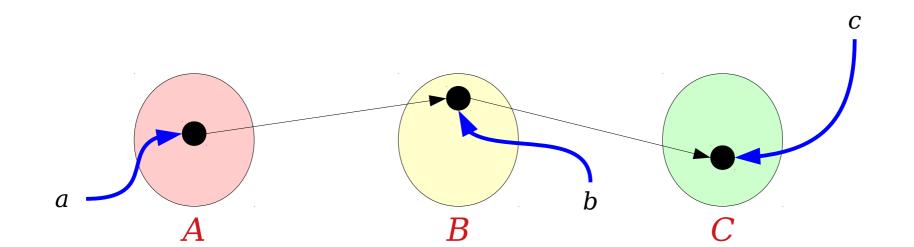
Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that g(f(a)) = c.

Consider any $c \in C$. Since $g : B \to C$ is surjective, there is some $b \in B$ such that g(b) = c.



Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that g(f(a)) = c.

Consider any $c \in C$. Since $g : B \to C$ is surjective, there is some $b \in B$ such that g(b) = c. Similarly, since $f : A \to B$ is surjective, there is some $a \in A$ such that f(a) = b.



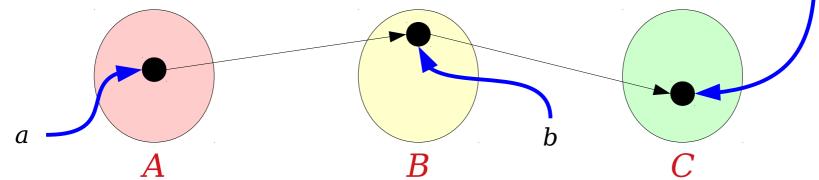
Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that g(f(a)) = c.

Consider any $c \in C$. Since $g : B \to C$ is surjective, there is some $b \in B$ such that g(b) = c. Similarly, since $f : A \to B$ is surjective, there is some $a \in A$ such that f(a) = b. This means that there is some $a \in A$ such that

g(f(a)) = g(b) = c,

С

which is what we needed to show.



Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that g(f(a)) = c.

Consider any $c \in C$. Since $g : B \to C$ is surjective, there is some $b \in B$ such that g(b) = c. Similarly, since $f : A \to B$ is surjective, there is some $a \in A$ such that f(a) = b. This means that there is some $a \in A$ such that

g(f(a)) = g(b) = c,

which is what we needed to show. \blacksquare

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that g(f(a)) = c.

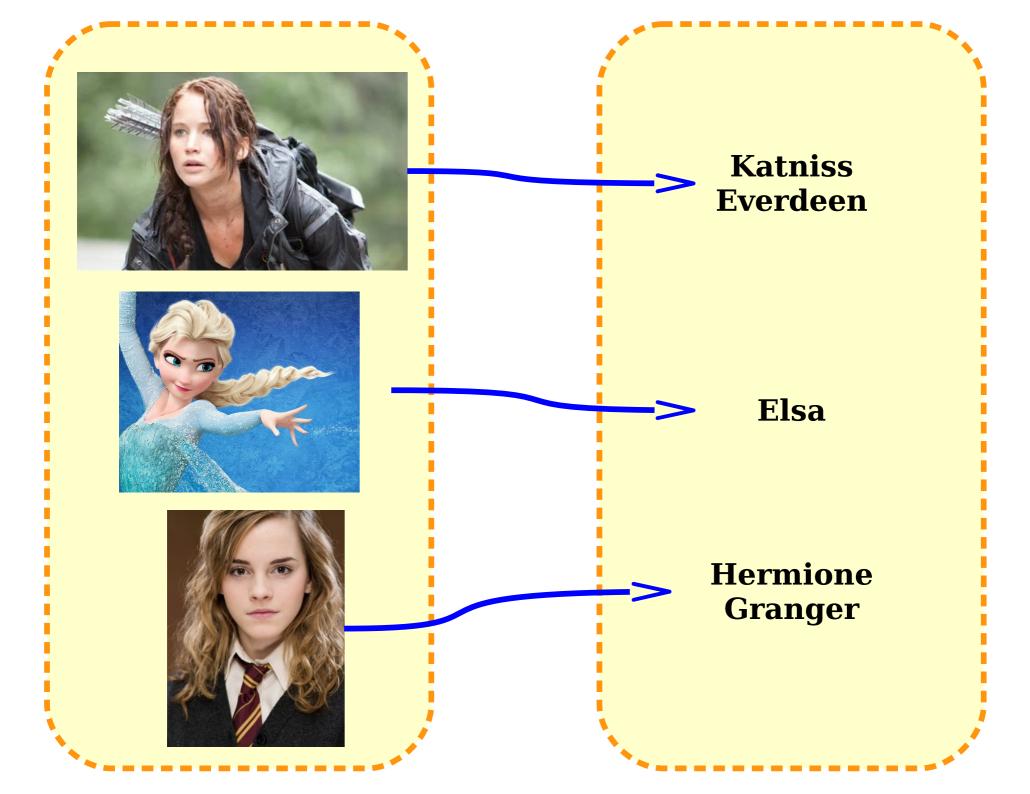
Consider any $c \in C$. Since $g : B \to C$ is surjective, there is some $b \in B$ such that g(b) = c. Similarly, since $f : A \to B$ is surjective, there is some $a \in A$ such that f(a) = b. This means that there is some $a \in A$ such that

$$g(f(a)) = g(b) = c,$$

which is what we needed to show.

Injections and Surjections

- An injective function associates *at most* one element of the domain with each element of the codomain.
- A surjective function associates *at least* one element of the domain with each element of the codomain.
- What about functions that associate
 exactly one element of the domain with each element of the codomain?



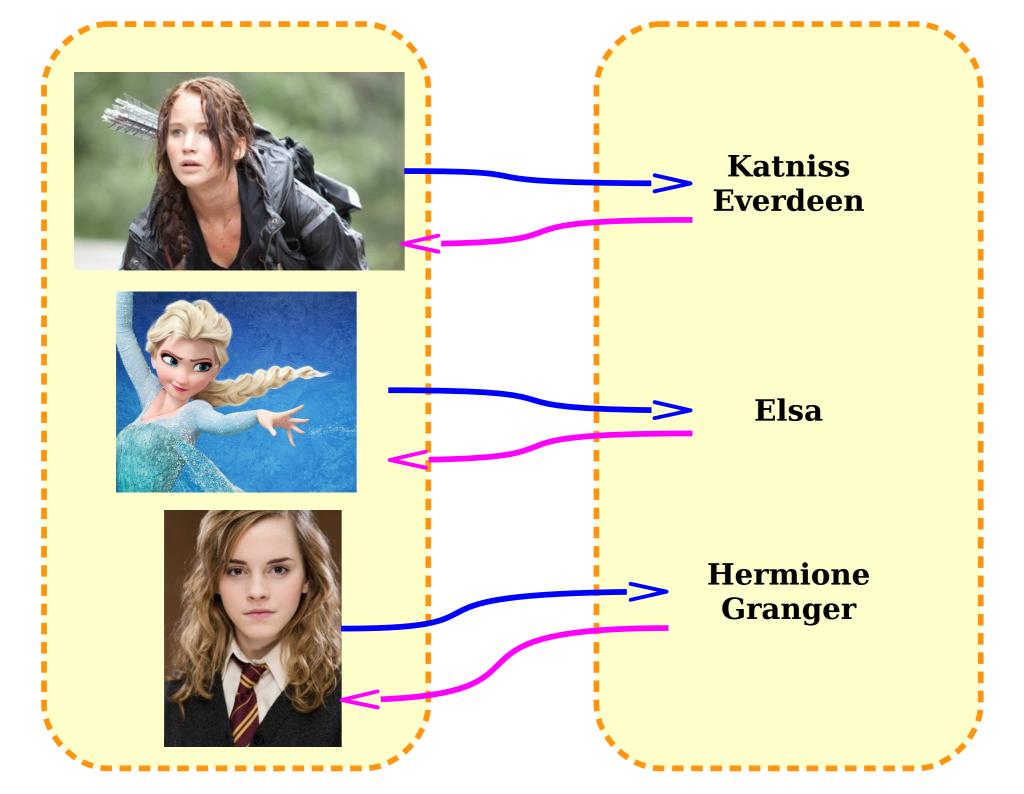
Bijections

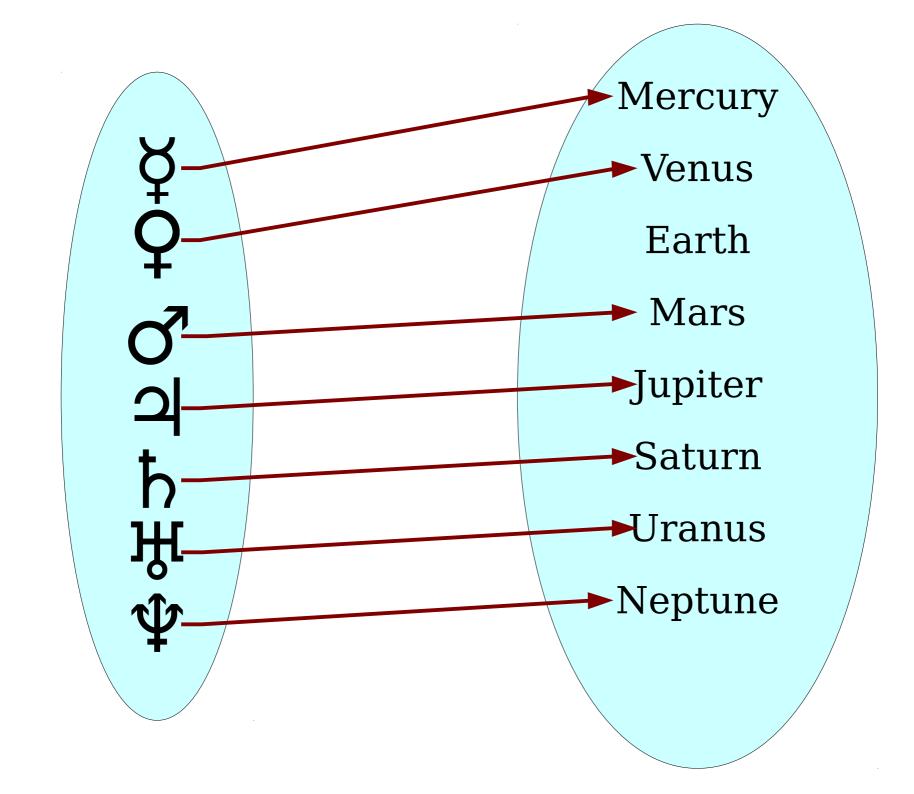
- A function that associates each element of the codomain with a unique element of the domain is called *bijective*.
 - Such a function is a *bijection*.
- Formally, a bijection is a function that is both *injective* and *surjective*.
- Bijections are sometimes called *one-toone correspondences*.
 - Not to be confused with "one-to-one functions."

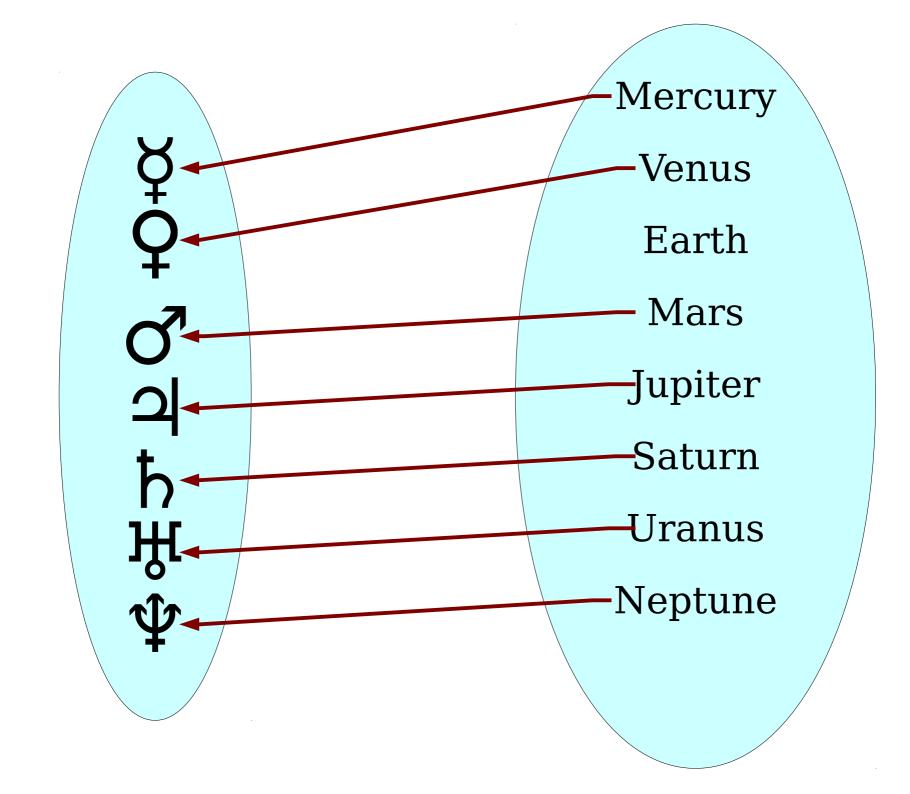
Bijections and Composition

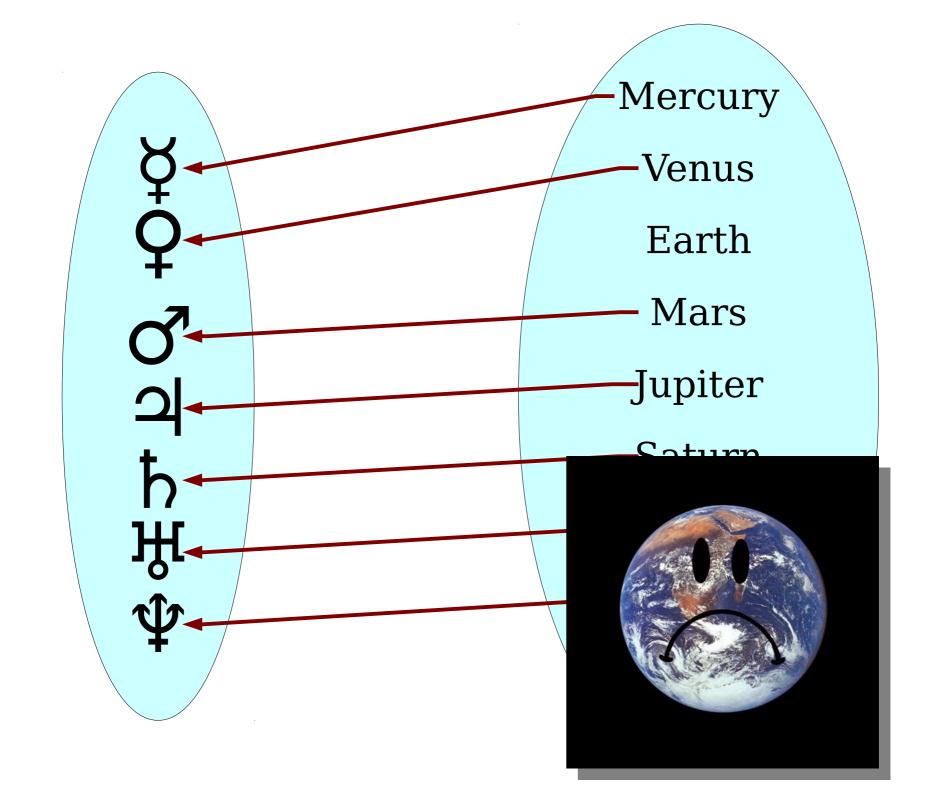
- Suppose that $f: A \to B$ and $g: B \to C$ are bijections.
- Is *g f* necessarily a bijection?
- **Yes!**
 - Since both f and g are injective, we know that g • f is injective.
 - Since both f and g are surjective, we know that g • f is surjective.
 - Therefore, $g \circ f$ is a bijection.

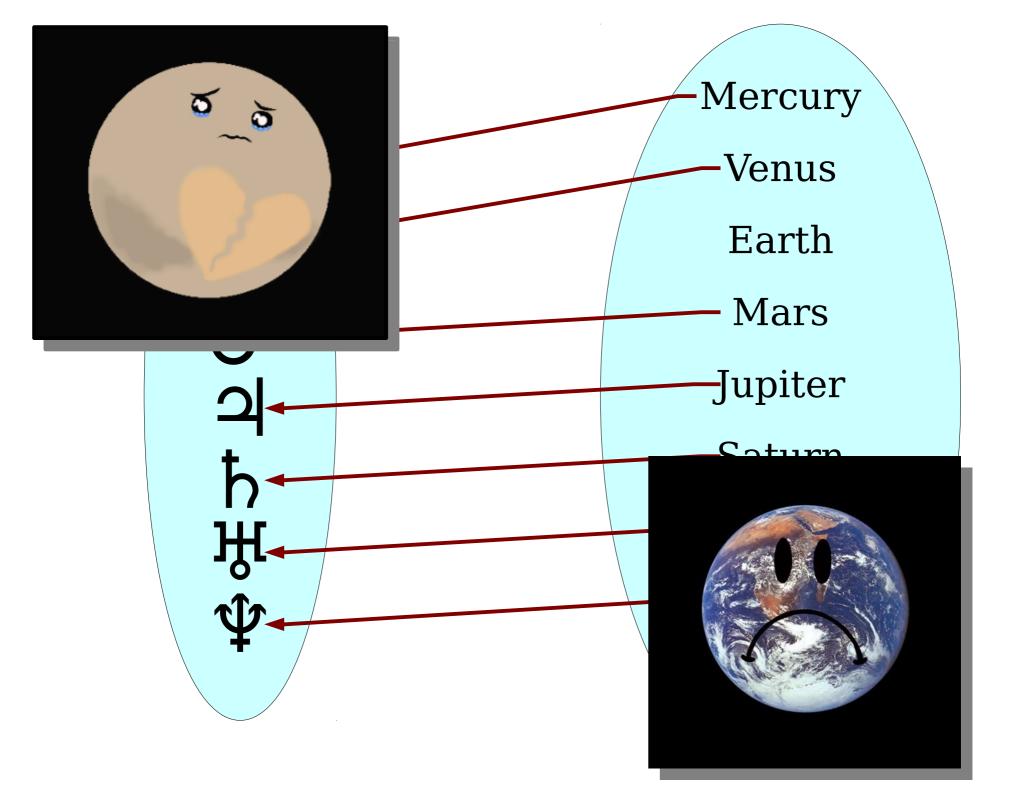
Inverse Functions

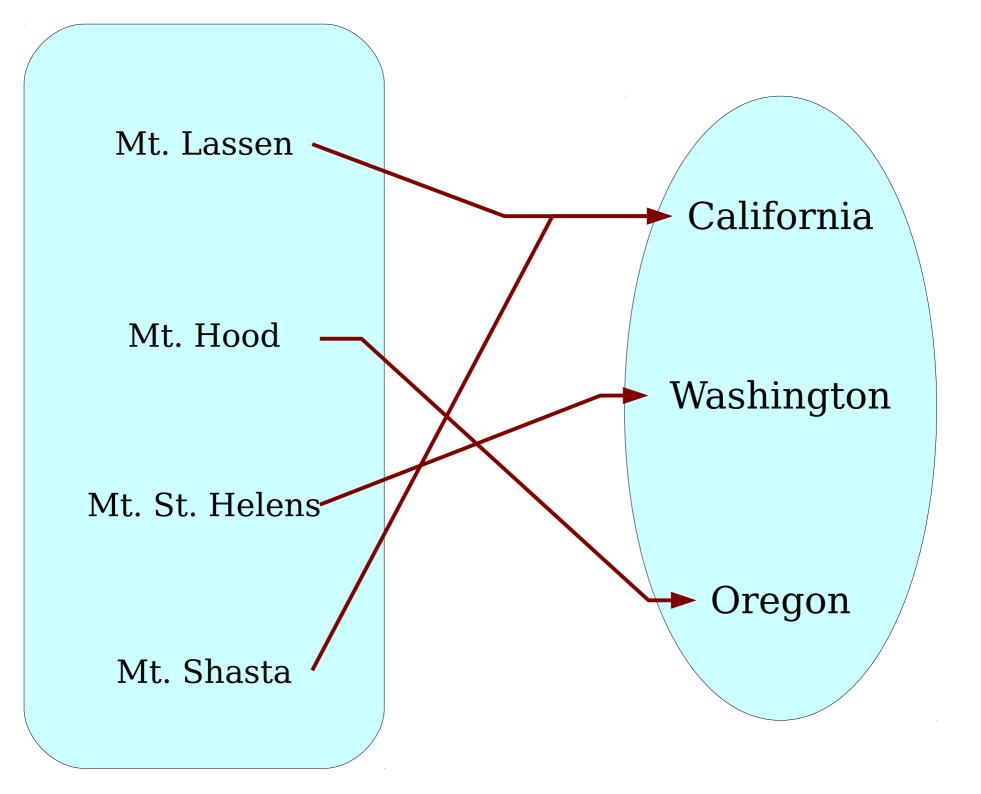


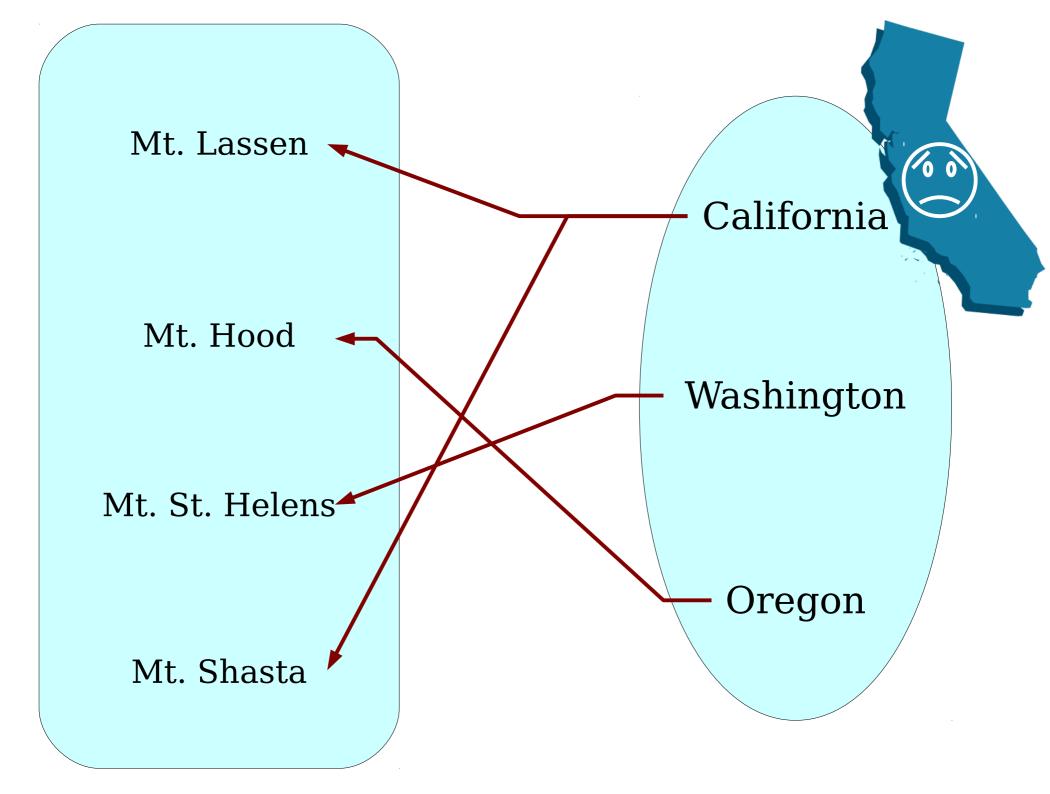












Inverse Functions

- In some cases, it's possible to "turn a function around."
- Let $f: A \to B$ be a function. A function $f^{-1}: B \to A$ is called an *inverse of f* if the following first-order logic statements are true about f and f^{-1}

 $\forall a \in A. (f^{-1}(f(a)) = a) \qquad \forall b \in B. (f(f^{-1}(b)) = b)$

- In other words, if f maps a to b, then f^{-1} maps b back to a and vice-versa.
- Not all functions have inverses (we just saw a few examples of functions with no inverses).
- If f is a function that has an inverse, then we say that f is *invertible*.

Inverse Functions

- **Theorem:** Let $f : A \rightarrow B$. Then f is invertible if and only if f is a bijection.
- These proofs are in the course reader. Feel free to check them out if you'd like!
- **Really cool observation:** Look at the formal definition of a function. Look at the rules for injectivity and surjectivity. Do you see why this result makes sense?

Where We Are

- We now know
 - what an injection, surjection, and bijection are;
 - that the composition of two injections, surjections, or bijections is also an injection, surjection, or bijection, respectively; and
 - that bijections are invertible and invertible functions are bijections.
- You might wonder why this all matters. Well, there's a good reason...

Next Time

- Cardinality, Formally
 - How do we rigorously define the idea that two sets have the same size?
- The Nature of Infinity
 - It's even weirder than you think!
- Cantor's Theorem Revisited
 - A formal proof of a major result!