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What is a function?



  

Functions, High-School Edition



  

f(x) = x4 – 5x2 + 4

source: https://saylordotorg.github.io/text_intermediate-algebra/section_07/6aaf3a5ab540885474d58855068b64ce.png



  

source: http://study.com/cimages/multimages/16/asymptote_1.JPG



  

Functions, High-School Edition

● In high school, functions are usually given as 
objects of the form

 

● What does a function do?
● It takes in as input a real number.
● It outputs a real number
● … except when there are vertical asymptotes or 

other discontinuities, in which case the function 
doesn't output anything.

f (x) =
x3

+3x2
+15x+7

1−x137



  

Functions, CS Edition



  

  int flipUntil(int n) {
    int numHeads = 0;
    int numTries = 0;
         
    while (numHeads < n) {
      if (randomBoolean()) numHeads++;
  
      numTries++;
    }
         
    return numTries;
  }

  int flipUntil(int n) {
    int numHeads = 0;
    int numTries = 0;
         
    while (numHeads < n) {
      if (randomBoolean()) numHeads++;
  
      numTries++;
    }
         
    return numTries;
  }



  

Functions, CS Edition

● In programming, functions
● might take in inputs,
● might return values,
● might have side efects,
● might never return anything,
● might crash, and
● might return diferent values when called 

multiple times.



  

What's Common?

● Although high-school math functions and 
CS functions are pretty diferent, they 
have two key aspects in common:
● They take in inputs.
● They produce outputs.

● In math, we like to keep things easy, so 
that's pretty much how we're going to 
defne a function.



  

Rough Idea of a Function:

A function is an object f that takes in an 
input and produces exactly one output.

(This is not a complete defnition – we'll 
revisit this in a bit.)

fx

 

f(x)
 
 



  

High School versus CS Functions

● In high school, functions usually were given by a rule:

f(x) = 4x + 15 
● In CS, functions are usually given by code:

             int factorial(int n) {
                 int result = 1;
                 for (int i = 1; i <= n; i++) {
                     result *= i;
                 }
                 return result;

             }

● What sorts of functions are we going to allow from a 
mathematical perspective?



  

Dikdik
Nubian

Ibex
Sloth



  



  

… but also …



  

f(x) = x2 + 3x – 15



  

f (n)={ −n/2 if n  is even
(n+1)/2 otherwise

Functions like these 
are called piecewise 

functions.

Functions like these 
are called piecewise 

functions.



  

To defne a function, you will typically either
 

· draw a picture, or
· give a rule for determining the output.



  

In mathematics, functions are deterministic.
 

That is, given the same input, a function must 
always produce the same output.

The following is a perfectly valid piece of
C++ code, but it’s not a valid function under 

our defnition:

int randomNumber(int numOutcomes) {
    return rand() % numOutcomes;   
}                                  



  

One Challenge



  

f(x) = x2 + 2x + 5

   f( 3 ) = 32 + 3 · 2 + 5 = 20
   f( 0 ) = 02 + 0 · 2 + 5 = 5

   f( 3 ) = … ?
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f(x) = x2 + 2x + 5

   f( 3 ) = 32 + 3 · 2 + 5 = 20
   f( 0 ) = 02 + 0 · 2 + 5 = 5

   f( 3 ) = … ?



  

f(      ) = 

f(      ) = 137 …?



  

We need to make sure we can't apply 
functions to meaningless inputs.



  

Domains and Codomains

● Every function f has two sets associated with it: its 
domain and its codomain.

● A function f can only be applied to elements of its 
domain. For any x in the domain, f(x) belongs to the 
codomain.

Domain Codomain

The function 
must be defned 

for every element 
of the domain.

The function 
must be defned 

for every element 
of the domain.

The output of the 
function must 

always be in the 
codomain, but 

not all elements 
of the codomain 

must be 
produced as 

outputs.

The output of the 
function must 

always be in the 
codomain, but 

not all elements 
of the codomain 

must be 
produced as 

outputs.



  

Domains and Codomains

● Every function f has two sets associated with it: its 
domain and its codomain.

● A function f can only be applied to elements of its 
domain. For any x in the domain, f(x) belongs to the 
codomain.

private double absoluteValueOf(double x) {
    if (x >= 0) {
        return x;
    } else {
        return -x;
    }
}

The domain of this function 
is ℝ. Any real number can be 

provided as input.

The domain of this function 
is ℝ. Any real number can be 

provided as input.

The codomain of this function is 
ℝ. Everything produced is a real 
number, but not all real numbers 

can be produced.

The codomain of this function is 
ℝ. Everything produced is a real 
number, but not all real numbers 

can be produced.



  

Domains and Codomains

● If f is a function whose domain is A and whose 
codomain is B, we write f : A → B.

● This notation just says what the domain and 
codomain of the function are. It doesn't say how 
the function is evaluated.

● Think of it like a “function prototype” in C or C++. 
The notation f : ArgType → RetType is like writing

RetType f(ArgType argument);

We know that f takes in an ArgType and returns a 
RetType, but we don't know exactly which RetType 
it's going to return for a given ArgType.



  

The Oficial Rules for Functions

● Formally speaking, we say that f : A → B if the following two 
rules hold.

● First, f must be obey its domain/codomain rules:

∀a ∈ A. ∃b ∈ B. f(a) = b
(“Every input in A maps to some output in B.”)

● Second, f must be deterministic:

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ = a₂ → f(a₁) = f(a₂))
(“Equal inputs produce equal outputs.”)

● If you’re ever curious about whether something is a 
function, look back at these rules and check! For example:
● Can a function have an empty domain?
● Can a function with a nonempty domain have an empty codomain?



  

Defning Functions

● Typically, we specify a function by 
describing a rule that maps every element 
of the domain to some element of the 
codomain.

● Examples:
● f(n) = n + 1, where f : ℤ → ℤ
● f(x) = sin x, where f : ℝ → ℝ
● f(x) = ⌈x⌉, where f : ℝ → ℤ

● Notice that we're giving both a rule and 
the domain/codomain.



  

Defning Functions

Typically, we specify a function by 
describing a rule that maps every element 
of the domain to some element of the 
codomain.

Examples:

f(n) = n + 1, where f : ℤ → ℤ

f(x) = sin x, where f : ℝ → ℝ
● f(x) = ⌈x⌉, where f : ℝ → ℤ

Notice that we're giving both a rule and 
the domain/codomain.

This is the ceiling function – 
the smallest integer greater 
than or equal to x.  For 

example, 1  = 1, 1.37  = 2, ⌈ ⌉ ⌈ ⌉

and  = 4.⌈π⌉

This is the ceiling function – 
the smallest integer greater 
than or equal to x.  For 

example, 1  = 1, 1.37  = 2, ⌈ ⌉ ⌈ ⌉

and  = 4.⌈π⌉



  

Is This a Function From A to B?

A B

Stanford

Berkeley

Michigan

Arkansas

Cardinal

White

Blue

Gold



  

Is This a Function From A to B?

California

New York

Delaware

Washington 
DC

Sacramento

Dover

Albany

A B



  

Is This a Function 
From A to B?

عيد الفطر

عيد الضحى

صَفَر

م مُحَرَّ

رَبيع الأّل

A

B

جُمادى الألى

رَبيع الثاني

جُمادى اخلآرة

شَعْبان

رَجَب

رَمَضان

ذأ القعدة

شوّال

ذأ الحجة
Answer at PollEv.com/cs103 or

text CS103 to 22333 once to join, then Y or N.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then Y or N.



  

Combining Functions



  
People Places Prices

Keith

Guy

Amy

Chioma

Mountain View

San Francisco

Redding, CA

Barrow, AK

Far Too Much

King's Ransom

A Modest Amount

Pocket Change

Shalom
Palo Alto

f : People → Places g : Places → Prices

h : People → Prices
h(x) = g(f(x))



  

Function Composition

● Suppose that we have two functions 
f : A → B and g : B → C.

● Notice that the codomain of f is the 
domain of g. This means that we can use 
outputs from f as inputs to g.

f g
f(x)

 
x
 

g(f(x))
 



  

Function Composition

● Suppose that we have two functions f : A → B 
and g : B → C.

● The composition of f and g, denoted g ∘ f, is a 
function where
● g ∘ f : A → C, and
● (g ∘ f)(x) = g(f(x)).

● A few things to notice:
● The domain of g ∘ f is the domain of f. Its codomain is 

the codomain of g.
● Even though the composition is written g ∘ f, when 

evaluating (g ∘ f)(x), the function f is evaluated frst.

The name of the function is g ∘ f. 
When we apply it to an input x, 
we write (g ∘ f)(x). I don't know 

why, but that's what we do.

The name of the function is g ∘ f. 
When we apply it to an input x, 
we write (g ∘ f)(x). I don't know 

why, but that's what we do.



  

Time-Out for Announcements!



  

Problem Set Three

● The Problem Set Three checkpoint problem 
was due at 2:30PM today.
● We’ll aim to get feedback to you by Wednesday.
● Solutions are now available.

● The remaining problems are due on Friday at 
2:30PM.

● As always, feel free to ask questions on Piazza 
or to stop by ofice hours with questions!

● PS2 solutions are now available. We’ll get your 
work graded and returned by Wednesday.



  

Info Session:
Friday, February 2nd

5PM – 6PM, at the WCC. 
There will be boba!

RSVP here.

Info Session:
Friday, February 2nd

5PM – 6PM, at the WCC. 
There will be boba!

RSVP here.

https://goo.gl/forms/nv6UuewA9AS9AJIb2
https://goo.gl/forms/nv6UuewA9AS9AJIb2


  

Midterm Exam Logistics

● Our frst midterm exam is next Monday, February 5th, 
from 7:00PM – 10:00PM. Locations are divvied up by last 
(family) name:
● A – H: Go to Cubberley Auditorium.
● I – Z: Go to 320-105.

● You’re responsible for Lectures 00 – 05 and topics covered 
in PS1 – PS2. Later lectures (relations forward) and 
problem sets (PS3 onward) won’t be tested here.

● The exam is closed-book, closed-computer, and limited-
note. You can bring a double-sided, 8.5” × 11” sheet of 
notes with you to the exam, decorated however you’d like.

● Students with OAE accommodations: please contact us 
immediately if you haven’t yet done so. We’ll ping you 
about setting up alternate exams.



  

Midterm Exam

● We want you to do well on this exam. We're not 
trying to weed out weak students. We're not trying 
to enforce a curve where there isn't one. We want 
you to show what you've learned up to this point so 
that you get a sense for where you stand and where 
you can improve.

● The purpose of this midterm is to give you a chance 
to show what you've learned in the past few weeks. 
It is not designed to assess your “mathematical 
potential” or “innate mathematical ability.”



  

Practice Midterm Exam

● To help you prepare for the midterm, we'll be holding a 
practice midterm exam on Wednedsay, January 31st 
from 7PM – 10PM in Cemex Auditorium.
● The exam we’ll use isn’t one of the ones posted up on the 

course website, so feel free to use those as practice in the 
meantime.

● The practice midterm exam is an actual midterm we 
gave out in a previous quarter. It’s probably the best 
indicator of what you should expect to see.

● Course staf will be on hand to answer your questions.
● Can't make it? We'll release that practice exam and 

solutions online. Set up your own practice exam time 
with a small group and work through it under realistic 
conditions!



  

Extra Practice Problems

● Up on the course website, you’ll fnd
● Extra Practice Problems 1 (a set of cumulative 

review problems), and
● three practice midterm exams, each of which is a 

(slightly modifed) version of a real exam we’ve 
given out in a previous quarter.

● Use these resources strategically. Give these 
problems your best efort, and, importantly, 
have the course staf review your work. Ask 
for polite but honest feedback. ☺



  

Preparing for the Exam

● We've released a handout (Handout 21) 
containing advice about how to prepare 
for the exam, along with advice from 
previous CS103 students.

● Read over it… there's good advice there!



  

Back to CS103!



  

Special Types of Functions



  

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

♀
☿

♂
♃
♄
♅
♆

♀

Pluto
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Injective Functions

● A function f : A → B is called injective (or one-to-one) if 
the following statement is true about f:

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

(“If the inputs are diferent, the outputs are diferent.”)

● The following frst-order defnition is equivalent and is 
often useful in proofs.

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

● A function with this property is called an injection.

● How does this compare to our second rule for functions?



  

Injective Functions

Theorem: Let f : ℕ → ℕ be defned as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₀, n₁ ∈ ℕ where f(n₀) = f(n₁). We
will prove that n₀ = n₁.

Since f(n₀) = f(n₁), we see that

2n₀ + 7 = 2n₁ + 7.
This in turn means that

2n₀ = 2n₁,

so n₀ = n₁, as required. ■ 
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Injective Functions

Theorem: Let f : ℕ → ℕ be defned as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₀, n₁ ∈ ℕ where f(n₀) = f(n₁). We
will prove that n₀ = n₁.

Since f(n₀) = f(n₁), we see that

2n₀ + 7 = 2n₁ + 7.
This in turn means that

2n₀ = 2n₁,

so n₀ = n₁, as required. ■ 

How many of the following are correct ways of starting of this proof?
 

Consider any n₁, n₂ ∈ ℕ where n₁ = n₂. We will prove that f(n₁) = f(n₂).
Consider any n₁, n₂ ∈ ℕ where n₁ ≠ n₂. We will prove that f(n₁) ≠ f(n₂).
Consider any n₁, n₂ ∈ ℕ where f(n₁) = f(n₂). We will prove that n₁ = n₂.
Consider any n₁, n₂ ∈ ℕ where f(n₁) ≠ f(n₂). We will prove that n₁ ≠ n₂.

How many of the following are correct ways of starting of this proof?
 

Consider any n₁, n₂ ∈ ℕ where n₁ = n₂. We will prove that f(n₁) = f(n₂).
Consider any n₁, n₂ ∈ ℕ where n₁ ≠ n₂. We will prove that f(n₁) ≠ f(n₂).
Consider any n₁, n₂ ∈ ℕ where f(n₁) = f(n₂). We will prove that n₁ = n₂.
Consider any n₁, n₂ ∈ ℕ where f(n₁) ≠ f(n₂). We will prove that n₁ ≠ n₂.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number between 0 and 4.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number between 0 and 4.



  

Injective Functions

Theorem: Let f : ℕ → ℕ be defned as f(n) = 2n + 7.
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so n₀ = n₁, as required. ■ 

What does it mean for the function f to be 
injective?

∀n₀ ∈ ℕ. ∀n₁ ∈ ℕ. ( f(n₀) = f(n₁) → n₀ = n₁ )
 

∀n₀ ∈ ℕ. ∀n₁ ∈ ℕ. ( n₀ ≠ n₁ → f(n₀) ≠ f(n₁) )

Therefore, we'll pick arbitrary n₀, n₁ ∈ ℕ 
where f(n₀) = f(n₁), then prove that n₀ = n₁.

What does it mean for the function f to be 
injective?

∀n₀ ∈ ℕ. ∀n₁ ∈ ℕ. ( f(n₀) = f(n₁) → n₀ = n₁ )
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Therefore, we'll pick arbitrary n₀, n₁ ∈ ℕ 
where f(n₀) = f(n₁), then prove that n₀ = n₁.
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Proof: We will prove that there exist integers x₀ and x₁
such that x₀ ≠ x₁, but f(x₀) = f(x₁).

Let x₀ = -1 and x₁ = +1. Then

f(x₀) = f(-1) = (-1)4 = 1

and

f(x₁) = f(1) = 14 = 1,

so f(x₀) = f(x₁) even though x₀ ≠ x₁, as required. ■     
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Injections and Composition

● Theorem: If f : A → B is an injection and 
g : B → C is an injection, then the 
function g ∘ f : A → C is an injection.

● Our goal will be to prove this result. To 
do so, we're going to have to call back to 
the formal defnitions of injectivity and 
function composition.



  

Theorem: If f : A → B is an injection and g : B → C is an
injection, then the function g ∘ f : A → C is also an
injection.
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g(f(a₁)) ≠ g(f(a₂)), as required. ■
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Great exercise: Repeat 
this proof using the other 
defnition of injectivity.

Great exercise: Repeat 
this proof using the other 
defnition of injectivity.



  

Another Class of Functions
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Surjective Functions

● A function f : A → B is called surjective (or 
onto) if this frst-order logic statement is true 
about f:

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every possible output, there's at least one 
possible input that produces it”)

● A function with this property is called a 
surjection.

● How does this compare to our frst rule of 
functions?



  

Surjective Functions

Theorem: Let f : ℝ → ℝ be defned as f(x) = x / 2. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = 2y. Then we see that

f(x) = f(2y) = 2y / 2 = y.

So f(x) = y, as required. ■
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What does it mean for f to be surjective?

∀y ∈ ℝ. ∃x ∈ ℝ. f(x) = y

Therefore, we'll choose an arbitrary y ∈ ℝ, 
then prove that there is some x ∈ ℝ where 
f(x) = y.
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Composing Surjections



  

Theorem: If f : A → B is surjective and g : B → C is surjective,
then g ∘ f : A → C is also surjective.

Proof: Let f : A → B and g : B → C be arbitrary surjections.
We will prove that the function g ∘ f : A → C is also
surjective. To do so, we will prove that for any c ∈ C, there
is some a ∈ A such that (g ∘ f)(a) = c. Equivalently, we
will prove that for any c ∈ C, there is some a ∈ A such that
g(f(a)) = c.

Consider any c ∈ C. Since g : B → C is surjective, there is 
some b ∈ B such that g(b) = c. Similarly, since f : A → B is 
surjective, there is some a ∈ A such that f(a) = b. This 
means that there is some a ∈ A such that

g(f(a)) = g(b) = c,

which is what we needed to show. ■
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What does it mean for g  ∘ f : A  → C to be surjective?

∀c ∈ C. ∃a ∈ A. (g ∘ f)(a) = c

Therefore, we'll choose arbitrary c  ∈ C and prove that there
is some a  ∈ A such that (g  ∘ f)(a) = c.

What does it mean for g  ∘ f : A  → C to be surjective?

∀c ∈ C. ∃a ∈ A. (g ∘ f)(a) = c

Therefore, we'll choose arbitrary c  ∈ C and prove that there
is some a  ∈ A such that (g  ∘ f)(a) = c.
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Injections and Surjections

● An injective function associates at most 
one element of the domain with each 
element of the codomain.

● A surjective function associates at least 
one element of the domain with each 
element of the codomain.

● What about functions that associate 
exactly one element of the domain with 
each element of the codomain?
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Bijections

● A function that associates each element of 
the codomain with a unique element of the 
domain is called bijective.
● Such a function is a bijection.

● Formally, a bijection is a function that is 
both injective and surjective.

● Bijections are sometimes called one-to-
one correspondences.
● Not to be confused with “one-to-one functions.”



  

Bijections and Composition

● Suppose that f : A → B and g : B → C are 
bijections.

● Is g ∘ f necessarily a bijection?
● Yes!

● Since both f and g are injective, we know 
that g ∘ f is injective.

● Since both f and g are surjective, we know 
that g ∘ f is surjective.

● Therefore, g ∘ f is a bijection.



  

Inverse Functions
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Inverse Functions

● In some cases, it's possible to “turn a function around.”
● Let f : A → B be a function. A function f-1 : B → A is 

called an inverse of f if the following frst-order logic 
statements are true about f and f-1

∀a ∈ A. (f-1(f(a)) = a)         ∀b ∈ B. (f(f-1(b)) = b)
● In other words, if f maps a to b, then f-1 maps b back to 

a and vice-versa.
● Not all functions have inverses (we just saw a few 

examples of functions with no inverses).
● If f is a function that has an inverse, then we say that f 

is invertible. 



  

Inverse Functions

● Theorem: Let f : A → B. Then f is 
invertible if and only if f is a bijection.

● These proofs are in the course reader. 
Feel free to check them out if you'd like!

● Really cool observation: Look at the 
formal defnition of a function. Look at 
the rules for injectivity and surjectivity. 
Do you see why this result makes sense?



  

Where We Are

● We now know
● what an injection, surjection, and bijection are;
● that the composition of two injections, 

surjections, or bijections is also an injection, 
surjection, or bijection, respectively; and

● that bijections are invertible and invertible 
functions are bijections.

● You might wonder why this all matters. 
Well, there's a good reason...



  

Next Time

● Cardinality, Formally
● How do we rigorously defne the idea that 

two sets have the same size?
● The Nature of Infnity

● It’s even weirder than you think!
● Cantor’s Theorem Revisited

● A formal proof of a major result!
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