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Domains and Codomains

● Every function f has two sets associated with it: its 
domain and its codomain.

● A function f can only be applied to elements of its 
domain. For any x in the domain, f(x) belongs to the 
codomain.

● We write f : A → B to indicate that f is a function 
whose domain is A and whose codomain is B.

Domain Codomain

The function 
must be defned 
for each element 

of its domain.

The function 
must be defned 
for each element 

of its domain.

The output of the 
function must 

always be in the 
codomain, but 

not all elements 
of the codomain 

need to be 
producable.

The output of the 
function must 

always be in the 
codomain, but 

not all elements 
of the codomain 

need to be 
producable.



  

Function Composition

● If f : A → B and g : B → C are functions, 
the composition of f and g, denoted 
g ∘ f, is a function
● whose domain is A,
● whose codomain is C, and
● which is evaluated as (g ∘ f)(x) = g(f(x)).



  

Injective Functions

● A function f : A → B is called injective (or one-to-one) if each 
element of the codomain has at most one element of the 
domain that maps to it.

● A function with this property is called an injection.
● Formally, f : A → B is an injection if this FOL statement is true:

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

(“If the inputs are diferent, the outputs are diferent”)

● Equivalently:

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same”)

● Theorem: The composition of two injections is an injection.
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Surjective Functions

● A function f : A → B is called surjective (or onto) if 
each element of the codomain is “covered” by at 
least one element of the domain.

● A function with this property is called a surjection.
● Formally, f : A → B is a surjection if this FOL 

statement is true:

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every possible output, there's at least one 
possible input that produces it”)

● Theorem: The composition of two surjections is a 
surjection.
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Bijections

● A function that associates each element 
of the codomain with a unique element of 
the domain is called bijective.
● Such a function is a bijection.

● Formally, a bijection is a function that is 
both injective and surjective.

● Theorem: The composition of two 
bijections is a bijection.



  

New Stuf!



  

Inverse Functions
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Inverse Functions

● In some cases, it's possible to “turn a function around.”
● Let f : A → B be a function. A function f-1 : B → A is 

called an inverse of f if the following frst-order logic 
statements are true about f and f-1

∀a ∈ A. (f-1(f(a)) = a)         ∀b ∈ B. (f(f-1(b)) = b)
● In other words, if f maps a to b, then f-1 maps b back to 

a and vice-versa.
● Not all functions have inverses (we just saw a few 

examples of functions with no inverses).
● If f is a function that has an inverse, then we say that f 

is invertible. 



  

Inverse Functions

● Theorem: Let f : A → B. Then f is 
invertible if and only if f is a bijection.

● This proof is in the course reader. Feel 
free to check it out if you'd like!

● Really cool observation: Look at the 
formal defnition of a function. Look at 
the rules for injectivity and surjectivity. 
Do you see why this result makes sense?



  

Where We Are

● We now know
● what an injection, surjection, and bijection are;
● that the composition of two injections, 

surjections, or bijections is also an injection, 
surjection, or bijection, respectively; and

● that bijections are invertible and invertible 
functions are bijections.

● You might wonder why this all matters. 
Well, there's a good reason...



  

Cardinality Revisited



  

Cardinality

● Recall (from our frst lecture!) that the 
cardinality of a set is the number of elements it 
contains.

● If S is a set, we denote its cardinality by |S|.
● For fnite sets, cardinalities are natural numbers:

● |{1, 2, 3}| = 3
● |{100, 200}| = 2

● For infnite sets, we introduced infinite 
cardinals to denote the size of sets:

|ℕ| = ℵ₀    



  

Defning Cardinality

● It is dificult to give a rigorous defnition 
of what cardinalities actually are.
● What is 4? What is ₀?ℵ
● (Take Math 161 for an answer!)

● Idea: Defne cardinality as a relation 
between two sets rather than an absolute 
quantity.



  

Comparing Cardinalities

● Here is the formal defnition of what it means for 
two sets to have the same cardinality:

|S| = |T| if there exists a bijection f : S → T   

, , ,

, ,,
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Fun with Cardinality



  

Terminology Refresher

● Let a and b be real numbers where a ≤ b.
● The notation [a, b] denotes the set of all 

real numbers between a and b, inclusive.

[a, b] = { x ∈ ℝ | a ≤ x ≤ b }
● The notation (a, b) denotes the set of all 

real numbers between a and b, exclusive.

(a, b) = { x ∈ ℝ | a ≤ x ≤ b }



  

Home on the Range

0 1

0 2



  

Home on the Range

0 1

0 2

f : [0, 1] → [0, 2]
f(x) = 2x



  

Theorem: |[0, 1]| = |[0, 2]|

Proof: Consider the function f : [0, 1] → [0, 2] defned as f(x) = 2x.
We will prove that f is a bijection.

First, we will show that f is a well-defned function. Choose any 
x ∈ [0, 1]. This means that 0 ≤ x ≤ 1, so we know that 0 ≤ 2x ≤ 2. 
Consequently, we see that 0 ≤ f(x) ≤ 2, so f(x) ∈ [0, 2].

Next, we’ll show that f is injective. Pick any x₁, x₂ ∈ [0, 1] where 
f(x₁) = f(x₂). We will show that x₁ = x₂. To see this, notice that 
since f(x₁) = f(x₂), we see that 2x₁ = 2x₂, which in turn tells us 
that x₁ = x₂, as required.

Finally, we will show that f is surjective. To do so, consider any 
y ∈ [0, 2]. We’ll show that there is some x ∈ [0, 1] where f(x) = y.

Let x = y/2. Since y ∈ [0, 2], we know 0 ≤ y ≤ 2, and therefore that 
0 ≤ y/2 ≤ 1. We picked x = y/2, so we know that 0 ≤ x ≤ 1, which in 
turn means x ∈ [0, 1]. Moreover, notice that

f(x) = 2x = 2(y/₂) = y,

so f(x) = y, as required. ■
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How many of the following are proper ways of
setting up the next part of this proof?

 

Choose any x ∈ [0, 1]. We will show there is a y ∈ [0, 2] such that
f(x) = y.

 

Pick any y ∈ [0, 2]. We will show there is an x ∈ [0, 1] where f(x) = y.
 

Assume for the sake of contradiction that, for any y ∈ [0, 2] and for
any x ∈ [0, 1], we have f(x) ≠ y.
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setting up the next part of this proof?
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Assume for the sake of contradiction that, for any y ∈ [0, 2] and for
any x ∈ [0, 1], we have f(x) ≠ y.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number between 0 and 3.

Answer at PollEv.com/cs103 or
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Theorem: |[0, 1]| = |[0, 2]|

Proof: Consider the function f : [0, 1] → [0, 2] defned as f(x) = 2x.
We will prove that f is a bijection.

First, we will show that f is a well-defned function. Choose any 
x ∈ [0, 1]. This means that 0 ≤ x ≤ 1, so we know that 0 ≤ 2x ≤ 2. 
Consequently, we see that 0 ≤ f(x) ≤ 2, so f(x) ∈ [0, 2].

Next, we’ll show that f is injective. Pick any x₁, x₂ ∈ [0, 1] where 
f(x₁) = f(x₂). We will show that x₁ = x₂. To see this, notice that 
since f(x₁) = f(x₂), we see that 2x₁ = 2x₂, which in turn tells us 
that x₁ = x₂, as required.

Finally, we will show that f is surjective. To do so, consider any 
y ∈ [0, 2]. We’ll show that there is some x ∈ [0, 1] where f(x) = y.

Let x = y/2. Since y ∈ [0, 2], we know 0 ≤ y ≤ 2, and therefore that 
0 ≤ y/2 ≤ 1. We picked x = y/2, so we know that 0 ≤ x ≤ 1, which in 
turn means x ∈ [0, 1]. Moreover, notice that

f(x) = 2x = 2(y/₂) = y,

so f(x) = y, as required. ■
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Home on the Range

0 1

0 2

f : [0, 1] → [0, 2]
f(x) = 2x



  

Home on the Range

0 1

0 3

f : [0, 1] → [0, 3]
f(x) = 3x



  

Home on the Range

0 1

0 137

f : [0, 1] → [0, 137]
f(x) = 137x



  

Home on the Range

0 1

0 k

f : [0, 1] → [0, k]
f(x) = kx

(for any k > 0)

This means that cardinality (how many points there are) is 
a diferent idea than mass (how much those points weight). 
Look into measure theory if you’re curious to learn more!

This means that cardinality (how many points there are) is 
a diferent idea than mass (how much those points weight). 
Look into measure theory if you’re curious to learn more!



  

And one more example, just for funzies.



  

Put a Ring On It

0

f : (-π/2, π/2) → ℝ
f(x) = tan x

 

|(-π/2, π/2)| = |ℝ|

+π/2-π/2



  

Some Properties of Cardinality



  

Theorem: For any set A, we have |A| = |A|.

Proof: Consider any set A, and let f : A → A be the function
defned as f(x) = x. We will prove that f is a bijection.

First, we’ll show that f is a well-defned function. To see this, 
note that for any x ∈ A, we have f(x) = x ∈ A, as needed.

Next, we’ll show that f is injective. Pick any x₁, x₂ ∈ A where 
f(x₁) = f(x₂). We need to show that x₁ = x₂. Since f(x₁) = f(x₂), 
we see by defnition of f that x₁ = x₂, as required.

Finally, we’ll show that f is surjective. Consider any y ∈ A. We 
will prove that there is some x ∈ A where f(x) = y. Pick x = y. 
Then x ∈ A (since y ∈ A) and f(x) = x = y, as required. ■
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Which of the following is the right high-level way to approach this proof?

A. Pick an arbitrary set A, then fnd a bijection f : A → A.
B. Pick an arbitrary set A and show every function f : A → A is bijective.
C. There’s nothing to prove here. Every object is equal to itself.

Which of the following is the right high-level way to approach this proof?

A. Pick an arbitrary set A, then fnd a bijection f : A → A.
B. Pick an arbitrary set A and show every function f : A → A is bijective.
C. There’s nothing to prove here. Every object is equal to itself.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, B, or C.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, B, or C.
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Great exercise: Prove that if A and B are 
sets where |A| = |B|, then |B| = |A|.



  

Time-Out for Announcements!



  

Midterm Exam Logistics

● Our frst midterm exam is next Monday, February 5th, 
from 7:00PM – 10:00PM. Locations are divvied up by 
last (family) name:
● A – H: Go to Cubberley Auditorium.
● I – Z: Go to 320-105.

● You’re responsible for Lectures 00 – 05 and topics covered 
in PS1 – PS2. Later lectures (relations forward) and 
problem sets (PS3 onward) won’t be tested here.

● The exam is closed-book, closed-computer, and limited-
note. You can bring a double-sided, 8.5” × 11” sheet of 
notes with you to the exam, decorated however you’d like.

● Students with OAE accommodations: we will be reaching 
out to you soon with room and time assignments.



  

Practice Midterm Exam

● To help you prepare for the midterm, we'll be holding a 
practice midterm exam tonight from 7PM – 10PM in 
Cemex Auditorium.
● The exam we’ll use isn’t one of the ones posted up on the 

course website, so feel free to use those as practice in the 
meantime.

● The practice midterm exam is an actual midterm we 
gave out in a previous quarter. It’s probably the best 
indicator of what you should expect to see.

● Course staf will be on hand to answer your questions.
● Can't make it? We'll release that practice exam and 

solutions online. Set up your own practice exam time 
with a small group and work through it under realistic 
conditions!
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Next Steps

● Regardless of how you did on the problem 
set, make sure you understand all the 
feedback you’ve received, especially on 
the frst-order translations and the proofs.
● Like, seriously, do this. You don’t want to 

make the same mistakes on the midterm!
● Ask questions on Piazza or stop by ofice 

hours if you have questions – we’re happy 
to help out.



  

Problem Set Three

● The Problem Set Three checkpoint has 
been graded.
● Please, please, please review your 

feedback! That problem was tricky and a lot 
of people had a lot of trouble with it.

● Remaining problems are due on Friday at 
2:30PM. Be strategic about taking late 
days.



  

Back to CS103!



  

Unequal Cardinalities

● Recall: |A| = |B| if the following statement is true:

There exists a bijection f : A → B   
● What does it mean for |A| ≠ |B| to be true?

Every function f : A → B is not a bijection.
● This is a strong statement! To prove |A| ≠ |B|, we need to show that 

no possible function from A to B can be injective and surjective.
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Cantor’s Theorem Revisited



  

Cantor’s Theorem

● In our very frst lecture, we sketched out 
a proof of Cantor’s theorem, which says 
that

If S is a set, then |S| < | (℘ S)|.
● That proof was visual and pretty hand-

wavy. Let’s see if we can go back and 
formalize it!



  

Where We’re Going

● Today, we’re going to formally prove the 
following result:

If S is a set, then |S| ≠ | (℘ S)|.
● We’ve released an online Guide to Cantor’s 

Theorem, which will go into way more depth 
than what we’re going to see here.

● The goal for today will be to see how to start 
with our picture and turn it into something 
rigorous.

● On the next problem set, you’ll explore the proof 
in more depth and see some other applications.



  

The Roadmap

● We’re going to prove this statement:

If S is a set, then |S| ≠ | (℘ S)|.
● Here’s how this will work:

● Pick an arbitrary set S.
● Pick an arbitrary function f : S → (℘ S).
● Show that f is not surjective using a diagonal 

argument.
● Conclude that there are no bijections from S to (℘ S).
● Conclude that |S| ≠ | (℘ S)|.
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The Diagonal Set

● For any set S and function f : S → (℘ S), we 
can defne a set D as follows:

D = { x ∈ S | x ∉ f(x) }

(“The set of all elements x where x is
not an element of the set f(x).”)

● This is a formalization of the set we found in 
the previous picture.

● Using this choice of D, we can formally 
prove that no function f : S → (℘ S) is a 
bijection.



  

  Theorem: If S is a set, then |S| ≠ | (℘ S)|.
   

  Proof: Let S be an arbitrary set. We will prove that |S| ≠ | (℘ S)| by showing that
there are no bijections from S to (℘ S). To do so, choose an arbitrary function
f : S → (℘ S). We will prove that f is not surjective.

   

Starting with f, we defne the set
   

        D = { x ∈ S | x ∉ f(x) }. (1)
   

We will show that there is no y ∈ S such that f(y) = D. To do so, we proceed
by contradiction. Suppose that there is some y ∈ S such that f(y) = D. By
the defnition of D, we know that

   

y ∈ D if y ∉ f(y). (2)
   

By assumption, f(y) = D. Combined with (2), this tells us
   

  y ∈ D if y ∉ D. (3)
   

This is impossible. We have reached a contradiction, so our assumption must
have been wrong. Therefore, there is no y ∈ S such that f(y) = D, so f is not
surjective. This means that f is not a bijection, and since our choice of f
was arbitrary, we conclude that there are no bijections between S and (℘ S).
Thus |S| ≠ | (℘ S)|, as required. ■
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The Big Recap

● We defne equal cardinality in terms of bijections 
between sets.

● Lots of diferent sets of infnite size have the same 
cardinality.

● Cardinality acts like an equivalence relation – but 
only because we can prove specifc properties of 
how it behaves by relying on properties of 
function.

● Cantor’s theorem can be formalized in terms of 
surjectivity.



  

Next Time

● Graphs
● A ubiquitous, expressive, and fexible 

abstraction!
● Properties of Graphs

● Building high-level structures out of lower-
level ones!
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