
  

Mathematical Induction
Part Two



  

Recap from Last Time



  

Let P be some predicate. The principle of mathematical 
induction states that if

P(0) is true

and

∀k ∈ ℕ. (P(k) → P(k+1))

then

∀n ∈ ℕ. P(n)

If it starts 
true…

…and it stays 
true…

…then it's 
always true.



  

New Stuf!



  

Theorem: The sum of the frst n powers of two is 2n – 1.
 

Proof: Let P(n) be the statement “the sum of the frst n
powers of two is 2n – 1.” We will prove, by induction, that
P(n) is true for all n ∈ ℕ, from which the theorem follows.

 

For our base case, we need to show P(0) is true, meaning
that the sum of the frst zero powers of two is 20 – 1. Since
the sum of the frst zero powers of two is zero and 20 – 1
is zero as well, we see that P(0) is true.

 

For the inductive step, assume that for some arbitrary
k ∈ ℕ that P(k) holds, meaning that

 

20 + 21 + … + 2k-1 = 2k – 1. (1)
 

We need to show that P(k + 1) holds, meaning that the sum
of the frst k + 1 powers of two is 2k+1 – 1. To see this,
notice that

 

20 + 21 + … + 2k-1 + 2k = (20 + 21 + … + 2k-1) + 2k

= 2k – 1 + 2k (via (1))
= 2(2k) – 1
= 2k+1 – 1.

 

Therefore, P(k + 1) is true, completing the induction. ■



  

Induction in Practice

● Typically, a proof by induction will not 
explicitly state P(n).

● Rather, the proof will describe P(n) implicitly 
and leave it to the reader to fll in the details.

● Provided that there is suficient detail to 
determine
● what P(n) is;
● that P(0) is true; and that
● whenever P(k) is true, P(k+1) is true,

the proof is usually valid.



  

Theorem: The sum of the frst n powers of two is 2n – 1.
 

Proof: By induction.
 

For our base case, we'll prove the theorem is true when
n = 0. The sum of the frst zero powers of two is zero, and
20 – 1 = 0, so the theorem is true in this case.

 

For the inductive step, assume the theorem holds when
n = k for some arbitrary k ∈ ℕ. Then

 

20 + 21 + … + 2k-1 + 2k = (20 + 21 + … + 2k-1) + 2k

= 2k – 1 + 2k

= 2(2k) – 1
= 2k+1 – 1.

 

So the theorem is true when n = k+1, completing the
induction. ■



  

A Fun Application:
The Limits of Data Compression



  

Bitstrings

● A bitstring is a fnite sequence of 0s and 
1s.

● Examples:
● 11011100
● 010101010101
● 0000
● ε (the empty string)

● There are 2n bitstrings of length n.



  

Data Compression

● Inside a computer, all data are represented as 
sequences of 0s and 1s (bitstrings)

● To transfer data over a network (or on a fash drive, if 
you're still into that), it is useful to reduce the number 
of 0s and 1s before transferring it.

● Most real-world data can be compressed by exploiting 
redundancies.
● Text repeats common patterns (“the”, “and”, etc.)
● Bitmap images use similar colors throughout the image.

● Idea: Replace each bitstring with a shorter bitstring 
that contains all the original information.
● This is called lossless data compression.



  

101010101010101010101010101010

1111010

1111010

101010101010101010101010101010

                              Compress

                              Decompress

                              Transmit



  

Lossless Data Compression

● In order to losslessly compress data, we need two functions:

● A compression function C, and
● A decompression function D.

● We need to have D(C(x)) = x.

● Otherwise, we can't uniquely encode or decode some 
bitstring.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

How many of the following must be true about C and D?
 

C must be injective.
C must be surjective.
D must be injective.
D must be surjective.

How many of the following must be true about C and D?
 

C must be injective.
C must be surjective.
D must be injective.
D must be surjective.



  

Lossless Data Compression

● In order to losslessly compress data, we need two functions:

● A compression function C, and
● A decompression function D.

● We need to have D(C(x)) = x.

● Otherwise, we can't uniquely encode or decode some 
bitstring.

● This means that D must be a left inverse of C, so (as you 
proved in PS3!) C must be injective.



  

A Perfect Compression Function

● Ideally, the compressed version of a bitstring 
would always be shorter than the original 
bitstring.

● Question: Can we fnd a lossless 
compression algorithm that always 
compresses a string into a shorter string?

● To handle the issue of the empty string 
(which can't get any shorter), let's assume we 
only care about strings of length at least 10.



  

A Counting Argument

● Let �n be the set of bitstrings of length n, and �<n be 
the set of bitstrings of length less than n.

● How many bitstrings of length n are there?

● Answer: 2n

● How many bitstrings of length less than n are there?

● Answer: 20 + 21 + … + 2n – 1 = 2n – 1

● By the pigeonhole principle, no function from �n to �<n 
can be injective – at least two elements must collide!

● Since a perfect compression function would have to be 
an injection from �n to �<n, there is no perfect 
compression function!



  

Why this Result is Interesting

● Our result says that no matter how hard we try, 
it is impossible to compress every string into a 
shorter string.

● No matter how clever you are, you cannot write 
a lossless compression algorithm that always 
makes strings shorter.

● In practice, only highly redundant data can be 
compressed.

● The felds of information theory and 
Kolmogorov complexity explore the limits of 
compression; if you're interested, go explore!



  

Variations on Induction: Starting Later



  

Induction Starting at m

● To prove that P(n) is true for all natural 
numbers greater than or equal to m: 
● Show that P(m) is true. 
● Show that for any k ≥ m, that 

if P(k) is true, then P(k+1) is true.
● Conclude P(n) holds for all natural numbers 

greater than or equal to m. 



  

Variations on Induction: Bigger Steps



  

Subdividing a Square



  

For what values of n can a square be 
subdivided into n squares?



  

1   2   3   4   5   6   7   8   9   10   11   12



  

The Key Insight



  

The Key Insight

● If we can subdivide a square into n squares, we 
can also subdivide it into n + 3 squares.

● Since we can subdivide a bigger square into 6, 7, 
and 8 squares, we can subdivide a square into n 
squares for any n ≥ 6:

● For multiples of three, start with 6 and keep adding 
three squares until n is reached.

● For numbers congruent to one modulo three, start 
with 7 and keep adding three squares until n is 
reached.

● For numbers congruent to two modulo three, start 
with 8 and keep adding three squares until n is 
reached.



  

Theorem: For any n ≥ 6, it is possible to subdivide a square into n
smaller squares.

Proof: Let P(n) be the statement “a square can be subdivided into
n smaller squares.” We will prove by induction that P(n) holds
for all n ≥ 6, from which the theorem follows.

As our base cases, we prove P(6), P(7), and P(8), that a square 
can be subdivided into 6, 7, and 8 squares. This is shown here:

 
For the inductive step, assume that for some arbitrary k ≥ 6 
that P(k) is true and that a square can be subdivided into k 
squares. We prove P(k+3), that a square can be subdivided into 
k+3 squares. To see this, start by obtaining (via the inductive 
hypothesis) a subdivision of a square into k squares. Then, 
choose any of the squares and split it into four equal squares. 
This removes one of the k squares and adds four more, so there 
will be a net total of k+3 squares. Thus P(k+3) holds, 
completing the induction. ■
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Why This Works

● This induction has three consecutive base cases 
and takes steps of size three.

● Thinking back to our “induction machine” analogy:

P(k) → P(k+3)

P(6) P(8)P(7)



  

Generalizing Induction

● When doing a proof by induction,
● feel free to use multiple base cases, and
● feel free to take steps of sizes other than one.

● Just be careful to make sure you cover all 
the numbers you think that you're covering!
● We won't require that you prove you've covered 

everything, but it doesn't hurt to double-check!



  

More on Square Subdivisions

● There are a ton of interesting questions 
that come up when trying to subdivide a 
rectangle or square into smaller squares.

● In fact, one of the major players in early 
graph theory (William Tutte) got his start 
playing around with these problems.

● Good starting resource: this Numberphile 
video on Squaring the Square.

https://www.youtube.com/watch?v=NoRjwZomUK0&feature=youtu.be


  

Time-Out for Announcements!



  



  

Problem Set Five

● Problem Set Four was due at 2:30PM 
today.

● Problem Set Five goes out today. It’s due 
next Friday at 2:30PM.
● Play around with everything we’ve covered so 

far, plus a healthy dose of induction and 
inductive problem-solving.

● There is no checkpoint problem, and there are 
no checkpoints from here out out.



  

Back to CS103!



  

A Motivating Question: Rat Mazes



  



  

Rat Mazes

● Suppose you want to make 
a rat maze consisting of an 
n × m grid of pegs with 
slats between them.

● The maze should have 
these properties:
● There is one entrance and 

one exit in the border.
● Every spot in the maze is 

reachable from every other 
spot.

● There is exactly one path 
from each spot in the maze 
to each other spot.



  

Question: If you have an n × m grid of 
pegs, how many slats do you need to make?



  

A Special Type of Graph: Trees



  

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

According to the above defnition of trees, how many of these
graphs are trees?

According to the above defnition of trees, how many of these
graphs are trees?

● A tree is a connected, 
nonempty graph with 
no simple cycles.

● A tree is a connected, 
nonempty graph with 
no simple cycles.



  

Trees

● A tree is a connected, 
nonempty graph with no 
simple cycles.

● Trees have tons of nice 
properties:
● They're maximally acyclic 

(adding any missing edge 
creates a simple cycle)

● They're minimally 
connected (deleting any 
edge disconnects the graph)

● Proofs of these results are 
in the course reader if 
you're interested. They're 
also great exercises.



  

Trees

● Theorem: If T is a 
tree with at least two 
nodes, then deleting 
any edge from T 
splits T into two 
nonempty trees T₁ 
and T₂.  

● Proof: Left as an 
exercise to the 
reader. ☺



  

Trees

● Theorem: If T is a 
tree with n ≥ 1 
nodes, then T has 
exactly n-1 edges.

● Proof: Up next!
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Our Base Case



  

Assume any tree with 
at most k nodes has 
one more node than 

edge.

Assume any tree with 
at most k nodes has 
one more node than 

edge.

Consider an arbitrary tree 
with k+1 nodes.

Consider an arbitrary tree 
with k+1 nodes.

Suppose there are r nodes 
in the yellow tree.

Suppose there are r nodes 
in the yellow tree.

There are r-1 edges in 
the yellow tree and k-r 
edges in the blue tree.

There are r-1 edges in 
the yellow tree and k-r 
edges in the blue tree.

Adding in the initial edge 
we cut, there are

r-1 + k-r + 1 = k edges 
in the original tree.

Adding in the initial edge 
we cut, there are

r-1 + k-r + 1 = k edges 
in the original tree.

Then there are (k+1)-r 
nodes in the blue tree.

Then there are (k+1)-r 
nodes in the blue tree.



  

Theorem: If T is a tree with n ≥ 1 nodes, then T has n-1 edges.

Proof: Let P(n) be the statement “any tree with n nodes has n-1 edges.”
We will prove by induction that P(n) holds for all n ≥ 1, from which
the theorem follows.

As a base case, we will prove P(1), that any tree with 1 node has 0 
edges. Any such tree has single node, so it cannot have any edges.

Now, assume for some arbitrary k ≥ 1 that P(1), P(2), …, and P(k) are 
true, so any tree with between 1 and k nodes has one more node than 
edge. We will prove P(k+1), that any tree with k+1 nodes has k edges.

Consider any tree T with k+1 nodes. Since T has at least two nodes 
and is connected, it must contain at least one edge. Choose any edge 
in T and delete it. This splits T into two nonempty trees T₁ and T₂. 
Every edge in T is part of T₁, is part of T₂, or is the initial edge we 
deleted.

Let r be the number of nodes in T₁. Since every node in T belongs to 
either T₁ or T₂, we see that T₂ has (k+1)-r nodes. Additionally, since T₁ 
and T₂ are nonempty, neither T₁ nor T₂ contains all the nodes from T. 
Therefore, T₁ and T₂ each have between 1 and k nodes. We can then 
apply our inductive hypothesis to see that T₁ has r-1 edges and T₂ has 
k-r edges. Thus the total number of edges in T is 1 + (r-1) + (k-r) = k, 
as required. Therefore, P(k+1) is true, completing the induction. ■  



  

Theorem: If T is a tree with n ≥ 1 nodes, then T has n-1 edges.

Proof: Let P(n) be the statement “any tree with n nodes has n-1 edges.”
We will prove by induction that P(n) holds for all n ≥ 1, from which
the theorem follows.

As a base case, we will prove P(1), that any tree with 1 node has 0 
edges. Any such tree has single node, so it cannot have any edges.

Now, assume for some arbitrary k ≥ 1 that P(1), P(2), …, and P(k) are 
true, so any tree with between 1 and k nodes has one more node than 
edge. We will prove P(k+1), that any tree with k+1 nodes has k edges.

Consider any tree T with k+1 nodes. Since T has at least two nodes 
and is connected, it must contain at least one edge. Choose any edge 
in T and delete it. This splits T into two nonempty trees T₁ and T₂. 
Every edge in T is part of T₁, is part of T₂, or is the initial edge we 
deleted.

Let r be the number of nodes in T₁. Since every node in T belongs to 
either T₁ or T₂, we see that T₂ has (k+1)-r nodes. Additionally, since T₁ 
and T₂ are nonempty, neither T₁ nor T₂ contains all the nodes from T. 
Therefore, T₁ and T₂ each have between 1 and k nodes. We can then 
apply our inductive hypothesis to see that T₁ has r-1 edges and T₂ has 
k-r edges. Thus the total number of edges in T is 1 + (r-1) + (k-r) = k, 
as required. Therefore, P(k+1) is true, completing the induction. ■  Answer at PollEv.com/cs103 or

text CS103 to 22333 once to join, then A, …, or E.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, …, or E.

Which of the following best describes the structure of the
inductive step in this proof?

A. Assume P(1), then prove P(k+1).
B. Assume P(k), then prove P(k+1).
C. Assume P(1), then prove P(1), …, P(k), and P(k+1).
D. Assume P(1), …, and P(k), then prove P(k+1).
E. None of these, or more than one of these.

Which of the following best describes the structure of the
inductive step in this proof?

A. Assume P(1), then prove P(k+1).
B. Assume P(k), then prove P(k+1).
C. Assume P(1), then prove P(1), …, P(k), and P(k+1).
D. Assume P(1), …, and P(k), then prove P(k+1).
E. None of these, or more than one of these.



  

Complete Induction

● If the following are true:
● P(0) is true, and
● If P(0), P(1), P(2), …, P(k) are true, then P(k+1) 

is true as well.

then P(n) is true for all n ∈ ℕ.
● This is called the principle of complete 

induction or the principle of strong 
induction.
● (This also works starting from a number other 

than 0; just modify what you're assuming 
appropriately.)



  

When Use Complete Induction?

● Normal induction is good for when you are 
shrinking the problem size by exactly one.

● Peeling one fnal term of a sum.
● Making one weighing on a scale.
● Considering one more action on a string.

● Complete induction is good when you are 
shrinking the problem, but you can't be sure by 
how much.

● In the previous example, if we delete a random 
edge, we can't know in advance how big the 
resulting trees will be.



  

Rat Mazes

● Suppose you want to 
make a rat maze 
consisting of an n × m 
grid of pegs with slats 
between them.

● Question: How many 
slats do you need to 
create?

● Answer: mn – 2.

This is a 
tree!

This is a 
tree!



  

For more on trees, take CS161 / 261 / 267!



  

An Important Milestone



  

Recap: Discrete Mathematics

● The past fve weeks have focused exclusively 
on discrete mathematics:

Induction    Functions

Graphs     The Pigeonhole Principle

Relations    Mathematical Logic

Set Theory   Cardinality
● These are building blocks we will use 

throughout the rest of the quarter.
● These are building blocks you will use 

throughout the rest of your CS career.



  

Next Up: Computability Theory

● It's time to switch gears and address the limits 
of what can be computed.

● We'll explore these questions:
● How do we model computation itself?
● What exactly is a computing device?
● What problems can be solved by computers?
● What problems can't be solved by computers?

● Get ready to explore the boundaries of 
what computers could ever be made to do.



  

Next Time

● Formal Language Theory
● How are we going to formally model 

computation?
● Finite Automata

● A simple but powerful computing device 
made entirely of math!

● DFAs
● A fundamental building block in computing.
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