

Mathematical Induction
Part Two

Recap from Last Time

Let P be some predicate. The principle of mathematical
induction states that if

P(0) is true

and

∀k ∈ ℕ. (P(k) → P(k+1))

then

∀n ∈ ℕ. P(n)

If it starts
true…

…and it stays
true…

…then it's
always true.

New Stuf!

Theorem: The sum of the frst n powers of two is 2n – 1.

Proof: Let P(n) be the statement “the sum of the frst n
powers of two is 2n – 1.” We will prove, by induction, that
P(n) is true for all n ∈ ℕ, from which the theorem follows.

For our base case, we need to show P(0) is true, meaning
that the sum of the frst zero powers of two is 20 – 1. Since
the sum of the frst zero powers of two is zero and 20 – 1
is zero as well, we see that P(0) is true.

For the inductive step, assume that for some arbitrary
k ∈ ℕ that P(k) holds, meaning that

20 + 21 + … + 2k-1 = 2k – 1. (1)

We need to show that P(k + 1) holds, meaning that the sum
of the frst k + 1 powers of two is 2k+1 – 1. To see this,
notice that

20 + 21 + … + 2k-1 + 2k = (20 + 21 + … + 2k-1) + 2k

= 2k – 1 + 2k (via (1))
= 2(2k) – 1
= 2k+1 – 1.

Therefore, P(k + 1) is true, completing the induction. ■

Induction in Practice

● Typically, a proof by induction will not
explicitly state P(n).

● Rather, the proof will describe P(n) implicitly
and leave it to the reader to fll in the details.

● Provided that there is suficient detail to
determine
● what P(n) is;
● that P(0) is true; and that
● whenever P(k) is true, P(k+1) is true,

the proof is usually valid.

Theorem: The sum of the frst n powers of two is 2n – 1.

Proof: By induction.

For our base case, we'll prove the theorem is true when
n = 0. The sum of the frst zero powers of two is zero, and
20 – 1 = 0, so the theorem is true in this case.

For the inductive step, assume the theorem holds when
n = k for some arbitrary k ∈ ℕ. Then

20 + 21 + … + 2k-1 + 2k = (20 + 21 + … + 2k-1) + 2k

= 2k – 1 + 2k

= 2(2k) – 1
= 2k+1 – 1.

So the theorem is true when n = k+1, completing the
induction. ■

A Fun Application:
The Limits of Data Compression

Bitstrings

● A bitstring is a fnite sequence of 0s and
1s.

● Examples:
● 11011100
● 010101010101
● 0000
● ε (the empty string)

● There are 2n bitstrings of length n.

Data Compression

● Inside a computer, all data are represented as
sequences of 0s and 1s (bitstrings)

● To transfer data over a network (or on a fash drive, if
you're still into that), it is useful to reduce the number
of 0s and 1s before transferring it.

● Most real-world data can be compressed by exploiting
redundancies.
● Text repeats common patterns (“the”, “and”, etc.)
● Bitmap images use similar colors throughout the image.

● Idea: Replace each bitstring with a shorter bitstring
that contains all the original information.
● This is called lossless data compression.

101010101010101010101010101010

1111010

1111010

101010101010101010101010101010

 Compress

 Decompress

 Transmit

Lossless Data Compression

● In order to losslessly compress data, we need two functions:

● A compression function C, and
● A decompression function D.

● We need to have D(C(x)) = x.

● Otherwise, we can't uniquely encode or decode some
bitstring.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

How many of the following must be true about C and D?

C must be injective.
C must be surjective.
D must be injective.
D must be surjective.

How many of the following must be true about C and D?

C must be injective.
C must be surjective.
D must be injective.
D must be surjective.

Lossless Data Compression

● In order to losslessly compress data, we need two functions:

● A compression function C, and
● A decompression function D.

● We need to have D(C(x)) = x.

● Otherwise, we can't uniquely encode or decode some
bitstring.

● This means that D must be a left inverse of C, so (as you
proved in PS3!) C must be injective.

A Perfect Compression Function

● Ideally, the compressed version of a bitstring
would always be shorter than the original
bitstring.

● Question: Can we fnd a lossless
compression algorithm that always
compresses a string into a shorter string?

● To handle the issue of the empty string
(which can't get any shorter), let's assume we
only care about strings of length at least 10.

A Counting Argument

● Let �n be the set of bitstrings of length n, and �<n be
the set of bitstrings of length less than n.

● How many bitstrings of length n are there?

● Answer: 2n

● How many bitstrings of length less than n are there?

● Answer: 20 + 21 + … + 2n – 1 = 2n – 1

● By the pigeonhole principle, no function from �n to �<n
can be injective – at least two elements must collide!

● Since a perfect compression function would have to be
an injection from �n to �<n, there is no perfect
compression function!

Why this Result is Interesting

● Our result says that no matter how hard we try,
it is impossible to compress every string into a
shorter string.

● No matter how clever you are, you cannot write
a lossless compression algorithm that always
makes strings shorter.

● In practice, only highly redundant data can be
compressed.

● The felds of information theory and
Kolmogorov complexity explore the limits of
compression; if you're interested, go explore!

Variations on Induction: Starting Later

Induction Starting at m

● To prove that P(n) is true for all natural
numbers greater than or equal to m:
● Show that P(m) is true.
● Show that for any k ≥ m, that

if P(k) is true, then P(k+1) is true.
● Conclude P(n) holds for all natural numbers

greater than or equal to m.

Variations on Induction: Bigger Steps

Subdividing a Square

For what values of n can a square be
subdivided into n squares?

1 2 3 4 5 6 7 8 9 10 11 12

The Key Insight

The Key Insight

● If we can subdivide a square into n squares, we
can also subdivide it into n + 3 squares.

● Since we can subdivide a bigger square into 6, 7,
and 8 squares, we can subdivide a square into n
squares for any n ≥ 6:

● For multiples of three, start with 6 and keep adding
three squares until n is reached.

● For numbers congruent to one modulo three, start
with 7 and keep adding three squares until n is
reached.

● For numbers congruent to two modulo three, start
with 8 and keep adding three squares until n is
reached.

Theorem: For any n ≥ 6, it is possible to subdivide a square into n
smaller squares.

Proof: Let P(n) be the statement “a square can be subdivided into
n smaller squares.” We will prove by induction that P(n) holds
for all n ≥ 6, from which the theorem follows.

As our base cases, we prove P(6), P(7), and P(8), that a square
can be subdivided into 6, 7, and 8 squares. This is shown here:

For the inductive step, assume that for some arbitrary k ≥ 6
that P(k) is true and that a square can be subdivided into k
squares. We prove P(k+3), that a square can be subdivided into
k+3 squares. To see this, start by obtaining (via the inductive
hypothesis) a subdivision of a square into k squares. Then,
choose any of the squares and split it into four equal squares.
This removes one of the k squares and adds four more, so there
will be a net total of k+3 squares. Thus P(k+3) holds,
completing the induction. ■

1

4

2

3

56

1 2

35
6 7

4

1
2
3
4
5678

Why This Works

● This induction has three consecutive base cases
and takes steps of size three.

● Thinking back to our “induction machine” analogy:

P(k) → P(k+3)

P(6) P(8)P(7)

Generalizing Induction

● When doing a proof by induction,
● feel free to use multiple base cases, and
● feel free to take steps of sizes other than one.

● Just be careful to make sure you cover all
the numbers you think that you're covering!
● We won't require that you prove you've covered

everything, but it doesn't hurt to double-check!

More on Square Subdivisions

● There are a ton of interesting questions
that come up when trying to subdivide a
rectangle or square into smaller squares.

● In fact, one of the major players in early
graph theory (William Tutte) got his start
playing around with these problems.

● Good starting resource: this Numberphile
video on Squaring the Square.

https://www.youtube.com/watch?v=NoRjwZomUK0&feature=youtu.be

Time-Out for Announcements!

Problem Set Five

● Problem Set Four was due at 2:30PM
today.

● Problem Set Five goes out today. It’s due
next Friday at 2:30PM.
● Play around with everything we’ve covered so

far, plus a healthy dose of induction and
inductive problem-solving.

● There is no checkpoint problem, and there are
no checkpoints from here out out.

Back to CS103!

A Motivating Question: Rat Mazes

Rat Mazes

● Suppose you want to make
a rat maze consisting of an
n × m grid of pegs with
slats between them.

● The maze should have
these properties:
● There is one entrance and

one exit in the border.
● Every spot in the maze is

reachable from every other
spot.

● There is exactly one path
from each spot in the maze
to each other spot.

Question: If you have an n × m grid of
pegs, how many slats do you need to make?

A Special Type of Graph: Trees

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

According to the above defnition of trees, how many of these
graphs are trees?

According to the above defnition of trees, how many of these
graphs are trees?

● A tree is a connected,
nonempty graph with
no simple cycles.

● A tree is a connected,
nonempty graph with
no simple cycles.

Trees

● A tree is a connected,
nonempty graph with no
simple cycles.

● Trees have tons of nice
properties:
● They're maximally acyclic

(adding any missing edge
creates a simple cycle)

● They're minimally
connected (deleting any
edge disconnects the graph)

● Proofs of these results are
in the course reader if
you're interested. They're
also great exercises.

Trees

● Theorem: If T is a
tree with at least two
nodes, then deleting
any edge from T
splits T into two
nonempty trees T₁
and T₂.

● Proof: Left as an
exercise to the
reader. ☺

Trees

● Theorem: If T is a
tree with n ≥ 1
nodes, then T has
exactly n-1 edges.

● Proof: Up next!

11

1

2

10

12

3

14 4

13

8

9

7

6

5

1

2

3
4

5

6
7

89

10

11

12

13

Our Base Case

Assume any tree with
at most k nodes has
one more node than

edge.

Assume any tree with
at most k nodes has
one more node than

edge.

Consider an arbitrary tree
with k+1 nodes.

Consider an arbitrary tree
with k+1 nodes.

Suppose there are r nodes
in the yellow tree.

Suppose there are r nodes
in the yellow tree.

There are r-1 edges in
the yellow tree and k-r
edges in the blue tree.

There are r-1 edges in
the yellow tree and k-r
edges in the blue tree.

Adding in the initial edge
we cut, there are

r-1 + k-r + 1 = k edges
in the original tree.

Adding in the initial edge
we cut, there are

r-1 + k-r + 1 = k edges
in the original tree.

Then there are (k+1)-r
nodes in the blue tree.

Then there are (k+1)-r
nodes in the blue tree.

Theorem: If T is a tree with n ≥ 1 nodes, then T has n-1 edges.

Proof: Let P(n) be the statement “any tree with n nodes has n-1 edges.”
We will prove by induction that P(n) holds for all n ≥ 1, from which
the theorem follows.

As a base case, we will prove P(1), that any tree with 1 node has 0
edges. Any such tree has single node, so it cannot have any edges.

Now, assume for some arbitrary k ≥ 1 that P(1), P(2), …, and P(k) are
true, so any tree with between 1 and k nodes has one more node than
edge. We will prove P(k+1), that any tree with k+1 nodes has k edges.

Consider any tree T with k+1 nodes. Since T has at least two nodes
and is connected, it must contain at least one edge. Choose any edge
in T and delete it. This splits T into two nonempty trees T₁ and T₂.
Every edge in T is part of T₁, is part of T₂, or is the initial edge we
deleted.

Let r be the number of nodes in T₁. Since every node in T belongs to
either T₁ or T₂, we see that T₂ has (k+1)-r nodes. Additionally, since T₁
and T₂ are nonempty, neither T₁ nor T₂ contains all the nodes from T.
Therefore, T₁ and T₂ each have between 1 and k nodes. We can then
apply our inductive hypothesis to see that T₁ has r-1 edges and T₂ has
k-r edges. Thus the total number of edges in T is 1 + (r-1) + (k-r) = k,
as required. Therefore, P(k+1) is true, completing the induction. ■

Theorem: If T is a tree with n ≥ 1 nodes, then T has n-1 edges.

Proof: Let P(n) be the statement “any tree with n nodes has n-1 edges.”
We will prove by induction that P(n) holds for all n ≥ 1, from which
the theorem follows.

As a base case, we will prove P(1), that any tree with 1 node has 0
edges. Any such tree has single node, so it cannot have any edges.

Now, assume for some arbitrary k ≥ 1 that P(1), P(2), …, and P(k) are
true, so any tree with between 1 and k nodes has one more node than
edge. We will prove P(k+1), that any tree with k+1 nodes has k edges.

Consider any tree T with k+1 nodes. Since T has at least two nodes
and is connected, it must contain at least one edge. Choose any edge
in T and delete it. This splits T into two nonempty trees T₁ and T₂.
Every edge in T is part of T₁, is part of T₂, or is the initial edge we
deleted.

Let r be the number of nodes in T₁. Since every node in T belongs to
either T₁ or T₂, we see that T₂ has (k+1)-r nodes. Additionally, since T₁
and T₂ are nonempty, neither T₁ nor T₂ contains all the nodes from T.
Therefore, T₁ and T₂ each have between 1 and k nodes. We can then
apply our inductive hypothesis to see that T₁ has r-1 edges and T₂ has
k-r edges. Thus the total number of edges in T is 1 + (r-1) + (k-r) = k,
as required. Therefore, P(k+1) is true, completing the induction. ■ Answer at PollEv.com/cs103 or

text CS103 to 22333 once to join, then A, …, or E.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, …, or E.

Which of the following best describes the structure of the
inductive step in this proof?

A. Assume P(1), then prove P(k+1).
B. Assume P(k), then prove P(k+1).
C. Assume P(1), then prove P(1), …, P(k), and P(k+1).
D. Assume P(1), …, and P(k), then prove P(k+1).
E. None of these, or more than one of these.

Which of the following best describes the structure of the
inductive step in this proof?

A. Assume P(1), then prove P(k+1).
B. Assume P(k), then prove P(k+1).
C. Assume P(1), then prove P(1), …, P(k), and P(k+1).
D. Assume P(1), …, and P(k), then prove P(k+1).
E. None of these, or more than one of these.

Complete Induction

● If the following are true:
● P(0) is true, and
● If P(0), P(1), P(2), …, P(k) are true, then P(k+1)

is true as well.

then P(n) is true for all n ∈ ℕ.
● This is called the principle of complete

induction or the principle of strong
induction.
● (This also works starting from a number other

than 0; just modify what you're assuming
appropriately.)

When Use Complete Induction?

● Normal induction is good for when you are
shrinking the problem size by exactly one.

● Peeling one fnal term of a sum.
● Making one weighing on a scale.
● Considering one more action on a string.

● Complete induction is good when you are
shrinking the problem, but you can't be sure by
how much.

● In the previous example, if we delete a random
edge, we can't know in advance how big the
resulting trees will be.

Rat Mazes

● Suppose you want to
make a rat maze
consisting of an n × m
grid of pegs with slats
between them.

● Question: How many
slats do you need to
create?

● Answer: mn – 2.

This is a
tree!

This is a
tree!

For more on trees, take CS161 / 261 / 267!

An Important Milestone

Recap: Discrete Mathematics

● The past fve weeks have focused exclusively
on discrete mathematics:

Induction Functions

Graphs The Pigeonhole Principle

Relations Mathematical Logic

Set Theory Cardinality
● These are building blocks we will use

throughout the rest of the quarter.
● These are building blocks you will use

throughout the rest of your CS career.

Next Up: Computability Theory

● It's time to switch gears and address the limits
of what can be computed.

● We'll explore these questions:
● How do we model computation itself?
● What exactly is a computing device?
● What problems can be solved by computers?
● What problems can't be solved by computers?

● Get ready to explore the boundaries of
what computers could ever be made to do.

Next Time

● Formal Language Theory
● How are we going to formally model

computation?
● Finite Automata

● A simple but powerful computing device
made entirely of math!

● DFAs
● A fundamental building block in computing.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

