

Finite Automata
Part Two

Recap from Last Time

Old MacDonald Had a Symbol,
 � Σ-eye-ε-ey∈, Oh! �

● You may have noticed that we have several letter-
E-ish symbols in CS103, which can get confusing!

● Here’s a quick guide to remembering which is
which:

● Typically, we use the symbol Σ to refer to an
alphabet.

● The empty string is length 0 and is denoted ε.
● In set theory, use ∈ to say “is an element of.”
● In set theory, use ⊆ to say “is a subset of.”

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton
that we will see in this course.

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

 Σ

DFAs

● A DFA is defned relative to some
alphabet Σ.

● For each state in the DFA, there must be
exactly one transition defned for each
symbol in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.

New Stuf!

DFA transition function

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ
1

q3

q0

q1

q2

q3

0 1
q0q1

q2q3

q3 q3

q0q3

q0

q1

q2

q3

0 1
q1q0

q3q2

q3 q3

q3q0

q0

q1

q2

q3

0 1
q0q1

q2q3

/ /

q0q3

Σ

/

/

/

q3

Answer at PollEv.com/cs103 or text CS103 to 22333 once to join,
then A, B, C, or D (none of the above).

Answer at PollEv.com/cs103 or text CS103 to 22333 once to join,
then A, B, C, or D (none of the above).

Which table best represents the transitions
for the DFA shown below?

Which table best represents the transitions
for the DFA shown below?

(C)(B)(A)

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1

q0q1

q2q3

q3 q3

q0q3

1

These stars
indicate accepting

states.

These stars
indicate accepting

states.

q3

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1

q0q1

q2q3

q3 q3

q0q3

1

Since this is the
frst row, it's the

start state.

Since this is the
frst row, it's the

start state.

q3

My Turn to Code Things Up!

int kTransitionTable[kNumStates][kNumSymbols] = {
 {0, 0, 1, 3, 7, 1, …},
 …
};
bool kAcceptTable[kNumStates] = {
 false,
 true,
 true,
 …
};
bool SimulateDFA(string input) {
 int state = 0;
 for (char ch: input) {
 state = kTransitionTable[state][ch];
 }
 return kAcceptTable[state];
}

The Regular Languages

A language L is called a regular language
if there exists a DFA D such that (ℒ D) = L.

If L is a language and (ℒ D) = L, we say
that D recognizes the language L.

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L

L L

Σ*

Complements of Regular Languages

● As we saw a few minutes ago, a regular
language is a language accepted by some DFA.

● Question: If L is a regular language, is L
necessarily a regular language?

● If the answer is “yes,” then if there is a way to
construct a DFA for L, there must be some way
to construct a DFA for L.

● If the answer is “no,” then some language L can
be accepted by some DFA, but L cannot be
accepted by any DFA.

input

Computational Device for L

Yep!

Nope!

input

Computational Device for L

Yep!

Nope!

Yep!

Nope!

Complementing Regular Languages

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a a

b

b

 Σ

L = { w ∈ {a, b}* | w does not contain aa as a substring }

q0

start
q1 q2

a a

b

b

 Σ

More Elaborate DFAs

L = { w ∈ {a, *, /}* | w represents a C-style comment }

q1

start
q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

More Elaborate DFAs

L = { w ∈ {a, *, /}* | w doesn't represent a C-style
 comment }

q1

start
q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

q5

q3q2q1q0

Closure Properties

● Theorem: If L is a regular language, then L is
also a regular language.

● As a result, we say that the regular languages
are closed under complementation.

All languages

Regular languages

L

L

Time-Out For Announcements!

Additional Practice

● Looking to improve your performance in
CS103? We’ve released two handouts:
● Handout 31: How to Improve in CS103
● Handout 32: Extra Practice Problems 2

● Set aside a few minutes each day to get
some additional practice. That will add
up extremely quickly!

STANFORD’S NATIONAL HACKATHON
THIS WEEKEND FEB 16-18

HUANG ENGINEERING CENTER
BEGINNERS WELCOME!

Ever felt you weren't good enough to be in STEM?
Afraid of being "found out" because you don't think you

belong?

Learn how to combat Imposter Phenomenon at a very special
workshop led by Dr. Nicole Cabrera Salazar! Lunch will be served.

~Wed. 2/14, 11:30 am - 1:30 pm, PAB 232~

Back to CS103!

NFAs

NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Structurally similar to a DFA, but
represents a fundamental shift in how
we'll think about computation.

(Non)determinism

● A model of computation is deterministic if at every
point in the computation, there is exactly one choice that
can make.

● The machine accepts if that series of choices leads to an
accepting state.

● A model of computation is nondeterministic if the
computing machine may have multiple decisions that it
can make at one point.

● The machine accepts if any series of choices leads to an
accepting state.
● (This sort of nondeterminism is technically called existential

nondeterminism, the most philosophical-sounding term we’ll
introduce all quarter.)

A Simple NFA

q0 q1 q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

q0 has two transitions
defined on !ꥣ

q0 has two transitions
defined on !ꥣ

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1 1 q2

 0, 1

If a NFA needs to make a
transition when no transition

exists, the automaton dies and
that particular path does not

accept.

If a NFA needs to make a
transition when no transition

exists, the automaton dies and
that particular path does not

accept.

q2q2q1q1q0q0 q2q2

start 1 1

 0, 1

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, …, or E.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, …, or E.

As with DFAs, the language of an NFA N is the set of strings
that N accepts:

ℒ(N) = { w ∈ Σ* | N accepts w }.

What is the language of the NFA shown above?

A. { 01011 }
B. { w ∈ {0, 1}* | w contains at least two 1s }
C. { w ∈ {0, 1}* | w ends with 11 }
D. { w ∈ {0, 1}* | w ends with 1 }
E. None of these, or two or more of these.

As with DFAs, the language of an NFA N is the set of strings
that N accepts:

ℒ(N) = { w ∈ Σ* | N accepts w }.

What is the language of the NFA shown above?

A. { 01011 }
B. { w ∈ {0, 1}* | w contains at least two 1s }
C. { w ∈ {0, 1}* | w ends with 11 }
D. { w ∈ {0, 1}* | w ends with 1 }
E. None of these, or two or more of these.

NFA Acceptance

● An NFA N accepts a string w if there is
some series of choices that lead to an
accepting state.

● Consequently, an NFA N rejects a string w
if no possible series of choices lead it into
an accepting state.

● It's easier to show that an NFA does accept
something than to show that it doesn't.

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q4 q5

q2

q3

a

ε

a

b

b, ε b

a

ε

q4

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

● NFAs are not required to follow ε-transitions.
It's simply another option at the machine's
disposal.

 Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Suppose we run the above NFA on the string 10110. How
many of the following statements are true?

· There is at least one computation that fnishes in an accepting state.
· There is at least one computation that fnishes in a rejecting state.
· There is at least one computation that dies.
· This NFA accepts 10110.
· This NFA rejects 10110.

Suppose we run the above NFA on the string 10110. How
many of the following statements are true?

· There is at least one computation that fnishes in an accepting state.
· There is at least one computation that fnishes in a rejecting state.
· There is at least one computation that dies.
· This NFA accepts 10110.
· This NFA rejects 10110.

0

ε

1

ε

1

0 0 0 0

1 1 1

ε ε ε ε

start

Intuiting Nondeterminism

● Nondeterministic machines are a serious
departure from physical computers. How
can we build up an intuition for them?

● There are two particularly useful
frameworks for interpreting
nondeterminism:
● Perfect guessing
● Massive parallelism

Perfect Guessing

● We can view nondeterministic machines
as having Magic Superpowers that
enable them to guess choices that lead to
an accepting state.
● If there is at least one choice that leads to an

accepting state, the machine will guess it.
● If there are no choices, the machine guesses

any one of the wrong guesses.
● No known physical analog for this style

of computation – this is totally new!

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

We're in at least one
accepting state, so there's
some path that gets us to

an accepting state.

Therefore, we accept!

We're in at least one
accepting state, so there's
some path that gets us to

an accepting state.

Therefore, we accept!

Massive Parallelism

● An NFA can be thought of as a DFA that can be in many
states at once.

● At each point in time, when the NFA needs to follow a
transition, it tries all the options at the same time.

● (Here's a rigorous explanation about how this works; read
this on your own time).
● Start of in the set of all states formed by taking the start state

and including each state that can be reached by zero or more ε-
transitions.

● When you read a symbol a in a set of states S:
– Form the set S’ of states that can be reached by following a single a

transition from some state in S.
– Your new set of states is the set of states in S’, plus the states reachable

from S’ by following zero or more ε-transitions.

So What?

● Each intuition of nondeterminism is useful in a
diferent setting:
● Perfect guessing is a great way to think about how to

design a machine.
● Massive parallelism is a great way to test machines – and

has nice theoretical implications.
● Nondeterministic machines may not be feasible, but

they give a great basis for interesting questions:
● Can any problem that can be solved by a nondeterministic

machine be solved by a deterministic machine?
● Can any problem that can be solved by a nondeterministic

machine be solved eficiently by a deterministic machine?
● The answers vary from automaton to automaton.

Designing NFAs

Designing NFAs

● When designing NFAs, embrace the
nondeterminism!

● Good model: Guess-and-check:
● Is there some information that you'd really like to have?

Have the machine nondeterministically guess that
information.

● Then, have the machine deterministically check that the
choice was correct.

● The guess phase corresponds to trying lots of
diferent options.

● The check phase corresponds to fltering out bad
guesses or wrong options.

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

0

 1

1

 1

0

0 1

0

1

 0

1

start

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ

Nondeterministically guess when to
leave the start state.

Deterministically check whether that
was the right time to do so.

Nondeterministically guess when to
leave the start state.

Deterministically check whether that
was the right time to do so.

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a

b

c

a

b

a, b

c
 a

c

b

c

c

a
b

a, c

b, c

b

a

 Σstart

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b

a, c

b, c

start

ε

ε

ε

Nondeterministically
guess which character

is missing.

Deterministically check
whether that

character is indeed
missing.

Nondeterministically
guess which character

is missing.

Deterministically check
whether that

character is indeed
missing.

Just how powerful are NFAs?

