

Finite Automata
Part Three

Hello Condensed Slide Readers!

The frss half of shis lecsurre consisss
almoss exclursively of animasions of she
surbses conssrurcsion, which aren’s presens
here in she condensed version of shese
slides. Your may wans so see she furll
version of she slides for more consexs.

Enjoy!
-Keish

Hello Condensed Slide Readers!

The frss half of shis lecsurre consisss
almoss exclursively of animasions of she
surbses conssrurcsion, which aren’s presens
here in she condensed version of shese
slides. Your may wans so see she furll
version of she slides for more consexs.

Enjoy!
-Keish

Recap from Last Time

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1

q0q1

q2q3

q3 q3

q0q3

1

These ssars
indicase accepsing

ssases.

These ssars
indicase accepsing

ssases.

q3

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1

q0q1

q2q3

q3 q3

q0q3

1

Since shis is she
frss row, is's she

ssars ssase.

Since shis is she
frss row, is's she

ssars ssase.

q3

A language L is called a regular language
if there exists a DFA D such that (ℒ D) = L.

NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Can have missing transitions or multiple
transitions defned on the same input
symbol.

● Accepts if any possible series of choices
leads to an accepting state.

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q4 q5

q2

q3

a

ε

a

b

b, ε b

a

ε

q4

Massive Parallelism

● An NFA can be thought of as a DFA that
can be in many states at once.

● At each point in time, when the NFA
needs to follow a transition, it tries all
the options at the same time.

● The NFA accepts if any of the states that
are active at the end are accepting
states. It rejects otherwise.

Just how powerful are NFAs?

New Stuf!

NFAs and DFAs

● Any language that can be accepted by a
DFA can be accepted by an NFA.

● Why?
● Every DFA essentially already is an NFA!

● Question: Can any language accepted by
an NFA also be accepted by a DFA?

● Surprisingly, the answer is yes!

Thought Experiment:
How would you simulate an NFA in

software?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a b

{q₀, q₁} {q₀}

{q₀, q₁} {q₀, q₁} {q₀, q₂}

{q₀, q₂} {q₀, q₁, q₃} {q₀}

*{q₀, q₁, q₃} {q₀, q₁} {q₀, q₂}

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!
Answer at PollEv.com/cs103 or

text CS103 to 22333 once to join, then A, B, C, or D

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, B, C, or D

What should this row look like?

What should this row look like?

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₂, q₃} {q₃, q₄} {q₃, q₄}

{q₂, q₃} {q₀, q₄} {q₀, q₄}

{q₂, q₃} Ø Ø

A

B

C

D

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

{q₃, q₄} {q₄} {q₃, q₄}

Ø Ø Ø

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number

How many of these rows should be marked
as accepting states?

How many of these rows should be marked
as accepting states?

q₄

q₀

q₂

start

ε

 b
*{q₀, q₃}

a b
{q₁, q₄} {q₄}

*{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

*{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

*{q₃} {q₄} {q₄}

*{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

*{q₃, q₄} {q₄} {q₃, q₄}

Ø Ø Ø

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

The Subset Construction

● This construction for transforming an NFA into a DFA is
called the subset construction (or sometimes the
powerset construction).
● Each state in the DFA is associated with a set of states in the NFA.
● The start state in the DFA corresponds to the start state of the

NFA, plus all states reachable via ε-transitions.
● If a state q in the DFA corresponds to a set of states S in the NFA,

then the transition from state q on a character a is found as
follows:
– Let S' be the set of states in the NFA that can be reached by following a

transition labeled a from any of the states in S. (This set may be empty.)
– Let S'' be the set of states in the NFA reachable from some state in S' by

following zero or more epsilon transitions.
– The state q in the DFA transitions on a to a DFA state corresponding to the

set of states S''.

● Read Sipser for a formal account.

The Subset Construction

● In converting an NFA to a DFA, the DFA's
states correspond to sets of NFA states.

● Useful fact: |℘(S)| = 2|S| for any fnite
set S.

● In the worst-case, the construction can
result in a DFA that is exponentially
larger than the original NFA.

● Interesting challenge: Find a language
for which this worst-case behavior occurs
(there are infnitely many of them!)

A language L is called a regular language
if there exists a DFA D such that (ℒ D) = L.

An Important Result

Theorem: A language L is regular if there
is some NFA N such that (ℒ N) = L.

Proof Sketch: If L is regular, there exists
some DFA for it, which we can easily
convert into an NFA. If L is accepted by
some NFA, we can use the subset
construction to convert it into a DFA that
accepts the same language, so L is
regular. ■

Why This Matters

● We now have two perspectives on regular
languages:
● Regular languages are languages accepted

by DFAs.
● Regular languages are languages accepted

by NFAs.
● We can now reason about the regular

languages in two diferent ways.

Time-Out for Announcements!

Problem Set Six

● Problem Set Five was due at 2:30PM
today.

● Problem Set Six goes out today. It’s due
next Friday at 2:30PM.
● Play around with DFAs, NFAs, language

transformations, and their properties!
● Explore how all the discrete math topics

we’ve talked about so far come into play!

DFA/NFA Editor

● We have an online DFA/NFA editor you’ll
use to answer and submit some of the
questions for PS6.

● This tool will let you design and test your
automata on a number of diferent
inputs.

● You can also use it to explore on your
own!

Looking for a Partner?

● I’ve heard from many of you that you’re
now looking for a problem set partner.

● Don’t forget that Piazza has a lovely
“Search for Teammates” feature that you
can use to do this.

● It’s like speed dating for theory!

Midterm Practice Problems

● If you’d like to get a jump on studying for the
second midterm, feel free to work through the
four practice exams we’ve posted to the course
website.

● There’s also Extra Practice Problems 2 to work
through.

● We’ll be holding a practice midterm exam next
Wednesday evening from 7PM – 10PM,
location TBA. It’ll use an exam that’s not yet
posted to the course website.

Beat the Lines!

● Our Tuesday ofice hours aren’t nearly as
crowded as some of the ofice hours later
in the week – feel free to stop on by with
questions!

● You can also ask questions on Piazza –
we’re happy to help out!

Back to CS103!

Properties of Regular Languages

The Union of Two Languages

● If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?

start

ε

ε

Machine for L1

Machine for L2Machine for
L1 ∪ L2

L1 ∪ L2

The Intersection of Two Languages

● If L1 and L2 are languages over Σ, then L1 ∩ L2 is
the language of strings in both L1 and L2.

● Question: If L1 and L2 are regular, is L1 ∩ L2
regular as well?

Hey, it's De
Morgan's laws!
Hey, it's De
Morgan's laws!

Concatenation

String Concatenation

● If w ∈ Σ* and x ∈ Σ*, the concatenation of w and x,
denoted wx, is the string formed by tacking all the
characters of x onto the end of w.

● Example: if w = quo and x = kka, the concatenation
wx = quokka.

● Analogous to the + operator for strings in many
programming languages.

● Some facts about concatenation:
● The empty string ε is the identity element for concatenation:

wε = εw = w
● Concatenation is associative:

wxy = w(xy) = (wx)y

Concatenation

● The concatenation of two languages L₁
and L₂ over the alphabet Σ is the language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }

=Two views of L₁L₂:

The set of all strings that can be made by
concatenating a string in L₁ with a string in L₂.

The set of strings that can be split into two
pieces: a piece from L₁ and a piece from L₂.

Conceptually similar to the Cartesian
product of two sets, only with strings.

Concatenation Example

● Let Σ = { a, b, …, z, A, B, …, Z } and consider
these languages over Σ:
● Noun = { Puppy, Rainbow, Whale, … }

● Verb = { Hugs, Juggles, Loves, … }

● The = { The }

● The language TheNounVerbTheNoun is
● { ThePuppyHugsTheWhale,

 TheWhaleLovesTheRainbow,
 TheRainbowJugglesTheRainbow, … }

Concatenation

● The concatenation of two languages L₁
and L₂ over the alphabet Σ is the language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }
● Two views of L₁L₂:

● The set of all strings that can be made by
concatenating a string in L₁ with a string in L₂.

● The set of strings that can be split into two
pieces: a piece from L₁ and a piece from L₂.

● Conceptually similar to the Cartesian
product of two sets, only with strings.

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two
strings xy such that x ∈ L1 and y ∈ L2?

● Idea: Run the automaton for L1 on w, and
whenever L1 reaches an accepting state,
optionally hand the rest of w to L2.
● If L2 accepts the remainder, then L1 accepted the

first part and the string is in L1L2.

● If L2 rejects the remainder, then the split was
incorrect.

start start

b o o k k e e ep r

Machine for L1 Machine for L2

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two
strings xy such that x ∈ L1 and y ∈ L2?

● Idea: Run the automaton for L1 on w, and
whenever L1 reaches an accepting state,
optionally hand the rest of w to L2.
● If L2 accepts the remainder, then L1 accepted the

first part and the string is in L1L2.

● If L2 rejects the remainder, then the split was
incorrect.

Concatenating Regular Languages

start

ε

ε

ε

start

Machine for
L1

Machine for
L2

Machine for L1L2

Lots and Lots of Concatenation

● Consider the language L = { aa, b }
● LL is the set of strings formed by concatenating pairs of

strings in L.

{ aaaa, aab, baa, bb }
● LLL is the set of strings formed by concatenating triples

of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
● LLLL is the set of strings formed by concatenating

quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}

Language Exponentiation

● We can define what it means to “exponentiate” a
language as follows:

● L0 = {ε}
● The set containing just the empty string.
● Idea: Any string formed by concatenating zero strings

together is the empty string.
● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together works by
concatenating n strings, then concatenating one
more.

● Question: Why define L0 = {ε}?

The Kleene Closure

● An important operation on languages is
the Kleene Closure, which is defined as

L* = { w ∈ Σ* | ∃n ∈ ℕ. w ∈ Ln }
● Mathematically:

w ∈ L* if ∃n ∈ ℕ. w ∈ Ln

● Intuitively, all possible ways of
concatenating zero or more strings in L
together, possibly with repetition.

The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}
Think of L* as the set of strings you
can make if you have a collection of
stamps – one for each string in L –
and you form every possible string

that can be made from those stamps.

Think of L* as the set of strings you
can make if you have a collection of
stamps – one for each string in L –
and you form every possible string

that can be made from those stamps.

Reasoning about Infinity

● If L is regular, is L* necessarily regular?
● ⚠ A Bad Line of Reasoning: ⚠

● L0 = { ε } is regular.
● L1 = L is regular.
● L2 = LL is regular
● L3 = L(LL) is regular
● …
● Regular languages are closed under union.
● So the union of all these languages is

regular.

Reasoning About the Infinite

● If a series of finite objects all have some
property, the “limit” of that process does
not necessarily have that property.

● In general, it is not safe to conclude that
some property that always holds in the
finite case must hold in the infinite case.
● (This is why calculus is interesting).

Idea: Can we directly convert an NFA for
language L to an NFA for language L*?

The Kleene Star

start

Machine for L

The Kleene Star

εstart

ε

ε

Machine for L

Machine for L*

Question: Why add the new
state out front? Why not
just make the old start

state accepting?

Question: Why add the new
state out front? Why not
just make the old start

state accepting?

Closure Properties

● Theorem: If L₁ and L₂ are regular
languages over an alphabet Σ, then so are
the following languages:
● L₁
● L₁ ∪ L₂
● L₁ ∩ L₂
● L₁L₂
● L₁*

● These properties are called closure
properties of the regular languages.

