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Recap from Last Time



  

Tabular DFAs
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A language L is called a regular language 
if there exists a DFA D such that (ℒ D) = L.



  

NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Can have missing transitions or multiple 
transitions defned on the same input 
symbol.

● Accepts if any possible series of choices 
leads to an accepting state.
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● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.
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Massive Parallelism

● An NFA can be thought of as a DFA that 
can be in many states at once.

● At each point in time, when the NFA 
needs to follow a transition, it tries all 
the options at the same time.

● The NFA accepts if any of the states that 
are active at the end are accepting 
states. It rejects otherwise.



  

Just how powerful are NFAs?



  

New Stuf!



  

NFAs and DFAs

● Any language that can be accepted by a 
DFA can be accepted by an NFA.

● Why?
● Every DFA essentially already is an NFA!

● Question: Can any language accepted by 
an NFA also be accepted by a DFA?

● Surprisingly, the answer is yes!



  

Thought Experiment:
How would you simulate an NFA in 

software?
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The Subset Construction

● This construction for transforming an NFA into a DFA is 
called the subset construction (or sometimes the 
powerset construction).
● Each state in the DFA is associated with a set of states in the NFA.
● The start state in the DFA corresponds to the start state of the 

NFA, plus all states reachable via ε-transitions.
● If a state q in the DFA corresponds to a set of states S in the NFA, 

then the transition from state q on a character a is found as 
follows:
– Let S' be the set of states in the NFA that can be reached by following a 

transition labeled a from any of the states in S. (This set may be empty.)
– Let S'' be the set of states in the NFA reachable from some state in S' by 

following zero or more epsilon transitions.
– The state q in the DFA transitions on a to a DFA state corresponding to the 

set of states S''.

● Read Sipser for a formal account.



  

The Subset Construction

● In converting an NFA to a DFA, the DFA's 
states correspond to sets of NFA states.

● Useful fact: |℘(S)| = 2|S| for any fnite 
set S.

● In the worst-case, the construction can 
result in a DFA that is exponentially 
larger than the original NFA.

● Interesting challenge: Find a language 
for which this worst-case behavior occurs 
(there are infnitely many of them!)



  

A language L is called a regular language 
if there exists a DFA D such that (ℒ D) = L.



  

An Important Result

Theorem: A language L is regular if there
is some NFA N such that (ℒ N) = L.

Proof Sketch: If L is regular, there exists
some DFA for it, which we can easily 
convert into an NFA. If L is accepted by
some NFA, we can use the subset
construction to convert it into a DFA that
accepts the same language, so L is
regular. ■



  

Why This Matters

● We now have two perspectives on regular 
languages:
● Regular languages are languages accepted 

by DFAs.
● Regular languages are languages accepted 

by NFAs.
● We can now reason about the regular 

languages in two diferent ways.



  

Time-Out for Announcements!



  



  

Problem Set Six

● Problem Set Five was due at 2:30PM 
today.

● Problem Set Six goes out today. It’s due 
next Friday at 2:30PM.
● Play around with DFAs, NFAs, language 

transformations, and their properties!
● Explore how all the discrete math topics 

we’ve talked about so far come into play!



  

DFA/NFA Editor

● We have an online DFA/NFA editor you’ll 
use to answer and submit some of the 
questions for PS6.

● This tool will let you design and test your 
automata on a number of diferent 
inputs.

● You can also use it to explore on your 
own!



  

Looking for a Partner?

● I’ve heard from many of you that you’re 
now looking for a problem set partner.

● Don’t forget that Piazza has a lovely 
“Search for Teammates” feature that you 
can use to do this.

● It’s like speed dating for theory!



  

Midterm Practice Problems

● If you’d like to get a jump on studying for the 
second midterm, feel free to work through the 
four practice exams we’ve posted to the course 
website.

● There’s also Extra Practice Problems 2 to work 
through.

● We’ll be holding a practice midterm exam next 
Wednesday evening from 7PM – 10PM, 
location TBA. It’ll use an exam that’s not yet 
posted to the course website.



  

Beat the Lines!

● Our Tuesday ofice hours aren’t nearly as 
crowded as some of the ofice hours later 
in the week – feel free to stop on by with 
questions!

● You can also ask questions on Piazza – 
we’re happy to help out!



  

Back to CS103!



  

Properties of Regular Languages



  

The Union of Two Languages

● If L1 and L2 are languages over the alphabet Σ, the 
language L1 ∪ L2 is the language of all strings in at 
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?
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L1 ∪ L2

The Intersection of Two Languages

● If L1 and L2 are languages over Σ, then L1 ∩ L2 is 
the language of strings in both L1 and L2.

● Question: If L1 and L2 are regular, is L1 ∩ L2 
regular as well?

Hey, it's De 
Morgan's laws!
Hey, it's De 
Morgan's laws!



  

Concatenation



  

String Concatenation

● If w ∈ Σ* and x ∈ Σ*, the concatenation of w and x, 
denoted wx, is the string formed by tacking all the 
characters of x onto the end of w.

● Example: if w = quo and x = kka, the concatenation
wx = quokka.

● Analogous to the + operator for strings in many 
programming languages.

● Some facts about concatenation:
● The empty string ε is the identity element for concatenation:

wε = εw = w
● Concatenation is associative:

wxy = w(xy) = (wx)y



  

Concatenation

● The concatenation of two languages L₁ 
and L₂ over the alphabet Σ is the language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }

=Two views of L₁L₂:

The set of all strings that can be made by 
concatenating a string in L₁ with a string in L₂. 

The set of strings that can be split into two 
pieces: a piece from L₁ and a piece from L₂.

Conceptually similar to the Cartesian 
product of two sets, only with strings.



  

Concatenation Example

● Let Σ = { a, b, …, z, A, B, …, Z } and consider 
these languages over Σ:
● Noun = { Puppy, Rainbow, Whale, … }

● Verb = { Hugs, Juggles, Loves, … }

● The = { The }

● The language TheNounVerbTheNoun is
● { ThePuppyHugsTheWhale,

   TheWhaleLovesTheRainbow,
   TheRainbowJugglesTheRainbow, … }



  

Concatenation

● The concatenation of two languages L₁ 
and L₂ over the alphabet Σ is the language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }
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Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two 
strings xy such that x ∈ L1 and y ∈ L2?

● Idea: Run the automaton for L1 on w, and 
whenever L1 reaches an accepting state, 
optionally hand the rest of w to L2.
● If L2 accepts the remainder, then L1 accepted the 

first part and the string is in L1L2.

● If L2 rejects the remainder, then the split was 
incorrect.
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Lots and Lots of Concatenation

● Consider the language L = { aa, b }
● LL is the set of strings formed by concatenating pairs of 

strings in L.

{ aaaa, aab, baa, bb }
● LLL is the set of strings formed by concatenating triples 

of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
● LLLL is the set of strings formed by concatenating 

quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}



  

Language Exponentiation

● We can define what it means to “exponentiate” a 
language as follows:

● L0 = {ε}
● The set containing just the empty string.
● Idea: Any string formed by concatenating zero strings 

together is the empty string.
● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together works by 
concatenating n strings, then concatenating one 
more.

● Question: Why define L0 = {ε}?



  

The Kleene Closure

● An important operation on languages is 
the Kleene Closure, which is defined as

L* = { w ∈ Σ*  |  ∃n ∈ ℕ. w ∈ Ln }
● Mathematically:

w ∈ L*     if     ∃n ∈ ℕ. w ∈ Ln

● Intuitively, all possible ways of 
concatenating zero or more strings in L 
together, possibly with repetition.



  

The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}
Think of L* as the set of strings you 
can make if you have a collection of 
stamps – one for each string in L – 
and you form every possible string 

that can be made from those stamps.

Think of L* as the set of strings you 
can make if you have a collection of 
stamps – one for each string in L – 
and you form every possible string 

that can be made from those stamps.



  

Reasoning about Infinity

● If L is regular, is L* necessarily regular?
● ⚠ A Bad Line of Reasoning: ⚠

● L0 = { ε } is regular.
● L1 = L is regular.
● L2 = LL is regular
● L3 = L(LL) is regular
● …
● Regular languages are closed under union.
● So the union of all these languages is 

regular.



  

Reasoning About the Infinite

● If a series of finite objects all have some 
property, the “limit” of that process does 
not necessarily have that property.

● In general, it is not safe to conclude that 
some property that always holds in the 
finite case must hold in the infinite case.
● (This is why calculus is interesting).



  

Idea: Can we directly convert an NFA for 
language L to an NFA for language L*?



  

The Kleene Star
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The Kleene Star
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Question: Why add the new 
state out front? Why not 
just make the old start 

state accepting?

Question: Why add the new 
state out front? Why not 
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Closure Properties

● Theorem: If L₁ and L₂ are regular 
languages over an alphabet Σ, then so are 
the following languages:
● L₁ 
● L₁ ∪ L₂ 
● L₁ ∩ L₂ 
● L₁L₂
● L₁*

● These properties are called closure 
properties of the regular languages.


