Regular Expressions

Recap from Last Time

Regular Languages

- A language L is a *regular language* if there is a DFA D such that $\mathscr{L}(D) = L$.
- **Theorem:** The following are equivalent:
 - *L* is a regular language.
 - There is a DFA for *L*.
 - There is an NFA for *L*.

Language Concatenation

- If $w \in \Sigma^*$ and $x \in \Sigma^*$, then wx is the *concatenation* of w and x.
- If L_1 and L_2 are languages over Σ , the concatenation of L_1 and L_2 is the language L_1L_2 defined as

 $L_1L_2 = \{ wx \mid w \in L_1 \text{ and } x \in L_2 \}$

• Example: if $L_1 = \{ a, ba, bb \}$ and $L_2 = \{ aa, bb \}$, then

 $L_1L_2 = \{ aaa, abb, baaa, babb, bbaa, bbbb \}$

Lots and Lots of Concatenation

- Consider the language L = { aa, b }
- *LL* is the set of strings formed by concatenating pairs of strings in *L*.

{ aaaa, aab, baa, bb }

• LLL is the set of strings formed by concatenating triples of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

• *LLLL* is the set of strings formed by concatenating quadruples of strings in *L*.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa, aabaab, aabbaa, aabbb, baaaaaaa, baaaab, baabaa, baabb, bbaaaa, bbaab, bbbaa, bbbb}

Language Exponentiation

- We can define what it means to "exponentiate" a language as follows:
- $L_0 = \{\varepsilon\}$
 - The set containing just the empty string.
 - Idea: Any string formed by concatenating zero strings together is the empty string.
- $L^{n+1} = LL^n$
 - Idea: Concatenating (n+1) strings together works by concatenating n strings, then concatenating one more.
- **Question:** Why define $L_0 = \{\epsilon\}$?

The Kleene Closure

 An important operation on languages is the *Kleene Closure*, which is defined as

 $L^* = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N} . w \in L^n \}$

• Mathematically:

$w \in L^*$ iff $\exists n \in \mathbb{N}. w \in L^n$

• Intuitively, all possible ways of concatenating zero or more strings in *L* together, possibly with repetition.

The Kleene Closure

If $L = \{ a, bb \}$, then $L^* = \{ \}$

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

Think of L* as the set of strings you can make if you have a collection of stamps – one for each string in L – and you form every possible string that can be made from those stamps.

Closure Properties

- **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ , then so are the following languages:
 - <u>L</u>₁
 - $L_1 \cup L_2$
 - $L_1 \cap L_2$
 - *L*₁*L*₂
 - *L*₁*
- These properties are called *closure* properties of the regular languages.

New Stuff!

Another View of Regular Languages

Rethinking Regular Languages

- We currently have several tools for showing a language *L* is regular:
 - Construct a DFA for *L*.
 - Construct an NFA for *L*.
 - Combine several simpler regular languages together via closure properties to form *L*.
- We have not spoken much of this last idea.

Constructing Regular Languages

- **Idea:** Build up all regular languages as follows:
 - Start with a small set of simple languages we already know to be regular.
 - Using closure properties, combine these simple languages together to form more elaborate languages.
- A bottom-up approach to the regular languages.

Constructing Regular Languages

- **Idea:** Build up all regular languages as follows:
 - Start with a small set of simple languages we already
 - Using c simple i elabora
- A bottom language

Regular Expressions

- **Regular expressions** are a way of describing a language via a string representation.
- They're used extensively in software systems for string processing and as the basis for tools like grep and flex.
- Conceptually, regular expressions are strings describing how to assemble a larger language out of smaller pieces.

Atomic Regular Expressions

- The regular expressions begin with three simple building blocks.
- The symbol \mathcal{O} is a regular expression that represents the empty language \mathcal{O} .
- For any $a \in \Sigma$, the symbol a is a regular expression for the language $\{a\}$.
- The symbol ϵ is a regular expression that represents the language $\{\epsilon\}$.
 - Remember: $\{\epsilon\} \neq \emptyset$!
 - Remember: $\{\epsilon\} \neq \epsilon!$

Compound Regular Expressions

- If R_1 and R_2 are regular expressions, R_1R_2 is a regular expression for the *concatenation* of the languages of R_1 and R_2 .
- If R_1 and R_2 are regular expressions, $R_1 \cup R_2$ is a regular expression for the *union* of the languages of R_1 and R_2 .
- If R is a regular expression, \mathbb{R}^* is a regular expression for the *Kleene closure* of the language of R.
- If R is a regular expression, (R) is a regular expression with the same meaning as R.

Operator Precedence

 Here's the operator precedence for regular expressions, from highest to lowest:

(R) R^* R_1R_2 $R_1 \cup R_2$

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **a number**.

Regular Expression Examples

- The regular expression trickUtreat represents the regular language { trick, treat }.
- The regular expression booo* represents the regular language { boo, booo, boooo, ... }.
- The regular expression candy!(candy!)* represents the regular language { candy!, candy!candy!, candy!candy!candy!, ... }.

Regular Expressions, Formally

- The *language of a regular expression* is the language described by that regular expression.
- Formally:
 - $\mathscr{L}(\mathbf{3}) = \{\mathbf{3}\}$
 - $\mathscr{L}(\emptyset) = \emptyset$
 - $\mathscr{L}(a) = \{a\}$
 - $\mathscr{L}(R_1R_2) = \mathscr{L}(R_1) \mathscr{L}(R_2)$
 - $\mathscr{L}(R_1 \cup R_2) = \mathscr{L}(R_1) \cup \mathscr{L}(R_2)$
 - $\mathscr{L}(R^*) = \mathscr{L}(R)^*$
 - $\mathscr{L}((R)) = \mathscr{L}(R)$

Worthwhile activity: Apply this recursive definition to a(bUc)((d)) and see what you get.

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains aa as a substring } \}$.

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains aa as a substring } \}$.

(a U b)*aa(a U b)*

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains aa as a substring } \}$.

(a U b)*aa(a U b)*

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains aa as a substring } \}$.

(a U b)*aa(a U b)*

bbabbbaabab aaaa bbbbbabbbbbaabbbbb

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains aa as a substring } \}$.

(a U b)*aa(a U b)*

bbabbbaabab aaaa bbbbbabbbbbaabbbbb

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains aa as a substring } \}$.

Σ*aaΣ*

bbabbbaabab aaaa bbbbbabbbbbaabbbbb

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}.$

Let $\Sigma = \{a, b\}$. Let $L = \{w \in \Sigma^* | |w| = 4\}$.

> The length of a string w is denoted IWI

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}.$

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}.$

ΣΣΣΣ

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}.$

ΣΣΣΣ

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}.$

ΣΣΣΣ

aaaa baba bbbb baaa

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}.$

ΣΣΣΣ

aaaa baba bbbbb baaa

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}.$

Σ4

aaaa baba bbbbb baaa

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}.$

Σ4

aaaa baba bbbb baaa

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* | w \text{ contains at most one } a \}$.

Which of the following is a regular expression for *L*?

- *Α*. **Σ*aΣ***
- B. b*ab* U b*
- C. b*(a U ε)b*
- D. b*a*b* U b*
- *E*. **b*(a* U ε)b***
- *F*. None of the above, or two or more of the above.

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **A**, **B**, **C**, **D**, **E**, or **F**.
- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* | w \text{ contains at most one } a \}$.

b*(a U ε)b*

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* | w \text{ contains at most one } a \}$.

b*(a U ε)b*

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* | w \text{ contains at most one } a \}$.

b*(a U ε)b*

bbbbabbb bbbbbb abbb a

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* | w \text{ contains at most one } a \}$.

b*(a U ε)b*

bbbbbbb bbbbbb abbb a

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* | w \text{ contains at most one } a \}$.

b*a?b*

bbbbbbb bbbbbb abbb a

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

aa*

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

aa*

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

aa* (.aa*)*

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

aa* (.aa*)*

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

aa* (.aa*)* @

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

aa* (.aa*)* @

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

aa* (.aa*)* @ aa*.aa*

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

aa* (.aa*)* @ aa*.aa*

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

aa* (.aa*)* @ aa*.aa* (.aa*)*

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

a* (.aa*)* @ aa*.aa* (.aa*)*

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

a⁺ (.a⁺)* @ a⁺.a⁺ (.a⁺)*

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

- Let Σ = { a, ., @ }, where a represents "some letter."
- Let's make a regex for email addresses.

a⁺ (.a⁺)* @ a⁺(.a⁺)⁺

For Comparison

a⁺(.a⁺)*@a⁺(.a⁺)⁺

Shorthand Summary

- R^n is shorthand for $RR \dots R$ (*n* times).
 - Edge case: define $R^0 = \varepsilon$.
- Σ is shorthand for "any character in $\Sigma.$ "
- R? is shorthand for $(R \cup \varepsilon)$, meaning "zero or one copies of R."
- R^+ is shorthand for RR^* , meaning "one or more copies of R."

Time-Out for Announcements!

Midterm Exam Logistics

- The next midterm is *Monday, February 26th* from 7:00PM 10:00PM. Locations are divvied up by last (family) name:
 - A-I: Go to **Cubberley Auditorium**.
 - J-Z: Go to **Cemex Auditorium**.
- The exam focuses on Lecture 06 13 (binary relations through induction) and PS3 PS5. Finite automata onward is *not* tested.
 - Topics from earlier in the quarter (proofwriting, first-order logic, set theory, etc.) are also fair game, but that's primarily because the later material builds on this earlier material.
- The exam is closed-book, closed-computer, and limited-note. You can bring a double-sided, $8.5'' \times 11''$ sheet of notes with you to the exam, decorated however you'd like.
- Students with OAE accommodations: please contact us *immediately* if you haven't yet done so. We'll ping you about setting up alternate exams.

Practice Midterm Exam

- We'll be holding a practice midterm exam *tonight* from 7PM 10PM in 320-105.
- The practice midterm exam is composed of what we think is a good representative sample of older midterm questions from across the years. It's probably the best indicator of what you should expect to see.
- Course staff will be on hand to answer your questions.
- Can't make it? We'll release the practice exam and solutions online. Set up your own practice exam time with a small group and work through it under realistic conditions!

Other Practice Materials

- We've posted four practice midterms to the course website, with solutions.
 - We'll post the practice exam from this evening a little bit later, bringing the total to five.
- There's also Extra Practice Problems 2, plus all the CS103A materials.
- Need more practice? Let us know and we'll see what we can do!

Problem Sets

- Problem Set Five solutions are now out.
 - Please read over them there's a lot of good stuff in there!
 - We'll get PS5 graded and returned as soon as we can.
- Problem Set Six is out and is due this Friday at 2:30PM.
 - **Be careful about using late days here**, since the exam is on Monday.

Back to CS103!

The Power of Regular Expressions

Theorem: If R is a regular expression, then $\mathscr{L}(R)$ is regular.

Proof idea: Use induction!

- The atomic regular expressions all represent regular languages.
- The combination steps represent closure properties.
- So anything you can make from them must be regular!
Thompson's Algorithm

- In practice, many regex matchers use an algorithm called *Thompson's algorithm* to convert regular expressions into NFAs (and, from there, to DFAs).
 - Read Sipser if you're curious!
- **Fun fact:** the "Thompson" here is Ken Thompson, one of the co-inventors of Unix!

The Power of Regular Expressions

Theorem: If L is a regular language, then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an arbitrary NFA into a regular expression.

These are all regular expressions!

Note: Actual NFAs aren't allowed to have transitions like these. This is just a thought experiment.

а	а	а	b	а	а	b	b	b
---	---	---	---	---	---	---	---	---

Key Idea 1: Imagine that we can label transitions in an NFA with arbitrary regular expressions.

Is there a simple regular expression for the language of this generalized NFA?

Is there a simple regular expression for the language of this generalized NFA?

Is there a simple regular expression for the language of this generalized NFA? *Key Idea 2:* If we can convert an NFA into a generalized NFA that looks like this...

...then we can easily read off a regular expression for the original NFA.

Here, R11, R12, R21, and R22 are arbitrary regular expressions.

Question: Can we get a clean regular expression from this NFA?

The first step is going to be a bit weird...

Note: We're using concatenation and Kleene closure in order to skip this state.

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **A**, **B**, **C**, or **D**.

 $R_{21} R_{11} * R_{12}$

 $R_{_{22}} \cup R_{_{21}} R_{_{11}} * R_{_{12}}$

Note: We're using union to combine these transitions together.

 $R_{11}^* R_{12} (R_{22} \cup R_{21}^* R_{11}^* R_{12})^* \epsilon$

 $R_{11}^* R_{12} (R_{22} \cup R_{21}^* R_{11}^* R_{12})^*$

The Construction at a Glance

- Start with an NFA *N* for the language *L*.
- Add a new start state $q_{\rm s}$ and accept state $q_{\rm f}$ to the NFA.
 - Add an ε -transition from q_s to the old start state of N.
 - Add ϵ -transitions from each accepting state of N to $q_{\rm f},$ then mark them as not accepting.
- Repeatedly remove states other than q_s and q_f from the NFA by "shortcutting" them until only two states remain: q_s and q_f .
- The transition from $q_{\rm s}$ to $q_{\rm f}$ is then a regular expression for the NFA.

Eliminating a State

- To eliminate a state q from the automaton, do the following for each pair of states q_0 and q_1 , where there's a transition from q_0 into q and a transition from q into q_1 :
 - Let R_{in} be the regex on the transition from q_0 to q.
 - Let R_{out} be the regex on the transition from q to q_1 .
 - If there is a regular expression R_{stay} on a transition from q to itself, add a new transition from q_0 to q_1 labeled $((R_{in})(R_{stay})^*(R_{out})).$
 - If there isn't, add a new transition from q_0 to q_1 labeled $((R_{in})(R_{out}))$
- If a pair of states has multiple transitions between them labeled $R_1, R_2, ..., R_k$, replace them with a single transition labeled $R_1 \cup R_2 \cup ... \cup R_k$.

Our Transformations

Theorem: The following are all equivalent:

- \cdot L is a regular language.
- · There is a DFA *D* such that $\mathscr{L}(D) = L$.
- · There is an NFA N such that $\mathscr{L}(N) = L$.
- · There is a regular expression R such that $\mathscr{L}(R) = L$.

Why This Matters

- The equivalence of regular expressions and finite automata has practical relevance.
 - Tools like grep and flex that use regular expressions capture all the power available via DFAs and NFAs.
- This also is hugely theoretically significant: the regular languages can be assembled "from scratch" using a small number of operations!

Next Time

- Applications of Regular Languages
 - Answering "so what?"
- Intuiting Regular Languages
 - What makes a language regular?
- The Myhill-Nerode Theorem
 - The limits of regular languages.