
  

Turing Machines
Part Three



  

Recap from Last Time



  

The Church-Turing Thesis claims that

every efective method of computation is either 
equivalent to or weaker than a Turing machine.

“This is not a theorem – it is a
falsifable scientifc hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams
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But...but...but...can a TM do 
__________?!

● Play music?                
                                   
                                   
                                   
                                   
 

● Send chat messages 
over the internet?

● Yes! Writes 
encodings of notes to 
play on TM tape, 
speaker device reads 
the tape and makes 
sound

● Yes! Writes 
encodings of 
messages to send on  
the TM tape, 
network device 
launches of message



  

But...but...but...can a TM do 
__________?!

● Make another 
Turing Machine? 

● Yes! That is the 
subject of today. :-) 



  

What problems can we solve with a computer?

What kind of 
computer?



  

What problems can we solve with a computer?

What does it 
mean to “solve” 
a problem?



  

Very Important Terminology

● Let M be a Turing machine.

● M accepts a string w if it enters an accept state when run on w.

● M rejects a string w if it enters a reject state when run on w.

● M loops infnitely (or just loops) on a string w if when run on w 
it enters neither an accept nor a reject state.

● M does not accept w if it either rejects w or loops infnitely on w.

● M does not reject w w if it either accepts w or loops on w.

● M halts on w if it accepts w or rejects w.

Accept

Loop

Reject
does not accept                                     

does not reject                               

halts



  

The Language of a TM

● The language of a Turing machine M, denoted (ℒ M), is 
the set of all strings that M accepts:

ℒ(M) = { w ∈ Σ* | M accepts w }

● For any w ∈ (ℒ M), M accepts w.

● For any w ∉ (ℒ M), M does not accept w.

● M might reject, or it might loop forever.
● A language is called recognizable if it is the language 

of some TM.

● A TM M where (ℒ M) = L is called a recognizer for L.

● Notation: the class RE is the set of all recognizable 
languages.

L ∈ RE   ↔   L is recognizable    



  

Deciders

● Some Turing machines always halt; they never 
go into an infnite loop.

● If M is a TM and M halts on every possible 
input, then we say that M is a decider.

● For deciders, accepting is the same as not 
rejecting and rejecting is the same as not 
accepting.

Accept

Reject

                          halts (always)

does not accept                                   

does not reject                                   



  

Decidable Languages

● A language L is called decidable if there is a 
decider M such that (ℒ M) = L.

● Equivalently, a language L is decidable if there is a 
TM M such that

● If w ∈ L, then M accepts w.
● If w ∉ L, then M rejects w.

● The class R is the set of all decidable languages.

L ∈ R   ↔   L is decidable



  

New Stuf!



  

Why R Matters

● If a language is in R, there is an algorithm that can 
decide membership in that language.

● Run the decider and see what it says.

● If there is an algorithm that can decide membership in 
a language, that language is in R.

● By the Church-Turing thesis, any efective model of 
computation is equivalent in power to a Turing machine.

● Therefore, if there is any algorithm for deciding 
membership in the language, there is a decider for it.

● Therefore, the language is in R.

● A language is in R if and only if there is an 
algorithm for deciding membership in that 
language.



  

R and RE Languages

● Every decider is a Turing machine, but not 
every Turing machine is a decider.

● This means that R ⊆ RE.
● Hugely important theoretical question:

R ≟ RE
● That is, if you can just confrm “yes” answers to 

a problem, can you necessarily solve that 
problem?
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Languages

R

RE

Which Picture is Correct?

All Languages

CFLs



  

Regular
Languages CFLs

All Languages

R RE

Which Picture is Correct?



  

Unanswered Questions

● Why exactly is RE an interesting class of 
problems?

● What does the R  ≟ RE question mean?
● Is R = RE?
● What lies beyond R and RE?
● We'll see the answers to each of these in 

due time.



  

What problems can we solve with a computer?

What is a 
“problem?”



  

Decision Problems

● A decision problem is a type of problem where the goal is to 
provide a yes or no answer.

● Example: Bin Packing

You're given a list of patients who need to be seen and how much time 
each one needs to be seen for. You're given a list of doctors and how 

much free time they have. Is there a way to schedule the patients so that 
they can all be seen?

● Example: Dominating Set Problem

You're given a transportation grid and a number k. Is there a way to 
place emergency supplies in at most k cities so that every city either has 
emergency supplies or is adjacent to a city that has emergency supplies?

● Example: Route Planning

You're given the transportation grid of a city, a start location, a 
destination location, and information about the trafic over the course of 

the day. Given a time limit T, is there a way to drive from the start 
location to the end location in at most T hours?



  

A Model for Solving Problems
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Computational
Device

input
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A Model for Solving Problems

Yes

No

Turing Machine
input

(accept)

(reject)How do we 
represent our 

inputs?

How do we 
represent our 

inputs?



  

On your computer, everything 
is numbers!

● Images (gif, jpg, png):                                      binary numbers
● Integers (int):                                                    binary numbers
● Non-integer real numbers (double):                 binary numbers
● Letters and words (ASCII, Unicode):                 binary numbers
● Music (mp3):                                                      binary numbers
● Movies (streaming)           :                        binary numbers
● Doge pictures        :                                              binary numbers
● Email messages:                                                binary numbers



  

Strings and Objects

● Think about how my 
computer encodes the 
image on the right.

● Internally, it's just a 
series of zeros and 
ones sitting on my 
hard drive.

● All data on my 
computer can be 
thought of as (suitably-
encoded) strings of 0s 
and 1s.



  

Strings and Objects

● A diferent sequence 
of 0s and 1s gives rise 
to the image on the 
right.

● Every image can be 
encoded as a sequence 
of 0s and 1s, though 
not all sequences of 0s 
and 1s correspond to 
images.



  

Object Encodings

● If Obj is some mathematical object that is discrete and 
finite, then we’ll use the notation ⟨Obj⟩ to refer to some 
way of encoding that object as a string.

● Think of ⟨Obj⟩ like a fle on disk – it encodes some high-
level object as a series of characters.

Key idea: If you want to have a TM compute something 
about Obj, you can provide the string ⟨Obj⟩ as input to that 
Turing machine.

A few remarks about encodings:

We don't care how we encode the object, just that we can.

The particular choice of alphabet isn't important. Given any 
alphabet, we can always fnd a way of encoding things.

We'll assume we can perform “reasonable” operations on 
encoded objects.

⟨ ⟩ = 11011100101110111100010011…110



  

Object Encodings

● If Obj is some mathematical object that is discrete and 
finite, then we’ll use the notation ⟨Obj⟩ to refer to some 
way of encoding that object as a string.

● Think of ⟨Obj⟩ like a fle on disk – it encodes some high-
level object as a series of characters.

Key idea: If you want to have a TM compute something 
about Obj, you can provide the string ⟨Obj⟩ as input to that 
Turing machine.

A few remarks about encodings:

We don't care how we encode the object, just that we can.

The particular choice of alphabet isn't important. Given any 
alphabet, we can always fnd a way of encoding things.

We'll assume we can perform “reasonable” operations on 
encoded objects.

⟨ ⟩ = 00110101000101000101000100…001



  

Example: Numbers

● Each of the following denotes one way to write the number 
24:
● 24 (decimal)
● XXIV (Roman numerals)
● 18 (hexadecimal)
● 11000 (binary)

● 卌卌卌卌 |||| (tally marks)

● 二十四 (Chinese numerals)
● (Hebrew numerals) כ״ד
● ٢٤ (Arabic numerals)

● Computers are powerful enough to convert any of these 
formats into any of these other formats. In a sense, what 
matters more is what number we're working with rather 
than how that number is represented.



  

Object Encodings

● For the purposes of what we’re going to be doing, we 
aren’t going to worry about exactly how objects are 
encoded.

● For example, we can say ⟨137⟩ to mean “some encoding 
of 137” without worrying about how it’s encoded.
● Analogy: do you need to know how the int type is 

represented in C++ to do basic C++ programming?
● We’ll assume, whenever we’re dealing with encodings, 

that some Smart, Attractive, Witty person has fgured 
out an encoding system for us and that we’re using that 
encoding system.



  

Non-Examples

● There’s no general way to encode real numbers as 
strings.
● Imagine a real number generated by tossing infnitely many 

coins, one for each digit. Heads means “0,” tails means “1.”
● There’s no general way to encode languages as strings.

● Imagine tossing a coin for each string. Include strings where 
the coin toss shows heads, leave out strings where the coin 
toss shows tails.

● Good test: If you can fgure out a general way to 
describe a group of objects perfectly precisely in a text 
fle, then you can encode them as strings. If you can’t, 
there’s no way to do this.



  

Encoding Groups of Objects

● Given a group of objects Obj₁, Obj₂, …, Objₙ, we 
can create a single string encoding all these 
objects.
● Think of it like a .zip fle, but without the compression.

● We'll denote the encoding of all of these objects 
as a single string by ⟨Obj₁, …, Objₙ⟩.

● This lets us feed multiple inputs into our 
computational device at the same time.



  

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

How many of the following classes of objects can you build
string encodings for? (Remember that you need to be able to

encode arbitrary objects of each type!)

Binary relations over {1, 2, 3, 4}
DFAs over {a, b}

Turing machines over {a, b}
Sets of natural numbers

How many of the following classes of objects can you build
string encodings for? (Remember that you need to be able to

encode arbitrary objects of each type!)

Binary relations over {1, 2, 3, 4}
DFAs over {a, b}

Turing machines over {a, b}
Sets of natural numbers



  

A Model for Solving Problems

Yes

No

Turing Machine
input

(accept)

(reject)



  

A Model for Solving Problems

Yes

No

Turing Machine
input
string

(probably
encoded)

(accept)

(reject)



  

What All This Means

● Our goal is to speak of computers solving 
problems.

● We will model this by looking at TMs 
recognizing languages.

● For decision problems that we're 
interested in solving, this precisely 
captures what we're interested in 
capturing.



  

Other Models

● Rather than talking about decision problems, we 
could talk about function problems, where we 
take in an input and produce some output object 
rather than just a yes/no answer.

● Rather than running a single input through the 
TM and looking at the result, we could imagine 
that the TM is constantly running, processing 
inputs as they arrive.

● These are interesting questions to explore! Take 
CS154 or CS254 for more details!



  

What problems can we solve with a computer?



  

Time-Out for Announcements!



  



  

Problem Set Eight

● Problem Set Eight is due this Friday at 
2:30PM.
● This is the last problem set that you can use 

late days on… but you should be strategic 
with doing so because PS9 will be due next 
Friday at 2:30PM sharp.

● As always, come talk to us if you need 
help! Ask questions on Piazza or in ofice 
hours.



  

Back to CS103!



  

Emergent Properties



  

Emergent Properties

● An emergent property of a system is a property 
that arises out of smaller pieces that doesn't seem 
to exist in any of the individual pieces.

● Examples:
● Individual neurons work by fring in response to 

particular combinations of inputs. Somehow, this leads 
to thought and consciousness.

● Individual atoms obey the laws of quantum mechanics 
and just interact with other atoms. Somehow, it's 
possible to combine them together to make iPhones and 
pumpkin pie.



  

Emergent Properties of Computation

● All computing systems equal to Turing machines 
exhibit several surprising emergent properties.

● If we believe the Church-Turing thesis, these 
emergent properties are, in a sense, “inherent” to 
computation. You can't have computation without 
these properties.

● These emergent properties are what ultimately 
make computation so interesting and so powerful.

● As we'll see, though, they're also computation's 
Achilles heel – they're how we fnd concrete 
examples of impossible problems.



  

Two Emergent Properties

● There are two key emergent properties of 
computation that we will discuss:
● Universality: There is a single computing device 

capable of performing any computation.
● Self-Reference: Computing devices can ask 

questions about their own behavior.
● As you'll see, the combination of these 

properties leads to simple examples of 
impossible problems and elegant proofs of 
impossibility.



  

Universal Machines



  

An Observation

● When we've been discussing Turing 
machines, we've talked about designing 
specifc TMs to solve specifc problems.

● Does this match your real-world 
experiences? Do you have one computing 
device for each task you need to 
perform?



  

Computers and Programs

● When talking about actual computers, most 
people just have a single computer.

● To get the computer to perform a particular task, 
we load a program into it and have the computer 
execute that program.

● In certain cases it's faster or more eficient to 
make dedicated hardware to solve a problem, but 
the benefts of having one single computer 
outweigh the costs.

● Question: Can we do something like this for 
Turing machines?



 

A TM Simulator

● It is possible to program a TM simulator on an unbounded-
memory computer.
● In fact, we did this! It's on the CS103 website.

● We could imagine it as a method

boolean simulateTM(TM M, string w)

with the following behavior:
● If M accepts w, then simulateTM(M, w) returns true.
● If M rejects w, then simulateTM(M, w) returns false.
● If M loops on w, then simulateTM(M, w) loops infnitely.

true!

false!
 

simulateTM

(loop)

M

...input...w



  

A TM Simulator

● It is known that anything that can be done 
with an unbounded-memory computer can 
be done with a TM.

simulateTM

true!

false!

(loop)

...input...

M

w



  

A TM Simulator

● It is known that anything that can be done 
with an unbounded-memory computer can 
be done with a TM.

● This means that there must be some TM 
that has the behavior of this simulateTM 
method.

simulateTM

true!

false!

(loop)

...input...

M

w



  

A TM Simulator

● It is known that anything that can be done 
with an unbounded-memory computer can 
be done with a TM.

● This means that there must be some TM 
that has the behavior of this simulateTM 
method.

● What would that look like?

simulateTM

true!

false!

(loop)

...input...

M

w



  

A TM Simulator

● It is known that anything that can be done 
with an unbounded-memory computer can 
be done with a TM.

● This means that there must be some TM 
that has the behavior of this simulateTM 
method.

● What would that look like?

accept!

reject!

(loop)

...input...

M

w
TM that runs 

other TMs



  

A TM Simulator

● It is known that anything that can be done 
with an unbounded-memory computer can 
be done with a TM.

● This means that there must be some TM 
that has the behavior of this simulateTM 
method.

● What would that look like?

...input...

M

w Universal TM

accept!

reject!

(loop)



  

The Universal Turing Machine

● Theorem (Turing, 1936): There is a Turing machine UT called the 
universal Turing machine that, when run on an input of the form 
⟨M, w⟩, where M is a Turing machine and w is a string, simulates M 
running on w and does whatever M does on w (accepts, rejects, or loops).

● The observable behavior of U TM is the following:

● If M accepts w, then UTM accepts ⟨M, w⟩.

● If M rejects w, then UTM rejects ⟨M, w⟩.

● If M loops on w, then UTM loops on ⟨M, w⟩.

● UTM accepts ⟨M, w⟩ if and only if M accepts w.

TM

...input...

M

w Universal TM

accept!

reject!

(loop)



Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Let M be the TM shown here.
How many of the following statements
are true?

M accepts aa
UTM accepts ⟨M, aa⟩
UTM accepts ⟨UTM, ⟨M, aa⟩⟩
UTM accepts ⟨UTM, ⟨UTM, ⟨M, aa⟩⟩⟩

Let M be the TM shown here.
How many of the following statements
are true?

M accepts aa
UTM accepts ⟨M, aa⟩
UTM accepts ⟨UTM, ⟨M, aa⟩⟩
UTM accepts ⟨UTM, ⟨UTM, ⟨M, aa⟩⟩⟩

q
0

q
acc

q
rej

q
1

start

a → , R☐

a → , R☐

 → ☐ ☐, R                  

                   → ☐ ☐, R

q
acc

q
rej



  

An Intuition for UTM

● You can think of U   as a general-purpose, 
programmable computer.

● Rather than purchasing one TM for each 
language, just purchase U   and program in the 
“software” corresponding to the TM you 
actually want.

● U   is a powerful machine: it can perform any 
computation that could be performed by 
any feasible computing device!

TM

TM

TM



  

A Universal Machine

UTM

… …



  

A Universal Machine

UTM

… …p r o g r a m



  

A Universal Machine

UTM

… …p r o g r a m i n p u t



  

A Universal Machine

UTM

… …p r o g r a m i n p u t

The “program” is an encoding 
of some Turing machine M 

The “program” is an encoding 
of some Turing machine M 

that we want to run.



  

A Universal Machine

UTM

… …p r o g r a m i n p u t

The input to that program is The input to that program is 
some string



  

A Universal Machine

UTM

… …

The input has the form ⟨M, w⟩, where M is
some TM and w is some string.

p r o g r a m i n p u t



  

A Universal Machine

UTM

… …

⟨M, w⟩

p r o g r a m i n p u t



  

Since UTM is a TM, it has a language.

What is the language of the universal 
Turing machine?



  

The Language of UTM

● Recall: For any TM M, the language of M, denoted 
(ℒ M), is the set

ℒ(M) = { w ∈ Σ* | M accepts w }

● What is the language of UTM?

● UTM accepts ⟨M, w⟩ if M is a TM that accepts w.

● Therefore:

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and M accepts w }  

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and w ∈ ℒ(M) }  

● For simplicity, defne ATM = ℒ(UTM). This is an 
important language and we'll see it many times.



Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Let M be a TM where (ℒ M) = { anbn | n ∈ ℕ }
 

How many of the following statements are true?
 

⟨M, ε⟩ ∈ ATM

⟨M, a⟩ ∈ ATM

⟨M, b⟩ ∈ ATM

⟨M, ab⟩ ∈ ATM

Let M be a TM where (ℒ M) = { anbn | n ∈ ℕ }
 

How many of the following statements are true?
 

⟨M, ε⟩ ∈ ATM

⟨M, a⟩ ∈ ATM

⟨M, b⟩ ∈ ATM

⟨M, ab⟩ ∈ ATM

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }
ATM = { ⟨M, w⟩ | M is a TM and w ∈ ℒ(M) }
ATM = { ⟨M, w⟩ | M is a TM and M accepts w }
ATM = { ⟨M, w⟩ | M is a TM and w ∈ ℒ(M) }



  

Regular
Languages CFLs

All Languages

RE

A
TM



Uh… so what?



Reason 1: It has practical consequences.



Why Does This Matter?

● The existence of a universal Turing machine has both 
theoretical and practical signifcance.

● For a practical example, let's review this diagram from 
before.

● Previously we replaced the computer with a TM. (This 
gave us the universal TM.)

● What happens if we replace the TM with a computer 
program?

 

true!

false!
 

simulateTM

(loop)

M

...input...w



Why Does This Matter?

● The existence of a universal Turing machine has both 
theoretical and practical signifcance.

● For a practical example, let's review this diagram from 
before.

● Previously we replaced the computer with a TM. (This 
gave us the universal TM.)

● What happens if we replace the TM with a computer 
program?

 

true!

false!
 

simulateProgram

(loop)

...input...w

for (int i = 2;
    i < n; i++) {
   if (n % i == 0)
     …
}

code



Programs Simulating Programs

● The fact that there’s a universal TM, 
combined with the fact that computers 
can simulate TMs and vice-versa, means 
that it’s possible to write a program that 
simulates other programs.

● These programs go by many names:
– An interpreter, like the Java Virtual Machine 

or most implementations of Python.
– A virtual machine, like VMWare or 

VirtualBox, that simulates an entire computer.



  

Why Does This Matter?

● The key idea behind the universal TM is that 
idea that TMs can be fed as inputs into other 
TMs.
● Similarly, an interpreter is a program that takes 

other programs as inputs.
● Similarly, an emulator is a program that takes entire 

computers as inputs.

● This hits at the core idea that computing 
devices can perform computations on other 
computing devices.



Reason 2: It’s philosophically interesting.



Can Computers Think?

● On May 15, 1951, Alan Turing delivered 
a radio lecture on the BBC on the 
topic of whether computers can think.

● He had the following to say about 
whether a computer can be thought of as 
an electric brain...

http://www.turingarchive.org/browse.php/B/5


“In fact I think they [computers] could be used in such a manner that they 
could be appropriately described as brains. I should also say that

‘If any machine can be appropriately described as a brain,
then any digital computer can be so described.’

This last statement needs some explanation. It may appear rather 
startling, but with some reservations it appears to be an inescapable fact.

It can be shown to follow from a characteristic property of digital 
computers, which I will call their universality. A digital computer is a 
universal machine in the sense that it can be made to replace any 
machine of a certain very wide class. It will not replace a bulldozer or a 
steam-engine or a telescope, but it will replace any rival design of 
calculating machine, that is to say any machine into which one can feed 
data and which will later print out results. In order to arrange for our 
computer to imitate a given machine it is only necessary to programme 
the the computer to calculate what the machine in question would do 
under given circumstances, and in particular what answers it would print 
out. The computer can then be made to print out the same answers.

If now some machine can be described as a brain we have only to 
programme our digital computer to imitate it and it will also be a brain.”



  

Next Time

● Self-Reference
● Turing machines that compute on 

themselves!
● Undecidable Problems

● Problems truly beyond the limits of 
algorithmic problem-solving!

● Consequences of Undecidability
● Why does any of this matter outside of a 

computer science course?
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