

Turing Machines
Part Three

Recap from Last Time

The Church-Turing Thesis claims that

every efective method of computation is either
equivalent to or weaker than a Turing machine.

“This is not a theorem – it is a
falsifable scientifc hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams

Regular
Languages CFLs

All Languages

Problems
solvable by

Turing
Machines

But...but...but...can a TM do
__________?!

● Play music?

● Send chat messages
over the internet?

● Yes! Writes
encodings of notes to
play on TM tape,
speaker device reads
the tape and makes
sound

● Yes! Writes
encodings of
messages to send on
the TM tape,
network device
launches of message

But...but...but...can a TM do
__________?!

● Make another
Turing Machine?

● Yes! That is the
subject of today. :-)

What problems can we solve with a computer?

What kind of
computer?

What problems can we solve with a computer?

What does it
mean to “solve”
a problem?

Very Important Terminology

● Let M be a Turing machine.

● M accepts a string w if it enters an accept state when run on w.

● M rejects a string w if it enters a reject state when run on w.

● M loops infnitely (or just loops) on a string w if when run on w
it enters neither an accept nor a reject state.

● M does not accept w if it either rejects w or loops infnitely on w.

● M does not reject w w if it either accepts w or loops on w.

● M halts on w if it accepts w or rejects w.

Accept

Loop

Reject
does not accept

does not reject

halts

The Language of a TM

● The language of a Turing machine M, denoted (ℒ M), is
the set of all strings that M accepts:

ℒ(M) = { w ∈ Σ* | M accepts w }

● For any w ∈ (ℒ M), M accepts w.

● For any w ∉ (ℒ M), M does not accept w.

● M might reject, or it might loop forever.
● A language is called recognizable if it is the language

of some TM.

● A TM M where (ℒ M) = L is called a recognizer for L.

● Notation: the class RE is the set of all recognizable
languages.

L ∈ RE ↔ L is recognizable

Deciders

● Some Turing machines always halt; they never
go into an infnite loop.

● If M is a TM and M halts on every possible
input, then we say that M is a decider.

● For deciders, accepting is the same as not
rejecting and rejecting is the same as not
accepting.

Accept

Reject

 halts (always)

does not accept

does not reject

Decidable Languages

● A language L is called decidable if there is a
decider M such that (ℒ M) = L.

● Equivalently, a language L is decidable if there is a
TM M such that

● If w ∈ L, then M accepts w.
● If w ∉ L, then M rejects w.

● The class R is the set of all decidable languages.

L ∈ R ↔ L is decidable

New Stuf!

Why R Matters

● If a language is in R, there is an algorithm that can
decide membership in that language.

● Run the decider and see what it says.

● If there is an algorithm that can decide membership in
a language, that language is in R.

● By the Church-Turing thesis, any efective model of
computation is equivalent in power to a Turing machine.

● Therefore, if there is any algorithm for deciding
membership in the language, there is a decider for it.

● Therefore, the language is in R.

● A language is in R if and only if there is an
algorithm for deciding membership in that
language.

R and RE Languages

● Every decider is a Turing machine, but not
every Turing machine is a decider.

● This means that R ⊆ RE.
● Hugely important theoretical question:

R ≟ RE
● That is, if you can just confrm “yes” answers to

a problem, can you necessarily solve that
problem?

Regular
Languages

R

RE

Which Picture is Correct?

All Languages

CFLs

Regular
Languages CFLs

All Languages

R RE

Which Picture is Correct?

Unanswered Questions

● Why exactly is RE an interesting class of
problems?

● What does the R ≟ RE question mean?
● Is R = RE?
● What lies beyond R and RE?
● We'll see the answers to each of these in

due time.

What problems can we solve with a computer?

What is a
“problem?”

Decision Problems

● A decision problem is a type of problem where the goal is to
provide a yes or no answer.

● Example: Bin Packing

You're given a list of patients who need to be seen and how much time
each one needs to be seen for. You're given a list of doctors and how

much free time they have. Is there a way to schedule the patients so that
they can all be seen?

● Example: Dominating Set Problem

You're given a transportation grid and a number k. Is there a way to
place emergency supplies in at most k cities so that every city either has
emergency supplies or is adjacent to a city that has emergency supplies?

● Example: Route Planning

You're given the transportation grid of a city, a start location, a
destination location, and information about the trafic over the course of

the day. Given a time limit T, is there a way to drive from the start
location to the end location in at most T hours?

A Model for Solving Problems

Yes

No

Computational
Device

input

A Model for Solving Problems

Yes

No

Computational
Device

input

Yes

A Model for Solving Problems

Yes

No

Computational
Device

input

No

A Model for Solving Problems

Yes

No

Computational
Device

input

A Model for Solving Problems

Yes

No

Turing Machine
input

A Model for Solving Problems

Yes

No

Turing Machine
input

(accept)

(reject)

A Model for Solving Problems

Yes

No

Turing Machine
input

(accept)

(reject)How do we
represent our

inputs?

How do we
represent our

inputs?

On your computer, everything
is numbers!

● Images (gif, jpg, png): binary numbers
● Integers (int): binary numbers
● Non-integer real numbers (double): binary numbers
● Letters and words (ASCII, Unicode): binary numbers
● Music (mp3): binary numbers
● Movies (streaming) : binary numbers
● Doge pictures : binary numbers
● Email messages: binary numbers

Strings and Objects

● Think about how my
computer encodes the
image on the right.

● Internally, it's just a
series of zeros and
ones sitting on my
hard drive.

● All data on my
computer can be
thought of as (suitably-
encoded) strings of 0s
and 1s.

Strings and Objects

● A diferent sequence
of 0s and 1s gives rise
to the image on the
right.

● Every image can be
encoded as a sequence
of 0s and 1s, though
not all sequences of 0s
and 1s correspond to
images.

Object Encodings

● If Obj is some mathematical object that is discrete and
finite, then we’ll use the notation ⟨Obj⟩ to refer to some
way of encoding that object as a string.

● Think of ⟨Obj⟩ like a fle on disk – it encodes some high-
level object as a series of characters.

Key idea: If you want to have a TM compute something
about Obj, you can provide the string ⟨Obj⟩ as input to that
Turing machine.

A few remarks about encodings:

We don't care how we encode the object, just that we can.

The particular choice of alphabet isn't important. Given any
alphabet, we can always fnd a way of encoding things.

We'll assume we can perform “reasonable” operations on
encoded objects.

⟨ ⟩ = 11011100101110111100010011…110

Object Encodings

● If Obj is some mathematical object that is discrete and
finite, then we’ll use the notation ⟨Obj⟩ to refer to some
way of encoding that object as a string.

● Think of ⟨Obj⟩ like a fle on disk – it encodes some high-
level object as a series of characters.

Key idea: If you want to have a TM compute something
about Obj, you can provide the string ⟨Obj⟩ as input to that
Turing machine.

A few remarks about encodings:

We don't care how we encode the object, just that we can.

The particular choice of alphabet isn't important. Given any
alphabet, we can always fnd a way of encoding things.

We'll assume we can perform “reasonable” operations on
encoded objects.

⟨ ⟩ = 00110101000101000101000100…001

Example: Numbers

● Each of the following denotes one way to write the number
24:
● 24 (decimal)
● XXIV (Roman numerals)
● 18 (hexadecimal)
● 11000 (binary)

● 卌卌卌卌 |||| (tally marks)

● 二十四 (Chinese numerals)
● (Hebrew numerals) כ״ד
● ٢٤ (Arabic numerals)

● Computers are powerful enough to convert any of these
formats into any of these other formats. In a sense, what
matters more is what number we're working with rather
than how that number is represented.

Object Encodings

● For the purposes of what we’re going to be doing, we
aren’t going to worry about exactly how objects are
encoded.

● For example, we can say ⟨137⟩ to mean “some encoding
of 137” without worrying about how it’s encoded.
● Analogy: do you need to know how the int type is

represented in C++ to do basic C++ programming?
● We’ll assume, whenever we’re dealing with encodings,

that some Smart, Attractive, Witty person has fgured
out an encoding system for us and that we’re using that
encoding system.

Non-Examples

● There’s no general way to encode real numbers as
strings.
● Imagine a real number generated by tossing infnitely many

coins, one for each digit. Heads means “0,” tails means “1.”
● There’s no general way to encode languages as strings.

● Imagine tossing a coin for each string. Include strings where
the coin toss shows heads, leave out strings where the coin
toss shows tails.

● Good test: If you can fgure out a general way to
describe a group of objects perfectly precisely in a text
fle, then you can encode them as strings. If you can’t,
there’s no way to do this.

Encoding Groups of Objects

● Given a group of objects Obj₁, Obj₂, …, Objₙ, we
can create a single string encoding all these
objects.
● Think of it like a .zip fle, but without the compression.

● We'll denote the encoding of all of these objects
as a single string by ⟨Obj₁, …, Objₙ⟩.

● This lets us feed multiple inputs into our
computational device at the same time.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

How many of the following classes of objects can you build
string encodings for? (Remember that you need to be able to

encode arbitrary objects of each type!)

Binary relations over {1, 2, 3, 4}
DFAs over {a, b}

Turing machines over {a, b}
Sets of natural numbers

How many of the following classes of objects can you build
string encodings for? (Remember that you need to be able to

encode arbitrary objects of each type!)

Binary relations over {1, 2, 3, 4}
DFAs over {a, b}

Turing machines over {a, b}
Sets of natural numbers

A Model for Solving Problems

Yes

No

Turing Machine
input

(accept)

(reject)

A Model for Solving Problems

Yes

No

Turing Machine
input
string

(probably
encoded)

(accept)

(reject)

What All This Means

● Our goal is to speak of computers solving
problems.

● We will model this by looking at TMs
recognizing languages.

● For decision problems that we're
interested in solving, this precisely
captures what we're interested in
capturing.

Other Models

● Rather than talking about decision problems, we
could talk about function problems, where we
take in an input and produce some output object
rather than just a yes/no answer.

● Rather than running a single input through the
TM and looking at the result, we could imagine
that the TM is constantly running, processing
inputs as they arrive.

● These are interesting questions to explore! Take
CS154 or CS254 for more details!

What problems can we solve with a computer?

Time-Out for Announcements!

Problem Set Eight

● Problem Set Eight is due this Friday at
2:30PM.
● This is the last problem set that you can use

late days on… but you should be strategic
with doing so because PS9 will be due next
Friday at 2:30PM sharp.

● As always, come talk to us if you need
help! Ask questions on Piazza or in ofice
hours.

Back to CS103!

Emergent Properties

Emergent Properties

● An emergent property of a system is a property
that arises out of smaller pieces that doesn't seem
to exist in any of the individual pieces.

● Examples:
● Individual neurons work by fring in response to

particular combinations of inputs. Somehow, this leads
to thought and consciousness.

● Individual atoms obey the laws of quantum mechanics
and just interact with other atoms. Somehow, it's
possible to combine them together to make iPhones and
pumpkin pie.

Emergent Properties of Computation

● All computing systems equal to Turing machines
exhibit several surprising emergent properties.

● If we believe the Church-Turing thesis, these
emergent properties are, in a sense, “inherent” to
computation. You can't have computation without
these properties.

● These emergent properties are what ultimately
make computation so interesting and so powerful.

● As we'll see, though, they're also computation's
Achilles heel – they're how we fnd concrete
examples of impossible problems.

Two Emergent Properties

● There are two key emergent properties of
computation that we will discuss:
● Universality: There is a single computing device

capable of performing any computation.
● Self-Reference: Computing devices can ask

questions about their own behavior.
● As you'll see, the combination of these

properties leads to simple examples of
impossible problems and elegant proofs of
impossibility.

Universal Machines

An Observation

● When we've been discussing Turing
machines, we've talked about designing
specifc TMs to solve specifc problems.

● Does this match your real-world
experiences? Do you have one computing
device for each task you need to
perform?

Computers and Programs

● When talking about actual computers, most
people just have a single computer.

● To get the computer to perform a particular task,
we load a program into it and have the computer
execute that program.

● In certain cases it's faster or more eficient to
make dedicated hardware to solve a problem, but
the benefts of having one single computer
outweigh the costs.

● Question: Can we do something like this for
Turing machines?

A TM Simulator

● It is possible to program a TM simulator on an unbounded-
memory computer.
● In fact, we did this! It's on the CS103 website.

● We could imagine it as a method

boolean simulateTM(TM M, string w)

with the following behavior:
● If M accepts w, then simulateTM(M, w) returns true.
● If M rejects w, then simulateTM(M, w) returns false.
● If M loops on w, then simulateTM(M, w) loops infnitely.

true!

false!

simulateTM

(loop)

M

...input...w

A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

simulateTM

true!

false!

(loop)

...input...

M

w

A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

● This means that there must be some TM
that has the behavior of this simulateTM
method.

simulateTM

true!

false!

(loop)

...input...

M

w

A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

● This means that there must be some TM
that has the behavior of this simulateTM
method.

● What would that look like?

simulateTM

true!

false!

(loop)

...input...

M

w

A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

● This means that there must be some TM
that has the behavior of this simulateTM
method.

● What would that look like?

accept!

reject!

(loop)

...input...

M

w
TM that runs

other TMs

A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

● This means that there must be some TM
that has the behavior of this simulateTM
method.

● What would that look like?

...input...

M

w Universal TM

accept!

reject!

(loop)

The Universal Turing Machine

● Theorem (Turing, 1936): There is a Turing machine UT called the
universal Turing machine that, when run on an input of the form
⟨M, w⟩, where M is a Turing machine and w is a string, simulates M
running on w and does whatever M does on w (accepts, rejects, or loops).

● The observable behavior of U TM is the following:

● If M accepts w, then UTM accepts ⟨M, w⟩.

● If M rejects w, then UTM rejects ⟨M, w⟩.

● If M loops on w, then UTM loops on ⟨M, w⟩.

● UTM accepts ⟨M, w⟩ if and only if M accepts w.

TM

...input...

M

w Universal TM

accept!

reject!

(loop)

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Let M be the TM shown here.
How many of the following statements
are true?

M accepts aa
UTM accepts ⟨M, aa⟩
UTM accepts ⟨UTM, ⟨M, aa⟩⟩
UTM accepts ⟨UTM, ⟨UTM, ⟨M, aa⟩⟩⟩

Let M be the TM shown here.
How many of the following statements
are true?

M accepts aa
UTM accepts ⟨M, aa⟩
UTM accepts ⟨UTM, ⟨M, aa⟩⟩
UTM accepts ⟨UTM, ⟨UTM, ⟨M, aa⟩⟩⟩

q
0

q
acc

q
rej

q
1

start

a → , R☐

a → , R☐

 → ☐ ☐, R

 → ☐ ☐, R

q
acc

q
rej

An Intuition for UTM

● You can think of U as a general-purpose,
programmable computer.

● Rather than purchasing one TM for each
language, just purchase U and program in the
“software” corresponding to the TM you
actually want.

● U is a powerful machine: it can perform any
computation that could be performed by
any feasible computing device!

TM

TM

TM

A Universal Machine

UTM

… …

A Universal Machine

UTM

… …p r o g r a m

A Universal Machine

UTM

… …p r o g r a m i n p u t

A Universal Machine

UTM

… …p r o g r a m i n p u t

The “program” is an encoding
of some Turing machine M

The “program” is an encoding
of some Turing machine M

that we want to run.

A Universal Machine

UTM

… …p r o g r a m i n p u t

The input to that program is The input to that program is
some string

A Universal Machine

UTM

… …

The input has the form ⟨M, w⟩, where M is
some TM and w is some string.

p r o g r a m i n p u t

A Universal Machine

UTM

… …

⟨M, w⟩

p r o g r a m i n p u t

Since UTM is a TM, it has a language.

What is the language of the universal
Turing machine?

The Language of UTM

● Recall: For any TM M, the language of M, denoted
(ℒ M), is the set

ℒ(M) = { w ∈ Σ* | M accepts w }

● What is the language of UTM?

● UTM accepts ⟨M, w⟩ if M is a TM that accepts w.

● Therefore:

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and M accepts w }

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and w ∈ ℒ(M) }

● For simplicity, defne ATM = ℒ(UTM). This is an
important language and we'll see it many times.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Let M be a TM where (ℒ M) = { anbn | n ∈ ℕ }

How many of the following statements are true?

⟨M, ε⟩ ∈ ATM

⟨M, a⟩ ∈ ATM

⟨M, b⟩ ∈ ATM

⟨M, ab⟩ ∈ ATM

Let M be a TM where (ℒ M) = { anbn | n ∈ ℕ }

How many of the following statements are true?

⟨M, ε⟩ ∈ ATM

⟨M, a⟩ ∈ ATM

⟨M, b⟩ ∈ ATM

⟨M, ab⟩ ∈ ATM

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }
ATM = { ⟨M, w⟩ | M is a TM and w ∈ ℒ(M) }
ATM = { ⟨M, w⟩ | M is a TM and M accepts w }
ATM = { ⟨M, w⟩ | M is a TM and w ∈ ℒ(M) }

Regular
Languages CFLs

All Languages

RE

A
TM

Uh… so what?

Reason 1: It has practical consequences.

Why Does This Matter?

● The existence of a universal Turing machine has both
theoretical and practical signifcance.

● For a practical example, let's review this diagram from
before.

● Previously we replaced the computer with a TM. (This
gave us the universal TM.)

● What happens if we replace the TM with a computer
program?

true!

false!

simulateTM

(loop)

M

...input...w

Why Does This Matter?

● The existence of a universal Turing machine has both
theoretical and practical signifcance.

● For a practical example, let's review this diagram from
before.

● Previously we replaced the computer with a TM. (This
gave us the universal TM.)

● What happens if we replace the TM with a computer
program?

true!

false!

simulateProgram

(loop)

...input...w

for (int i = 2;
 i < n; i++) {
 if (n % i == 0)
 …
}

code

Programs Simulating Programs

● The fact that there’s a universal TM,
combined with the fact that computers
can simulate TMs and vice-versa, means
that it’s possible to write a program that
simulates other programs.

● These programs go by many names:
– An interpreter, like the Java Virtual Machine

or most implementations of Python.
– A virtual machine, like VMWare or

VirtualBox, that simulates an entire computer.

Why Does This Matter?

● The key idea behind the universal TM is that
idea that TMs can be fed as inputs into other
TMs.
● Similarly, an interpreter is a program that takes

other programs as inputs.
● Similarly, an emulator is a program that takes entire

computers as inputs.

● This hits at the core idea that computing
devices can perform computations on other
computing devices.

Reason 2: It’s philosophically interesting.

Can Computers Think?

● On May 15, 1951, Alan Turing delivered
a radio lecture on the BBC on the
topic of whether computers can think.

● He had the following to say about
whether a computer can be thought of as
an electric brain...

http://www.turingarchive.org/browse.php/B/5

“In fact I think they [computers] could be used in such a manner that they
could be appropriately described as brains. I should also say that

‘If any machine can be appropriately described as a brain,
then any digital computer can be so described.’

This last statement needs some explanation. It may appear rather
startling, but with some reservations it appears to be an inescapable fact.

It can be shown to follow from a characteristic property of digital
computers, which I will call their universality. A digital computer is a
universal machine in the sense that it can be made to replace any
machine of a certain very wide class. It will not replace a bulldozer or a
steam-engine or a telescope, but it will replace any rival design of
calculating machine, that is to say any machine into which one can feed
data and which will later print out results. In order to arrange for our
computer to imitate a given machine it is only necessary to programme
the the computer to calculate what the machine in question would do
under given circumstances, and in particular what answers it would print
out. The computer can then be made to print out the same answers.

If now some machine can be described as a brain we have only to
programme our digital computer to imitate it and it will also be a brain.”

Next Time

● Self-Reference
● Turing machines that compute on

themselves!
● Undecidable Problems

● Problems truly beyond the limits of
algorithmic problem-solving!

● Consequences of Undecidability
● Why does any of this matter outside of a

computer science course?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

