

Unsolvable Problems
Part Two

Outline for Today

● Recap from Last Time
● Where are we, again?

● A Diferent Perspective on Rr
● What exactly does “recognizability” mean?

● Verifers
● A new approach to problem-solving.

● Beyond Rr
● Monstrously hard problems!

Recap from Last Time

Self-Referential Programs

● Claim: Any program can be augmented
to include a method called mySource() that
returns a string representation of its
source code.

● Theorem: It it possible to build Turing
machines that get their own encodings
and perform arbitrary computations on
them.

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

What happens if...

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What happens if...

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

What happens if...

… this program halts on this input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What happens if...

… this program halts on this input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Regular
Languages CFLs

All Languages

R RE

ATM

HALT

New Stuf!

Beyond R and RE

Beyond R and RE

● We've now seen how to use self-reference
as a tool for showing undecidability
(finding languages not in R).

● We still have not broken out of RE yet,
though.

● To do so, we will need to build up a
better intuition for the class RE.

What exactly is the class RE?

RE, Formally

● Recall that the class RE is the class of all
recognizable languages:

RE = { L | there is a TM M where (ℒ M) = L }
● Since R ≠ RE, there is no general way to

“solve” problems in the class RE, if by “solve”
you mean “make a computer program that
can always tell you the correct answer.”

● So what exactly are the sorts of languages in
RE?

 Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then Y or N.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then Y or N.

Does this graph contain a 4-clique?Does this graph contain a 4-clique?

 Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then Y or N.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then Y or N.

Does this graph contain a 4-clique?Does this graph contain a 4-clique?

 Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then Y or N.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then Y or N.

Does this graph contain a 4-clique?Does this graph contain a 4-clique?

Key Intuition:

A language L is in RE if, for any string w, if
you are convinced that w ∈ L, there is some
way you could prove that to someone else.

Verification

3

6

8

1

5

1

7

7

5

2

3

4

1

2

4

6

3

1

8

3

5

7

1

9

8

5

7

5

2

2

7

9

4

8

Does this Sudoku puzzle
have a solution?

Verification

2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

Does this Sudoku puzzle
have a solution?

Verification

Does this graph have a Hamiltonian
path (a simple path that passes

through every node exactly once?)

Verification

Does this graph have a Hamiltonian
path (a simple path that passes

through every node exactly once?)

1

2

5

4

6

3

Verification

Does the hailstone sequence
terminate for this number?

11

Verification

Does the hailstone sequence
terminate for this number?

11

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

34

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

17

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

52

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

26

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

13

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

40

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

20

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

10

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

5

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

16

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

8

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

4

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

2

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

1

Try running fourteen steps of the Hailstone sequence.

Verification

3

6

8

1

5

1

7

7

5

2

3

4

1

2

4

6

3

1

8

3

5

7

1

9

8

5

7

5

2

2

7

9

4

8

Does this Sudoku puzzle
have a solution?

Verification

1

1

3

6

1

8

1

5

1

1

1

1

1

1

1

1

7

1

7

1

1

5

1

2

3

1

4

1

1

1

1

1

1

2

4

1

6

1

1

3

4

1

1

1

8

1

3

5

1

1

1

7

1

1

1

1

9

8

1

5

1

1

7

1

5

1

1

2

1

1

1

1

1

2

7

9

1

4

8

1

1

Does this Sudoku puzzle
have a solution?

Verification

Does this graph have a Hamiltonian
path (a simple path that passes

through every node exactly once?)

Verification

6

1

5

2

3

4

Does this graph have a Hamiltonian
path (a simple path that passes

through every node exactly once?)

Verification

Does the hailstone sequence
terminate for this number?

11

Verification

Does the hailstone sequence
terminate for this number?

11

Try running fie steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

34

Try running fie steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

17

Try running fie steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

52

Try running fie steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

26

Try running fie steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

13

Try running fie steps of the Hailstone sequence.

Verification

● In each of the preceding cases, we were given some
problem and some evidence supporting the claim that
the answer is “yes.”

● Given the correct evidence, we can be certain that the
answer is indeed “yes.”

● Given incorrect evidence, we aren't sure whether the
answer is “yes.”
● Maybe there's no evidence saying that the answer is “yes,”

or maybe there is some evidence, but just not the evidence
we were given.

● Let's formalize this idea.

Verifiers

● A verifer for a language L is a TM V with
the following properties:
● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩
● A string c where V accepts ⟨w, c⟩ is called

a certifcate for w.
● Intuitively, what does this mean?

Deciders and Verifiers

Decider M
for L

Verifier V
for L

yes!

no!

yes!

not
sure

input string (w)

certifcate (c)

input string (w)

“Solve the problem”

“Check the answer”

V halts on all inputs.
w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩

M halts on all inputs.
w ∈ L ↔ M accepts w

If M accepts, then
w ∈ L.

If M accepts, then
w ∈ L.

If M rejects, then
w ∉ L.

If M rejects, then
w ∉ L.

If V accepts ⟨w, c⟩,
then w ∈ L.

If V accepts ⟨w, c⟩,
then w ∈ L.

If V rejects ⟨w, c⟩,
we don't know
whether w ∈ L.

If V rejects ⟨w, c⟩,
we don't know
whether w ∈ L.

Verifiers

● A verifer for a language L is a TM V with the
following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● If V accepts ⟨w, c⟩, then we're guaranteed w ∈ L.

● If V does not accept ⟨w, c⟩, then either
– w ∈ L, but you gave the wrong c, or
– w ∉ L, so no possible c will work.

Verifiers

● A verifer for a language L is a TM V with the
following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● Notice that c is existentially quantified. Any
string w ∈ L must have at least one c that
causes V to accept, and possibly more.

● V is required to halt, so given any potential
certificate c for w, you can check whether the
certificate is correct.

Verifiers

● A verifer for a language L is a TM V with the
following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● Notice that (ℒ V) ≠ L. (Good question: what is
(ℒ V)?)

● The job of V is just to check certificates, not to
decide membership in L.

Verifiers

● A verifer for a language L is a TM V with the
following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● Although this formal definition works with a
string c, remember that c can be an encoding of
some other object.

● In practice, c will likely just be “some other
auxiliary data that helps you out.”

Some Verifiers

● Let L be the following language:

 L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
 terminates for n }

● Let's see how to build a verifier for L.

Verification

Does the hailstone sequence
terminate for this number?

11

Verification

Does the hailstone sequence
terminate for this number?

11

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

34

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

17

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

52

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

26

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

13

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

40

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

20

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

10

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

5

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

16

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

8

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

4

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

2

Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

1

Try running fourteen steps of the Hailstone sequence.

Some Verifiers

● Let L be the following language:

 L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
 terminates for n }

● Do you see why ⟨n⟩ ∈ L if there is some c such
that checkHailstone(n, c) returns true?

● Do you see why checkHailstone always halts?

bool checkHailstone(int n, int c) {
 for (int i = 0; i < c; i++) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 }
 return n == 1;
}

bool checkHailstone(int n, int c) {
 for (int i = 0; i < c; i++) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 }
 return n == 1;
}

Some Verifiers

● Let L be the following language:

 L = { ⟨G⟩ | G is a graph and G has a
 Hamiltonian path }

● (A Hamiltonian path is a simple path that visits
every node in the graph.)

● Let's see how to build a verifier for L.

Verification

Is there a simple path that goes
through every node exactly once?

Verification

Is there a simple path that goes
through every node exactly once?

1

2

5

4

6

3

Some Verifiers

● Let L be the following language:

L = { ⟨G⟩ | G is a graph with a Hamiltonian path }

● Do you see why ⟨G⟩ ∈ L if there is a c where
checkHamiltonian(G, c) returns true?

● Do you see why checkHamiltonian always halts?

bool checkHamiltonian(Graph G, vector<Node> c) {
 if (c.size() != G.numNodes()) return false;
 if (containsDuplicate(c)) return false;

 for (size_t i = 0; i < c.size() - 1; i++) {
 if (!G.hasEdge(c[i], c[i+1])) return false;
 }
 return true;
}

bool checkHamiltonian(Graph G, vector<Node> c) {
 if (c.size() != G.numNodes()) return false;
 if (containsDuplicate(c)) return false;

 for (size_t i = 0; i < c.size() - 1; i++) {
 if (!G.hasEdge(c[i], c[i+1])) return false;
 }
 return true;
}

Some Verifiers

● Consider ATM:

 ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● This is a canonical example of an undecidable
language. There’s no way, in general, to tell
whether a TM M will accept a string w.

● Although this language is undecidable, it’s an
RE language, and it’s possible to build a
verifier for it!

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 0 1 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 0 1 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 1 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 1 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 1 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 1 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 1 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… …

Run this TM
for ffteen

steps.

Some Verifiers

● Consider ATM:

ATM = { ⟨M, w⟩ | M is a TM and M accepts w}

● Do you see why M accepts w if there is some c
such that checkWillAccept(M, w, c) returns true?

● Do you see why checkWillAccept always halts?

bool checkWillAccept(TM M, string w, int c) {
 set up a simulation of M running on w;
 for (int i = 0; i < c; i++) {
 simulate the next step of M running on w;
 }
 return whether M is in an accepting state;
}

bool checkWillAccept(TM M, string w, int c) {
 set up a simulation of M running on w;
 for (int i = 0; i < c; i++) {
 simulate the next step of M running on w;
 }
 return whether M is in an accepting state;
}

What languages are verifiable?

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then your answer.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then your answer.

Let V be a verifier for a language L. Consider the following
function given in pseudocode:

bool mysteryFunction(string w) {
 int i = 0;
 while (true) {
 for (each string c of length i) {
 if (V accepts ⟨w, c) ⟩ return true;
 }
 i++;
 }
}

What set of strings does mysteryFunction return true on?

Let V be a verifier for a language L. Consider the following
function given in pseudocode:

bool mysteryFunction(string w) {
 int i = 0;
 while (true) {
 for (each string c of length i) {
 if (V accepts ⟨w, c) ⟩ return true;
 }
 i++;
 }
}

What set of strings does mysteryFunction return true on?

Theorem: If L is a language, then there is
a verifier for L if and only if L ∈ RE.

Where We’ve Been

NFA Regex

State Elimination

Thompson’s Algorithm

Where We’re Going

Verifier Recognizer

Try all certificates

Enforce a step count

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

ε a b aa ab ba bb aaa aab aba abb baa …

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

ε a b aa ab ba bb aaa aab aba abb baa …

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

ε a b aa ab ba bb aaa aab aba abb baa …

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifiers and RE

● Theorem: If V is a verifier for L, then L ∈ RE.
● Proof sketch: Consider the following program:

If w ∈ L, there is some c ∈ Σ* where V accepts ⟨w, c⟩.
The function isInL tries all possible strings as certificate,
so it will eventually find c (or some other certificate), see
V accept ⟨w, c⟩, then return true. Conversely, if isInL(w)
returns true, then there was some string c such that V
accepted ⟨w, c⟩, so w ∈ L. ■

bool isInL(string w) {
 int i = 0;
 while (true) {
 for (each string c of length i) {
 if (V accepts w, c) ⟨ ⟩ return true;
 }
 i++;
 }
}

bool isInL(string w) {
 int i = 0;
 while (true) {
 for (each string c of length i) {
 if (V accepts w, c) ⟨ ⟩ return true;
 }
 i++;
 }
}

Verifiers and RE

● Theorem: If L ∈ RE, then there is a verifier for L.
● Proof goal: Beginning with a recognizer M for

the language L, show how to construct a verifier
V for L.

● The challenges:
● A recognizer M is not required to halt on all inputs. A

verifier V must always halt.
● A recognizer M takes in one single input. A verifier V

takes in two inputs.
● We’ll need to find a way of reconciling these

requirements.

Recall: If M is a recognizer for a language
L, then M accepts w if w ∈ L.

Key insight: If M accepts a string w, it
always does so in a finite number of steps.

Idea: Adapt the verifier for A into a more
general construction that turns any

recognizer into a verifier by running it for a
fixed number of steps.

TM

Verifiers and RE

● Theorem: If L ∈ RE, then there is a verifier for L.
● Proof sketch: Consider the following program:

Notice that checkIsInL always halts, since each step takes
only finite time to complete. Next, notice that if there is a c
where checkIsInL(w, c) returns true, then M accepted w
after running for c steps, so w ∈ L. Conversely, if w ∈ L,
then M accepts w after some number of steps (call that
number c). Then checkIsInL(w, c) will run M on w for c
steps, watch M accept w, then return true. ■

 bool checkIsInL(string w, int c) {
 set up a simulation of M running on w;
 for (int i = 0; i < c; i++) {
 simulate the next step of M running on W;
 }
 return whether M is in an accepting state;
 }

 bool checkIsInL(string w, int c) {
 set up a simulation of M running on w;
 for (int i = 0; i < c; i++) {
 simulate the next step of M running on W;
 }
 return whether M is in an accepting state;
 }

RE and Proofs

● Verifiers and recognizers give two diferent
perspectives on the “proof” intuition for RE.

● Verifiers are explicitly built to check proofs that
strings are in the language.
● If you know that some string w belongs to the

language and you have the proof of it, you can
convince someone else that w ∈ L.

● You can think of a recognizer as a device that
“searches” for a proof that w ∈ L.
● If it finds it, great!
● If not, it might loop forever.

RE and Proofs

● If the RE languages represent languages
where membership can be proven, what
does a non-RE language look like?

● Intuitively, a language is not in RE if
there is no general way to prove that a
given string w ∈ L actually belongs to L.

● In other words, even if you knew that a
string was in the language, you may
never be able to convince anyone of it!

Time-Out for Announcements!

0 – 68 69 – 72 73 – 76 77 – 80 81 – 84 85 – 88 89 – 92 93 – 96 97 – 100 101 –

Problem Set Seven Graded

75th Percentile: 97 / 105 (93%)
50th Percentile: 93 / 105 (89%)
25th Percentile: 85 / 105 (82%)

75th Percentile: 97 / 105 (93%)
50th Percentile: 93 / 105 (89%)
25th Percentile: 85 / 105 (82%)

Problem Set Nine

● Problem Set Eight was due today at 2:30PM.
● You can use late days here to extend the deadline as far

as Sunday at 2:30PM, but we don’t recommend this.
● Problem Set Nine goes out today. It’s due next

Friday at 2:30PM.
● Play around with the limits of R and RE languages – the

upper extent of computation!
● See how everything fits together!

● Due to university policies, no late submissions
will be accepted for PS9. Please budget at least
two hours before the deadline to submit the
assignment.

The Last Two Guides

● We’ve posted two final guides to the course
website:
● The Guide to Self-Reference, which talks about

proofs of undecidability via self-reference.
● The Guide to the Lava Diagram, which

provides an intuition for how diferent classes of
languages relate to one another.

● Give these a read – there’s a ton of useful
information in there!

Final Exam Logistics

● Our final exam is Monday, March 19th from 3:30PM –
6:30PM, location Hewlett 200 & 201 (no special last name
assignments).
● Sorry about how soon that is – the registrar picked this time, not

us. If we had a choice, it would be on the last day of finals week.
● The exam is cumulative. You’re responsible for topics from

PS1 – PS9 and all of the lectures.
● As with the midterms, the exam is closed-book, closed-

computer, and limited-note. You can bring one double-
sided sheet of 8.5” × 11” notes with you to the exam,
decorated any way you’d like.

● Students with OAE accommodations: if we don’t yet have
your OAE letter, please send it to us ASAP.

Preparing for the Exam

● We’ve posted six practice final exams, with
solutions, to the course website.

● These exams are essentially the final exams we’ve
given out in the last six quarters, with a few tweaks
and modifications.

● Practice Final 1 and Practice Final 6 are the two
most recent exams and should give you the best
indicator of the expected topic coverage.

● And don’t forget that Extra Practice Problems 3 is
available online. After today’s lecture, you know
enough to take on any of those questions, including
the starred ones.

Back to CS103!

Finding Non-RE Languages

Finding Non-RE Languages

● Right now, we know that non-RE
languages exist, but we have no idea
what they look like.

● How might we find one?

Languages, TMs, and TM Encodings

● Recall: The language of a TM M is the set

ℒ(M) = { w ∈ Σ* | M accepts w }
● Some of the strings in this set might be

descriptions of TMs.
● What happens if we list of all Turing

machines, looking at how those TMs
behave given other TMs as input?

M
1

M
2

M
0

M
3

M
4

M
5

…

M
1

M
2

M
0

M
3

M
4

M
5

…

All Turing machines,
listed in some order.
All Turing machines,
listed in some order.

M
1

M
2

M
0

M
3

M
4

M
5

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

All descriptions
of TMs, listed in
the same order.

All descriptions
of TMs, listed in
the same order.

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then your answer.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then your answer.

What are we going
to do next?

What are we going
to do next?

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Flip all “accept”
to “no” and
iice-iersa

Flip all “accept”
to “no” and
iice-iersa

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

What TM has
this behaiior?
What TM has
this behaiior?

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Acc

No

Acc

No

…

No Acc …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No No …

… … … … … … …

No No No Acc Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Acc

No

No

Acc

Acc

No

No

…

Acc …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … … …

No No No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

No

Acc

…

…

Acc

No

No

Acc

Acc

No

…

…

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

No TM has
this behaiior!
No TM has

this behaiior!

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

“The language of all
TMs that do not accept
their own description.”

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

{ ⟨M⟩ | M is a TM that
does not accept ⟨M⟩ }

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

{ ⟨M⟩ | M is a TM
and ⟨M⟩ ∉ ℒ(M) }

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Diagonalization Revisited

● The diagonalization language, which we
denote LD, is defined as

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

● That is, LD is the set of descriptions of
Turing machines that do not accept
themselves.

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.

Proof: By contradiction; assume that LD ∈ RE. Then there must
be some TM R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD if ⟨M⟩ ∈ (ℒ R) (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD if ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) if ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) if ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE.
Then there must

be some TM R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD if ⟨M⟩ ∈ (ℒ R) (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD if ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) if ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) if ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD if ⟨M⟩ ∈ (ℒ R) (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD if ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) if ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) if ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD if ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD if ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) if ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) if ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD if ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD if ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) if ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) if ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

Because (ℒ R) = LD, we know that a
string belongs to one set if and
only if it belongs to the other.

Because (ℒ R) = LD, we know that a
string belongs to one set if and
only if it belongs to the other.

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD if ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD if ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) if ⟨M⟩ ∈ (ℒ R) (2
)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) if ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD if ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD if ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) if ⟨M⟩ ∈ (ℒ R). (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) if ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD if ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD if ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) if ⟨M⟩ ∈ (ℒ R). (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) if ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

We'ie replaced the left-hand side
of this biconditional with an

equiialent statement.

We'ie replaced the left-hand side
of this biconditional with an

equiialent statement.

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD if ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD if ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) if ⟨M⟩ ∈ (ℒ R). (2)

Since our choice of M was arbitrary, we see that statement (2)
holds for any TM M. In particular, this means that statement
(2) holds for the TM R, which tells us that

⟨R⟩ ∉ (ℒ R) if ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD if ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD if ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) if ⟨M⟩ ∈ (ℒ R). (2)

Since our choice of M was arbitrary, we see that statement (2)
holds for any TM M. In particular, this means that statement
(2) holds for the TM R, which tells us that

⟨R⟩ ∉ (ℒ R) if ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

A nice consequence of a uniiersally-
quantifed statement is that it should

work in all cases.

A nice consequence of a uniiersally-
quantifed statement is that it should

work in all cases.

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD if ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD if ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) if ⟨M⟩ ∈ (ℒ R). (2)

Since our choice of M was arbitrary, we see that statement (2)
holds for any TM M. In particular, this means that statement
(2) holds for the TM R, which tells us that

⟨R⟩ ∉ (ℒ R) if ⟨R⟩ ∈ (ℒ R). (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD if ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD if ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) if ⟨M⟩ ∈ (ℒ R). (2)

Since our choice of M was arbitrary, we see that statement (2)
holds for any TM M. In particular, this means that statement
(2) holds for the TM R, which tells us that

⟨R⟩ ∉ (ℒ R) if ⟨R⟩ ∈ (ℒ R). (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD if ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD if ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) if ⟨M⟩ ∈ (ℒ R). (2)

Since our choice of M was arbitrary, we see that statement (2)
holds for any TM M. In particular, this means that statement
(2) holds for the TM R, which tells us that

⟨R⟩ ∉ (ℒ R) if ⟨R⟩ ∈ (ℒ R). (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD if ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD if ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) if ⟨M⟩ ∈ (ℒ R). (2)

Since our choice of M was arbitrary, we see that statement (2)
holds for any TM M. In particular, this means that statement
(2) holds for the TM R, which tells us that

⟨R⟩ ∉ (ℒ R) if ⟨R⟩ ∈ (ℒ R). (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD if ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD if ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) if ⟨M⟩ ∈ (ℒ R). (2)

Since our choice of M was arbitrary, we see that statement (2)
holds for any TM M. In particular, this means that statement
(2) holds for the TM R, which tells us that

⟨R⟩ ∉ (ℒ R) if ⟨R⟩ ∈ (ℒ R). (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

Regular
Languages CFLs

All Languages

R RE

LD

ATM

HALT

What This Means

● On a deeper philosophical level, the fact that non-
RE languages exist supports the following claim:

There are statements that
are true but not provable.

● Intuitively, given any non-RE language, there will
be some string in the language that cannot be
proven to be in the language.

● This result can be formalized as a result called
Gödel's incompleteness theorem, one of the
most important mathematical results of all time.

● Want to learn more? Take Phil 152 or CS154!

What This Means

● On a more philosophical note, you could interpret
the previous result in the following way:

There are inherent limits about what
mathematics can teach us.

● There's no automatic way to do math. There are
true statements that we can't prove.

● That doesn't mean that mathematics is worthless.
It just means that we need to temper our
expectations about it.

Where We Stand

● We've just done a crazy, whirlwind tour of computability
theory:
● The Church-Turing thesis tells us that TMs give us a

mechanism for studying computation in the abstract.
● Universal computers – computers as we know them – are not

just a stroke of luck. The existence of the universal TM ensures
that such computers must exist.

● Self-reference is an inherent consequence of computational
power.

● Undecidable problems exist partially as a consequence of the
above and indicate that there are statements whose truth can't
be determined by computational processes.

● Unrecognizable problems are out there and can be discovered
via diagonalization. They imply there are limits to mathematical
proof.

The Big Picture

DFA NFA

Regex
Right-
Linear
Gmr

CFG Decider

Recog-
nizer

Verifier

REG

CFL
R

RE

Where We've Been

● The class R represents problems that can be
solved by a computer.

● The class RE represents problems where “yes”
answers can be verified by a computer.

The mapping reduction can be used to find
connections between problems.

Where We're Going

● The class P represents problems that can be
solved eficiently by a computer.

● The class NP represents problems where “yes”
answers can be verified eficiently by a
computer.

Next Time

● Introduction to Complexity Theory
● Not all decidable problems are created

equal!

● The Classes P and NP
● Two fundamental and important complexity

classes.

● The P NP Question≟
● A literal million-dollar question!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200

