
  

Unsolvable Problems
Part Two



  

Outline for Today

● Recap from Last Time
● Where are we, again?

● A Diferent Perspective on Rr
● What exactly does “recognizability” mean?

● Verifers
● A new approach to problem-solving.

● Beyond Rr
● Monstrously hard problems!



  

Recap from Last Time



  

Self-Referential Programs

● Claim: Any program can be augmented 
to include a method called mySource() that 
returns a string representation of its 
source code.

● Theorem: It it possible to build Turing 
machines that get their own encodings 
and perform arbitrary computations on 
them.



  

What does this program do?

bool willAccept(string program, string input) {
   /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
   /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

What happens if...

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What happens if...

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!



  

What does this program do?

bool willHalt(string program, string input) {
   /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
   /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

What happens if...

… this program halts on this input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What happens if...

… this program halts on this input?
It loops on the input!

… this program loops on this input?
It halts on the input!
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New Stuf!



  

Beyond R and RE



  

Beyond R and RE

● We've now seen how to use self-reference 
as a tool for showing undecidability 
(finding languages not in R).

● We still have not broken out of RE yet, 
though.

● To do so, we will need to build up a 
better intuition for the class RE.



  

What exactly is the class RE?



  

RE, Formally

● Recall that the class RE is the class of all 
recognizable languages:

RE = { L | there is a TM M where (ℒ M) = L }
● Since R ≠ RE, there is no general way to 

“solve” problems in the class RE, if by “solve” 
you mean “make a computer program that 
can always tell you the correct answer.”

● So what exactly are the sorts of languages in 
RE?
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Does this graph contain a 4-clique?Does this graph contain a 4-clique?
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  Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then Y or N.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then Y or N.

Does this graph contain a 4-clique?Does this graph contain a 4-clique?



  

Key Intuition:

A language L is in RE if, for any string w, if 
you are convinced that w ∈ L, there is some 
way you could prove that to someone else.



  

Verification
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have a solution?



  

Verification
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Verification

Does this graph have a Hamiltonian 
path (a simple path that passes 

through every node exactly once?)



  

Verification

Does this graph have a Hamiltonian 
path (a simple path that passes 

through every node exactly once?)
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Verification

Does the hailstone sequence 
terminate for this number?

11



  

Verification

Does the hailstone sequence 
terminate for this number?

11

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

34

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

17

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

52

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

26

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

13

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

40

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

20

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

10

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

5

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

16

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

8

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

4

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

2

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

1

Try running fourteen steps of the Hailstone sequence.



  

Verification
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Verification
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Verification

Does this graph have a Hamiltonian 
path (a simple path that passes 

through every node exactly once?)



  

Verification
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path (a simple path that passes 

through every node exactly once?)



  

Verification

Does the hailstone sequence 
terminate for this number?

11



  

Verification

Does the hailstone sequence 
terminate for this number?

11

Try running fie steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

34

Try running fie steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

17

Try running fie steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

52

Try running fie steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

26

Try running fie steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

13

Try running fie steps of the Hailstone sequence.



  

Verification

● In each of the preceding cases, we were given some 
problem and some evidence supporting the claim that 
the answer is “yes.”

● Given the correct evidence, we can be certain that the 
answer is indeed “yes.”

● Given incorrect evidence, we aren't sure whether the 
answer is “yes.”
● Maybe there's no evidence saying that the answer is “yes,” 

or maybe there is some evidence, but just not the evidence 
we were given.

● Let's formalize this idea.



  

Verifiers

● A verifer for a language L is a TM V with 
the following properties:
● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L  ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● A string c where V accepts ⟨w, c⟩ is called 

a certifcate for w.
● Intuitively, what does this mean?



  

Deciders and Verifiers

Decider M
for L

Verifier V
for L

yes!

no!

yes!

not
sure

input string (w)

certifcate (c)

input string (w)

“Solve the problem”

“Check the answer”

V halts on all inputs.
w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩ 

M halts on all inputs.
w ∈ L ↔ M accepts w 

If M accepts, then 
w ∈ L.

If M accepts, then 
w ∈ L.

If M rejects, then 
w ∉ L.

If M rejects, then 
w ∉ L.

If V accepts ⟨w, c⟩, 
then w ∈ L.

If V accepts ⟨w, c⟩, 
then w ∈ L.

If V rejects ⟨w, c⟩, 
we don't know 
whether w ∈ L.

If V rejects ⟨w, c⟩, 
we don't know 
whether w ∈ L.



  

Verifiers

● A verifer for a language L is a TM V with the 
following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● If V accepts ⟨w, c⟩, then we're guaranteed w ∈ L.

● If V does not accept ⟨w, c⟩, then either
– w ∈ L, but you gave the wrong c, or
– w ∉ L, so no possible c will work.



  

Verifiers

● A verifer for a language L is a TM V with the 
following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● Notice that c is existentially quantified. Any 
string w ∈ L must have at least one c that 
causes V to accept, and possibly more.

● V is required to halt, so given any potential 
certificate c for w, you can check whether the 
certificate is correct.



  

Verifiers

● A verifer for a language L is a TM V with the 
following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● Notice that (ℒ V) ≠ L. (Good question: what is 
(ℒ V)?)

● The job of V is just to check certificates, not to 
decide membership in L.



  

Verifiers

● A verifer for a language L is a TM V with the 
following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● Although this formal definition works with a 
string c, remember that c can be an encoding of 
some other object.

● In practice, c will likely just be “some other 
auxiliary data that helps you out.”



  

Some Verifiers

● Let L be the following language:

    L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
                     terminates for n }

● Let's see how to build a verifier for L.



  

Verification

Does the hailstone sequence 
terminate for this number?

11



  

Verification

Does the hailstone sequence 
terminate for this number?

11

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

34

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

17

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

52

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

26

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

13

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

40

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

20

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

10

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

5

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

16

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

8

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

4

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

2

Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

1

Try running fourteen steps of the Hailstone sequence.



  

Some Verifiers

● Let L be the following language:

    L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
                     terminates for n }

  

 

● Do you see why ⟨n⟩ ∈ L if there is some c such 
that checkHailstone(n, c) returns true?

● Do you see why checkHailstone always halts?

bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
    }
    return n == 1;
}

bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
    }
    return n == 1;
}



  

Some Verifiers

● Let L be the following language:

    L = { ⟨G⟩ | G is a graph and G has a
                      Hamiltonian path }

● (A Hamiltonian path is a simple path that visits 
every node in the graph.)

● Let's see how to build a verifier for L.



  

Verification

Is there a simple path that goes 
through every node exactly once?



  

Verification

Is there a simple path that goes 
through every node exactly once?

1
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4

6

3



  

Some Verifiers

● Let L be the following language:

L = { ⟨G⟩ | G is a graph with a Hamiltonian path }

  

 

● Do you see why ⟨G⟩ ∈ L if there is a c where 
checkHamiltonian(G, c) returns true?

● Do you see why checkHamiltonian always halts?

bool checkHamiltonian(Graph G, vector<Node> c) {
   if (c.size() != G.numNodes()) return false;
   if (containsDuplicate(c)) return false;

   for (size_t i = 0; i < c.size() - 1; i++) {
       if (!G.hasEdge(c[i], c[i+1])) return false;
   }
   return true;
}

bool checkHamiltonian(Graph G, vector<Node> c) {
   if (c.size() != G.numNodes()) return false;
   if (containsDuplicate(c)) return false;

   for (size_t i = 0; i < c.size() - 1; i++) {
       if (!G.hasEdge(c[i], c[i+1])) return false;
   }
   return true;
}



  

Some Verifiers

● Consider ATM:

  ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● This is a canonical example of an undecidable 
language. There’s no way, in general, to tell 
whether a TM M will accept a string w.

● Although this language is undecidable, it’s an 
RE language, and it’s possible to build a 
verifier for it!
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Some Verifiers

● Consider ATM:

ATM = { ⟨M, w⟩ | M is a TM and M accepts w}

  

 

● Do you see why M accepts w if there is some c 
such that checkWillAccept(M, w, c) returns true?

● Do you see why checkWillAccept always halts?

bool checkWillAccept(TM M, string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
       simulate the next step of M running on w;
    }
    return whether M is in an accepting state;
}

bool checkWillAccept(TM M, string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
       simulate the next step of M running on w;
    }
    return whether M is in an accepting state;
}



  

What languages are verifiable?



  

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then your answer.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then your answer.

Let V be a verifier for a language L. Consider the following
function given in pseudocode:

bool mysteryFunction(string w) {
    int i = 0;
    while (true) {
        for (each string c of length i) {
             if (V accepts ⟨w, c ) ⟩ return true;
        }
        i++;
    }
}

What set of strings does mysteryFunction return true on?

Let V be a verifier for a language L. Consider the following
function given in pseudocode:

bool mysteryFunction(string w) {
    int i = 0;
    while (true) {
        for (each string c of length i) {
             if (V accepts ⟨w, c ) ⟩ return true;
        }
        i++;
    }
}

What set of strings does mysteryFunction return true on?



  

Theorem: If L is a language, then there is 
a verifier for L if and only if L ∈ RE.



  

Where We’ve Been

NFA Regex

State Elimination

Thompson’s Algorithm



  

Where We’re Going

Verifier Recognizer

Try all certificates

Enforce a step count
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Verifiers and RE

● Theorem: If V is a verifier for L, then L ∈ RE.
● Proof sketch: Consider the following program:

  

 

 

If w ∈ L, there is some c ∈ Σ* where V accepts ⟨w, c⟩. 
The function isInL tries all possible strings as certificate, 
so it will eventually find c (or some other certificate), see 
V accept ⟨w, c⟩, then return true. Conversely, if isInL(w) 
returns true, then there was some string c such that V 
accepted ⟨w, c⟩, so w ∈ L. ■

bool isInL(string w) {
   int i = 0;
   while (true) {
      for (each string c of length i) {
          if (V accepts w, c ) ⟨ ⟩ return true;
      }
      i++;
   }
}

bool isInL(string w) {
   int i = 0;
   while (true) {
      for (each string c of length i) {
          if (V accepts w, c ) ⟨ ⟩ return true;
      }
      i++;
   }
}



  

Verifiers and RE

● Theorem: If L ∈ RE, then there is a verifier for L.
● Proof goal: Beginning with a recognizer M for 

the language L, show how to construct a verifier 
V for L.

● The challenges:
● A recognizer M is not required to halt on all inputs. A 

verifier V must always halt.
● A recognizer M takes in one single input. A verifier V 

takes in two inputs.
● We’ll need to find a way of reconciling these 

requirements.



  

Recall: If M is a recognizer for a language 
L, then M accepts w if w ∈ L.

Key insight: If M accepts a string w, it 
always does so in a finite number of steps.

Idea: Adapt the verifier for A    into a more 
general construction that turns any 

recognizer into a verifier by running it for a 
fixed number of steps.

TM



  

Verifiers and RE

● Theorem: If L ∈ RE, then there is a verifier for L.
● Proof sketch: Consider the following program:

  

 

 

Notice that checkIsInL always halts, since each step takes 
only finite time to complete. Next, notice that if there is a c 
where checkIsInL(w, c) returns true, then M accepted w 
after running for c steps, so w ∈ L. Conversely, if w ∈ L, 
then M accepts w after some number of steps (call that 
number c). Then checkIsInL(w, c) will run M on w for c 
steps, watch M accept w, then return true. ■

 bool checkIsInL(string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
        simulate the next step of M running on W;
    }
    return whether M is in an accepting state;
 }

 bool checkIsInL(string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
        simulate the next step of M running on W;
    }
    return whether M is in an accepting state;
 }



  

RE and Proofs

● Verifiers and recognizers give two diferent 
perspectives on the “proof” intuition for RE.

● Verifiers are explicitly built to check proofs that 
strings are in the language.
● If you know that some string w belongs to the 

language and you have the proof of it, you can 
convince someone else that w ∈ L.

● You can think of a recognizer as a device that 
“searches” for a proof that w ∈ L.
● If it finds it, great!
● If not, it might loop forever.



  

RE and Proofs

● If the RE languages represent languages 
where membership can be proven, what 
does a non-RE language look like?

● Intuitively, a language is not in RE if 
there is no general way to prove that a 
given string w ∈ L actually belongs to L.

● In other words, even if you knew that a 
string was in the language, you may 
never be able to convince anyone of it!



  

Time-Out for Announcements!
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Problem Set Nine

● Problem Set Eight was due today at 2:30PM.
● You can use late days here to extend the deadline as far 

as Sunday at 2:30PM, but we don’t recommend this.
● Problem Set Nine goes out today. It’s due next 

Friday at 2:30PM.
● Play around with the limits of R and RE languages – the 

upper extent of computation!
● See how everything fits together!

● Due to university policies, no late submissions 
will be accepted for PS9. Please budget at least 
two hours before the deadline to submit the 
assignment.



  

The Last Two Guides

● We’ve posted two final guides to the course 
website:
● The Guide to Self-Reference, which talks about 

proofs of undecidability via self-reference.
● The Guide to the Lava Diagram, which 

provides an intuition for how diferent classes of 
languages relate to one another.

● Give these a read – there’s a ton of useful 
information in there!



  

Final Exam Logistics

● Our final exam is Monday, March 19th from 3:30PM – 
6:30PM, location Hewlett 200 & 201 (no special last name 
assignments).
● Sorry about how soon that is – the registrar picked this time, not 

us. If we had a choice, it would be on the last day of finals week.
● The exam is cumulative. You’re responsible for topics from 

PS1 – PS9 and all of the lectures.
● As with the midterms, the exam is closed-book, closed-

computer, and limited-note. You can bring one double-
sided sheet of 8.5” × 11” notes with you to the exam, 
decorated any way you’d like.

● Students with OAE accommodations: if we don’t yet have 
your OAE letter, please send it to us ASAP.



  

Preparing for the Exam

● We’ve posted six practice final exams, with 
solutions, to the course website.

● These exams are essentially the final exams we’ve 
given out in the last six quarters, with a few tweaks 
and modifications.

● Practice Final 1 and Practice Final 6 are the two 
most recent exams and should give you the best 
indicator of the expected topic coverage.

● And don’t forget that Extra Practice Problems 3 is 
available online. After today’s lecture, you know 
enough to take on any of those questions, including 
the starred ones.



  

Back to CS103!



  

Finding Non-RE Languages



  

Finding Non-RE Languages

● Right now, we know that non-RE 
languages exist, but we have no idea 
what they look like.

● How might we find one?



  

Languages, TMs, and TM Encodings

● Recall: The language of a TM M is the set

ℒ(M) = { w ∈ Σ* | M accepts w }     
● Some of the strings in this set might be 

descriptions of TMs.
● What happens if we list of all Turing 

machines, looking at how those TMs 
behave given other TMs as input?
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Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then your answer.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then your answer.

What are we going
to do next?

What are we going
to do next?



  

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Flip all “accept” 
to “no” and 
iice-iersa

Flip all “accept” 
to “no” and 
iice-iersa

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

What TM has 
this behaiior?
What TM has 
this behaiior?

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

Acc

No

Acc

No

…

No Acc …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No No …

… … … … … … …

No No No Acc Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

Acc

No

No

Acc

Acc

No

No

…

Acc …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … … …

No No No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

No

Acc

…

…

Acc

No

No

Acc

Acc

No

…

…

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

No TM has 
this behaiior!
No TM has 

this behaiior!

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …



  

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

“The language of all
TMs that do not accept
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Diagonalization Revisited

● The diagonalization language, which we 
denote LD, is defined as

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

● That is, LD is the set of descriptions of 
Turing machines that do not accept 
themselves. 



  

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.

Proof: By contradiction; assume that LD ∈ RE. Then there must
be some TM R such that (ℒ R) = LD.

 

Since (ℒ R) = LD, we know that if M is any TM, then
 

⟨M⟩ ∈ LD if   ⟨M⟩ ∈ (ℒ R) (1)
 

From the definition of LD, we see that ⟨M⟩ ∈ LD if ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

 

⟨M⟩ ∉ (ℒ M) if   ⟨M⟩ ∈ (ℒ R) (2)
 

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

 

⟨R⟩ ∉ (ℒ R) if    ⟨R⟩ ∈ (ℒ R) (3)
 

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■
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Because (ℒ R) = LD, we know that a 
string belongs to one set if and 
only if it belongs to the other.

Because (ℒ R) = LD, we know that a 
string belongs to one set if and 
only if it belongs to the other.
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What This Means

● On a deeper philosophical level, the fact that non-
RE languages exist supports the following claim:

There are statements that
are true but not provable.

● Intuitively, given any non-RE language, there will 
be some string in the language that cannot be 
proven to be in the language.

● This result can be formalized as a result called 
Gödel's incompleteness theorem, one of the 
most important mathematical results of all time.

● Want to learn more? Take Phil 152 or CS154!



  

What This Means

● On a more philosophical note, you could interpret 
the previous result in the following way:

There are inherent limits about what 
mathematics can teach us.

● There's no automatic way to do math. There are 
true statements that we can't prove.

● That doesn't mean that mathematics is worthless. 
It just means that we need to temper our 
expectations about it.



  

Where We Stand

● We've just done a crazy, whirlwind tour of computability 
theory:
● The Church-Turing thesis tells us that TMs give us a 

mechanism for studying computation in the abstract.
● Universal computers – computers as we know them – are not 

just a stroke of luck. The existence of the universal TM ensures 
that such computers must exist.

● Self-reference is an inherent consequence of computational 
power.

● Undecidable problems exist partially as a consequence of the 
above and indicate that there are statements whose truth can't 
be determined by computational processes.

● Unrecognizable problems are out there and can be discovered 
via diagonalization. They imply there are limits to mathematical 
proof.



  

The Big Picture
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Where We've Been

● The class R represents problems that can be 
solved by a computer.

● The class RE represents problems where “yes” 
answers can be verified by a computer. 

The mapping reduction can be used to find 
connections between problems.



  

Where We're Going

● The class P represents problems that can be 
solved eficiently by a computer.

● The class NP represents problems where “yes” 
answers can be verified eficiently by a 
computer.



  

Next Time

● Introduction to Complexity Theory
● Not all decidable problems are created 

equal!

● The Classes P and NP
● Two fundamental and important complexity 

classes.

● The P  NP Question≟
● A literal million-dollar question!
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