Unsolvable Problems Part Two

Outline for Today

- **Recap from Last Time**
 - Where are we, again?
- A Different Perspective on RE
 - What exactly does "recognizability" mean?
- Verifiers
 - A new approach to problem-solving.
- Beyond RE
 - Monstrously hard problems!

Recap from Last Time

Self-Referential Programs

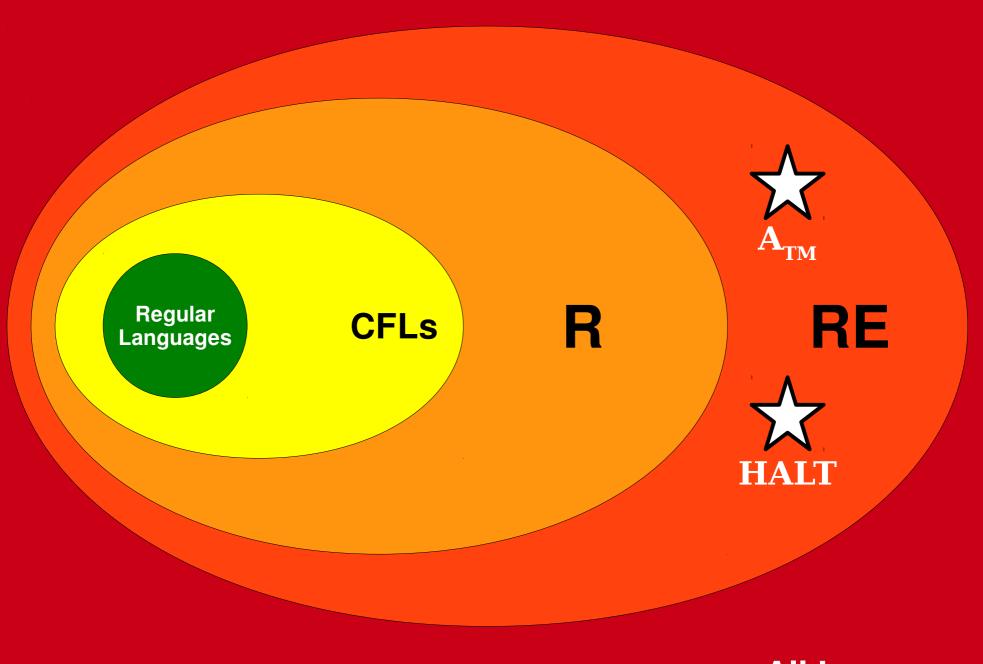
- Claim: Any program can be augmented to include a method called mySource() that returns a string representation of its source code.
- **Theorem:** It it possible to build Turing machines that get their own encodings and perform arbitrary computations on them.

What does this program do?

```
bool willAccept(string program, string input) {
   /* ... some implementation ... */
}
int main() {
   string me = mySource();
   string input = getInput();
   if (willAccept(me, input)) {
      reject();
   } else {
                                        What happens if...
      accept();
                              ... this program accepts its input?
                                    It rejects the input!
                              ... this program doesn't accept its input?
                                    It accepts the input!
```

What does this program do?

```
bool willHalt(string program, string input) {
   /* ... some implementation ... */
}
int main() {
   string me = mySource();
   string input = getInput();
   if (willHalt(me, input)) {
      while (true) {
         // loop infinitely
                                          What happens if...
                                 ... this program halts on this input?
     else {
                                        It loops on the input!
      accept();
                                 ... this program loops on this input?
                                        It halts on the input!
```



All Languages

New Stuff!

Beyond ${\boldsymbol{R}}$ and ${\boldsymbol{R}}{\boldsymbol{E}}$

Beyond ${\bf R}$ and ${\bf RE}$

- We've now seen how to use self-reference as a tool for showing undecidability (finding languages not in R).
- We still have not broken out of **RE** yet, though.
- To do so, we will need to build up a better intuition for the class **RE**.

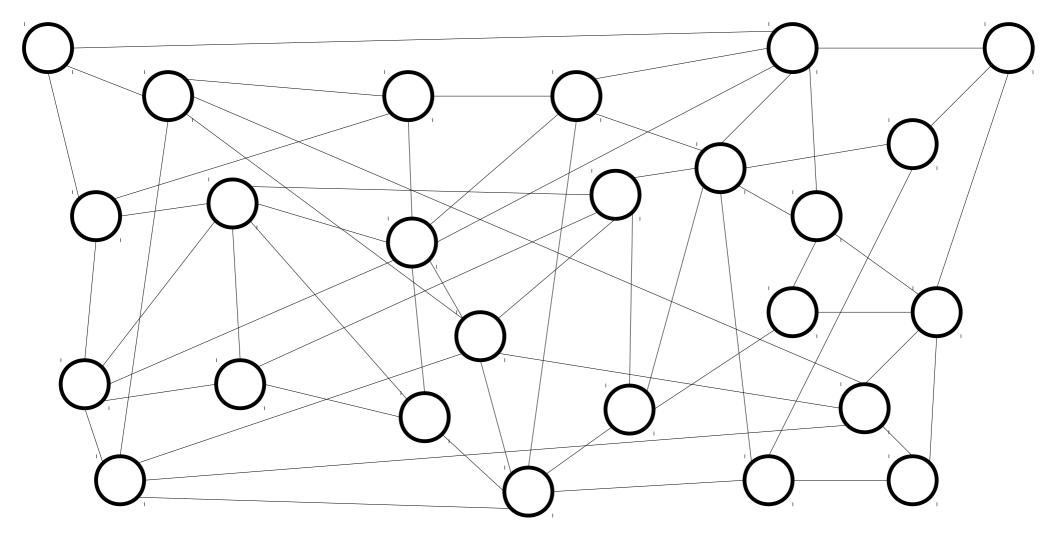
What exactly is the class **RE**?

RE, Formally

• Recall that the class **RE** is the class of all recognizable languages:

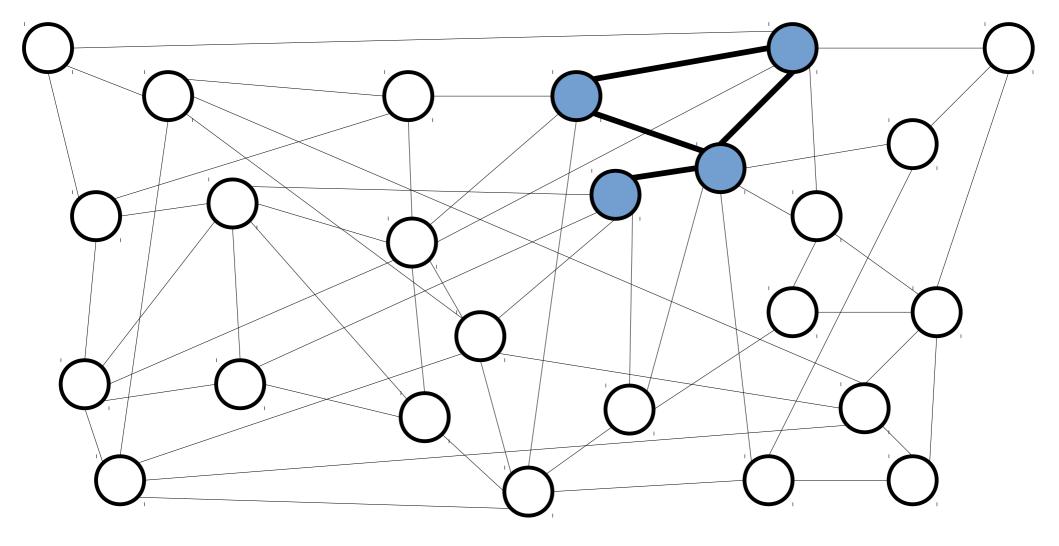
RE = { *L* | there is a TM *M* where $\mathcal{L}(M) = L$ }

- Since R ≠ RE, there is no general way to "solve" problems in the class RE, if by "solve" you mean "make a computer program that can always tell you the correct answer."
- So what exactly *are* the sorts of languages in **RE**?



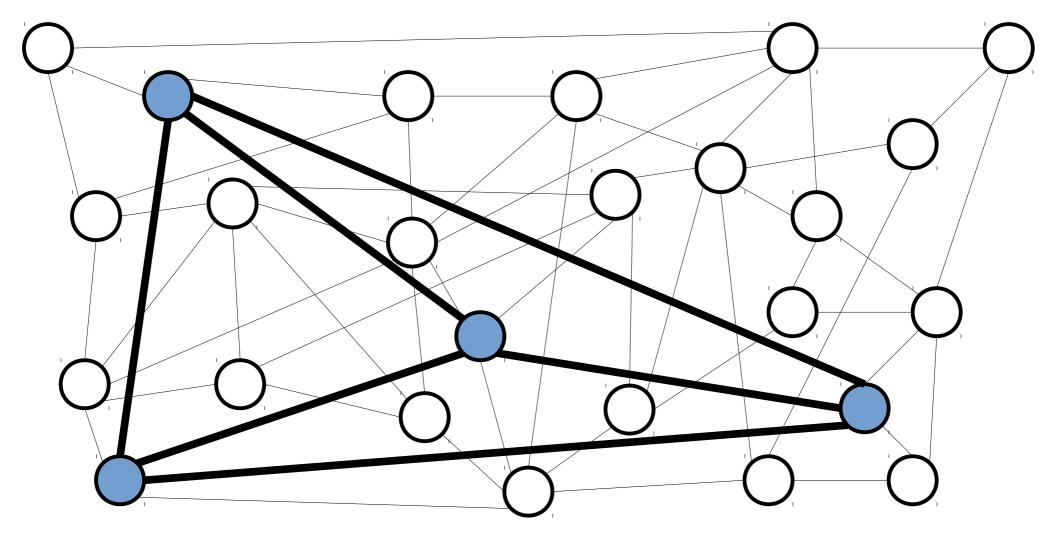
Does this graph contain a 4-clique?

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **Y** or **N**.



Does this graph contain a 4-clique?

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **Y** or **N**.



Does this graph contain a 4-clique?

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **Y** or **N**.

Key Intuition:

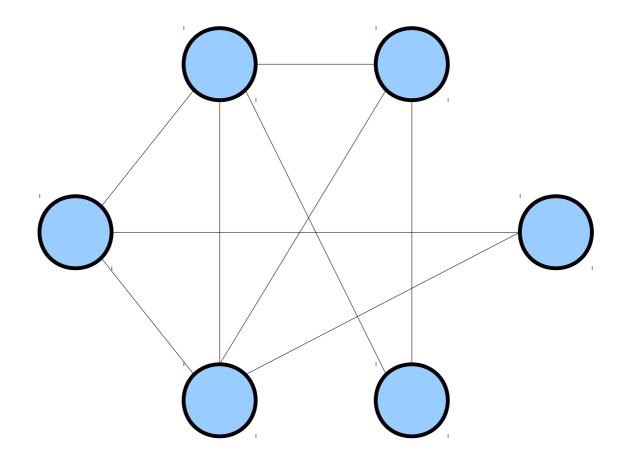
A language *L* is in **RE** if, for any string *w*, if you are *convinced* that $w \in L$, there is some way you could prove that to someone else.

		7		6		1		
					3		5	2
3			1		5	9		7
6		5		3		8		9
	1						2	
8		2		1		5		4
1		3	2		7			8
5	7		4					
		4		8		7		

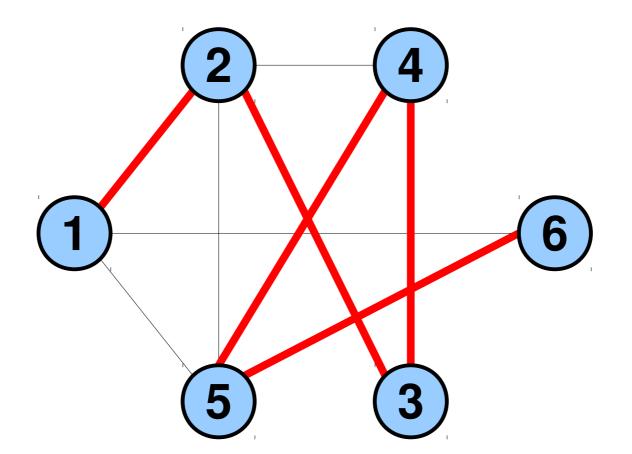
Does this Sudoku puzzle have a solution?

2	5	7	9	6	4	1	8	3
4	9	1	8	7	3	6	5	2
3	8	6	1	2	5	9	4	7
6	4	5	7	3	2	8	1	9
7	1	9	5	4	8	3	2	6
8	3	2	6	1	9	5	7	4
1	6	3	2	5	7	4	9	8
5	7	8	4	9	6	2	3	1
9	2	4	3	8	1	7	6	5

Does this Sudoku puzzle have a solution?



Does this graph have a *Hamiltonian path* (a simple path that passes through every node exactly once?)



Does this graph have a *Hamiltonian path* (a simple path that passes through every node exactly once?)

11

11

Try running fourteen steps of the Hailstone sequence.

34

Try running fourteen steps of the Hailstone sequence.

17

Try running fourteen steps of the Hailstone sequence.

52

Try running fourteen steps of the Hailstone sequence.

26

Try running fourteen steps of the Hailstone sequence.

13

Try running fourteen steps of the Hailstone sequence.

40

Try running fourteen steps of the Hailstone sequence.

20

Try running fourteen steps of the Hailstone sequence.

10

Try running fourteen steps of the Hailstone sequence.

5

Try running fourteen steps of the Hailstone sequence.

16

Try running fourteen steps of the Hailstone sequence.

8

Try running fourteen steps of the Hailstone sequence.

4

Try running fourteen steps of the Hailstone sequence.

2

Try running fourteen steps of the Hailstone sequence.

1

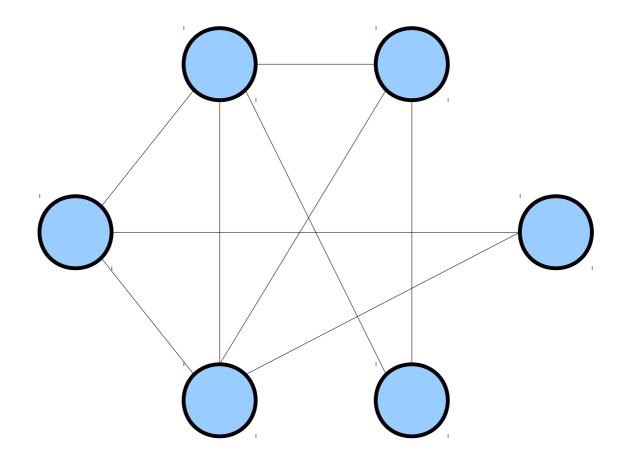
Try running fourteen steps of the Hailstone sequence.

		7		6		1		
					3		5	2
3			1		5	9		7
6		5		3		8		9
	1						2	
8		2		1		5		4
1		3	2		7			8
5	7		4					
		4		8		7		

Does this Sudoku puzzle have a solution?

1	1	7	1	6	1	1	1	1
1	1	1	1	1	3	1	5	2
3	1	1	1	1	5	9	1	7
6	1	5	1	3	1	8	1	9
1	1	1	1	4	1	1	2	1
8	1	2	1	1	1	5	1	4
1	1	3	2	1	7	1	1	8
5	7	1	4	1	1	1	1	1
1	1	4	1	8	1	7	1	1

Does this Sudoku puzzle have a solution?



Does this graph have a *Hamiltonian path* (a simple path that passes through every node exactly once?)



Does this graph have a *Hamiltonian path* (a simple path that passes through every node exactly once?)

11

11

Try running five steps of the Hailstone sequence.

34

Try running five steps of the Hailstone sequence.

17

Try running five steps of the Hailstone sequence.

52

Try running five steps of the Hailstone sequence.

26

Try running five steps of the Hailstone sequence.

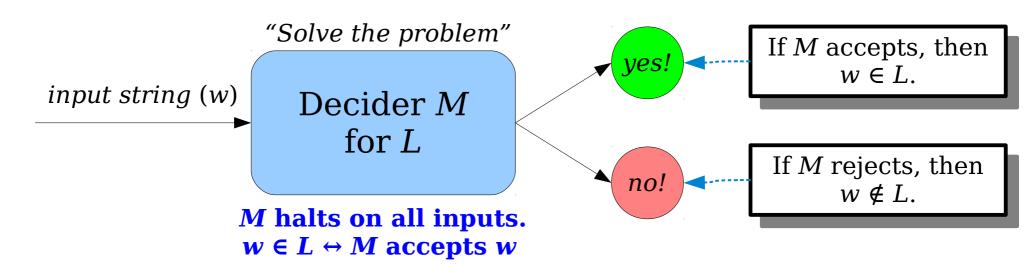
13

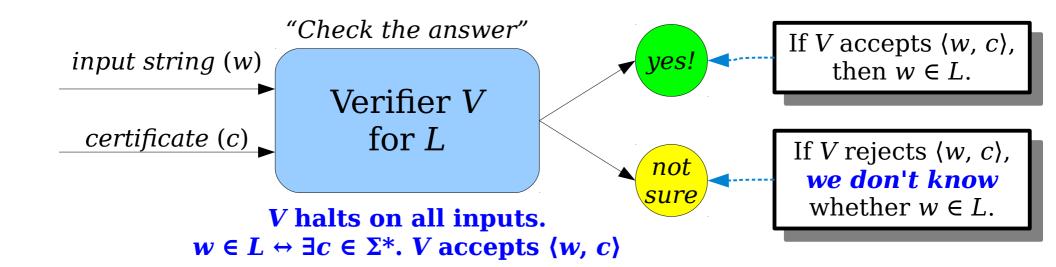
Try running five steps of the Hailstone sequence.

- In each of the preceding cases, we were given some problem and some evidence supporting the claim that the answer is "yes."
- Given the correct evidence, we can be certain that the answer is indeed "yes."
- Given incorrect evidence, we aren't sure whether the answer is "yes."
 - Maybe there's *no* evidence saying that the answer is "yes," or maybe there is some evidence, but just not the evidence we were given.
- Let's formalize this idea.

- A *verifier* for a language *L* is a TM *V* with the following properties:
 - *V* halts on all inputs.
 - For any string $w \in \Sigma^*$, the following is true: $w \in L \leftrightarrow \exists c \in \Sigma^*$. *V* accepts (*w*, *c*)
- A string c where V accepts (w, c) is called a certificate for w.
- Intuitively, what does this mean?

Deciders and Verifiers





- A *verifier* for a language *L* is a TM *V* with the following properties:
 - *V* halts on all inputs.
 - For any string $w \in \Sigma^*$, the following is true: $w \in L \iff \exists c \in \Sigma^*. V \text{ accepts } \langle w, c \rangle$
- Some notes about *V*:
 - If V accepts $\langle w, c \rangle$, then we're guaranteed $w \in L$.
 - If V does not accept $\langle w, c \rangle$, then either
 - $w \in L$, but you gave the wrong *c*, or
 - $w \notin L$, so no possible *c* will work.

- A *verifier* for a language *L* is a TM *V* with the following properties:
 - *V* halts on all inputs.
 - For any string $w \in \Sigma^*$, the following is true: $w \in L \iff \exists c \in \Sigma^*$. *V* accepts (*w*, *c*)
- Some notes about *V*:
 - Notice that c is existentially quantified. Any string $w \in L$ must have at least one c that causes V to accept, and possibly more.
 - V is required to halt, so given any potential certificate c for w, you can check whether the certificate is correct.

- A *verifier* for a language *L* is a TM *V* with the following properties:
 - *V* halts on all inputs.
 - For any string $w \in \Sigma^*$, the following is true: $w \in L \iff \exists c \in \Sigma^*. V \text{ accepts } (w, c)$
- Some notes about *V*:
 - Notice that $\mathscr{L}(V) \neq L$. (Good question: what is $\mathscr{L}(V)$?)
 - The job of V is just to check certificates, not to decide membership in L.

- A *verifier* for a language *L* is a TM *V* with the following properties:
 - *V* halts on all inputs.
 - For any string $w \in \Sigma^*$, the following is true: $w \in L \iff \exists c \in \Sigma^*. V \text{ accepts } \langle w, c \rangle$
- Some notes about *V*:
 - Although this formal definition works with a string *c*, remember that *c* can be an encoding of some other object.
 - In practice, *c* will likely just be "some other auxiliary data that helps you out."

Some Verifiers

• Let *L* be the following language:

 $L = \{ \langle n \rangle \mid n \in \mathbb{N} \text{ and the hailstone sequence} \\ \text{terminates for } n \}$

• Let's see how to build a verifier for *L*.

11

11

Try running fourteen steps of the Hailstone sequence.

34

Try running fourteen steps of the Hailstone sequence.

17

Try running fourteen steps of the Hailstone sequence.

52

Try running fourteen steps of the Hailstone sequence.

26

Try running fourteen steps of the Hailstone sequence.

13

Try running fourteen steps of the Hailstone sequence.

40

Try running fourteen steps of the Hailstone sequence.

20

Try running fourteen steps of the Hailstone sequence.

10

Try running fourteen steps of the Hailstone sequence.

5

Try running fourteen steps of the Hailstone sequence.

16

Try running fourteen steps of the Hailstone sequence.

8

Try running fourteen steps of the Hailstone sequence.

4

Try running fourteen steps of the Hailstone sequence.

2

Try running fourteen steps of the Hailstone sequence.

1

Try running fourteen steps of the Hailstone sequence.

Some Verifiers

- Let *L* be the following language:
 - $L = \{ \langle n \rangle \mid n \in \mathbb{N} \text{ and the hailstone sequence} \\ \text{terminates for } n \}$

bool checkHailstone(int n, int c) {
 for (int i = 0; i < c; i++) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 }
 return n == 1;
}</pre>

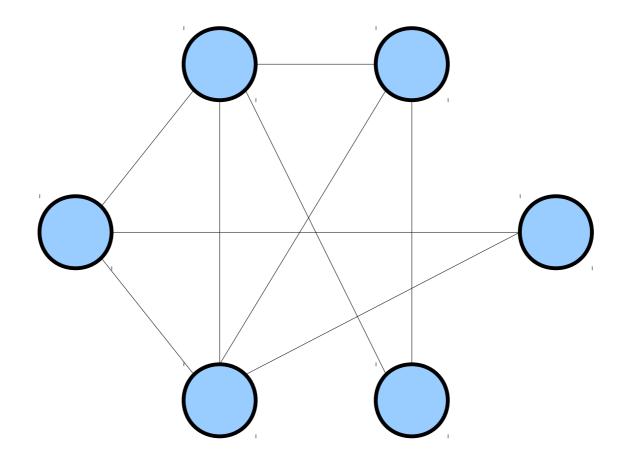
- Do you see why ⟨n⟩ ∈ L iff there is some c such that checkHailstone(n, c) returns true?
- Do you see why checkHailstone always halts?

• Let *L* be the following language:

$L = \{ \langle G \rangle \mid G \text{ is a graph and } G \text{ has a} \\ \text{Hamiltonian path } \}$

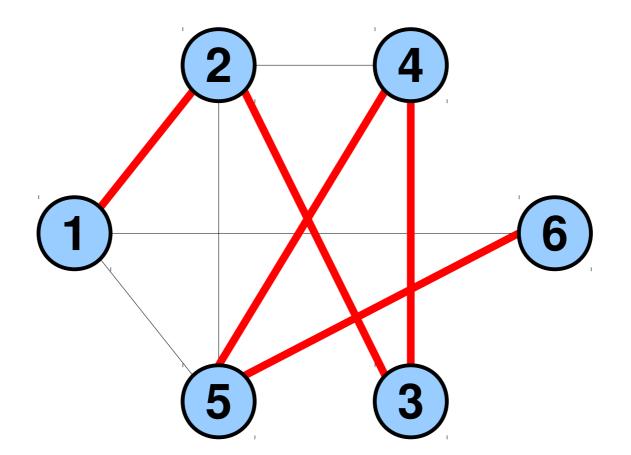
- (A Hamiltonian path is a simple path that visits every node in the graph.)
- Let's see how to build a verifier for *L*.

Verification



Is there a simple path that goes through every node exactly once?

Verification



Is there a simple path that goes through every node exactly once?

• Let *L* be the following language:

 $L = \{ \langle G \rangle \mid G \text{ is a graph with a Hamiltonian path } \}$

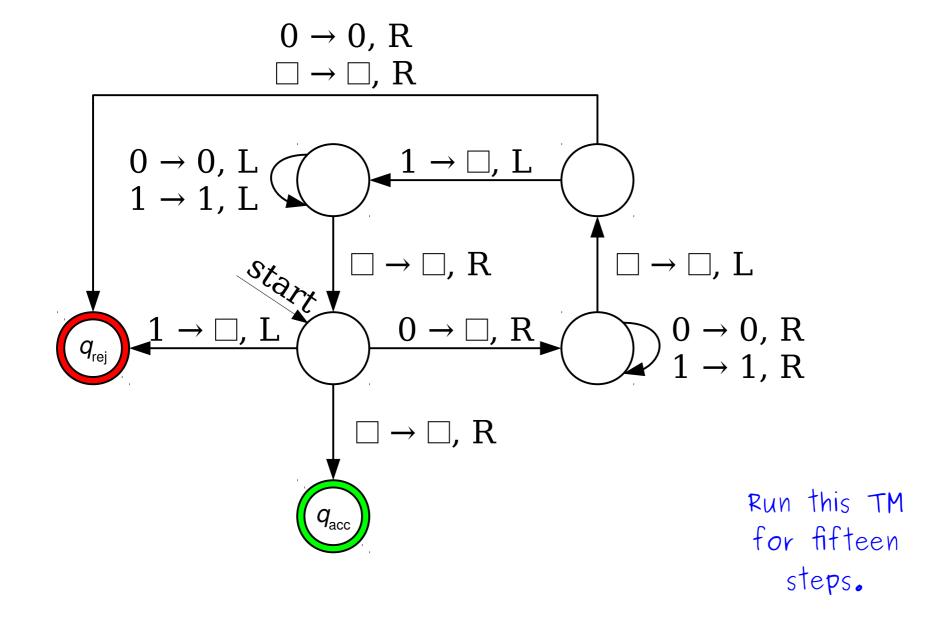
```
bool checkHamiltonian(Graph G, vector<Node> c) {
    if (c.size() != G.numNodes()) return false;
    if (containsDuplicate(c)) return false;
    for (size_t i = 0; i < c.size() - 1; i++) {
        if (!G.hasEdge(c[i], c[i+1])) return false;
    }
    return true;
}</pre>
```

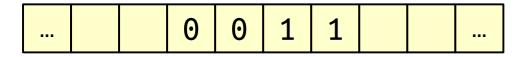
- Do you see why ⟨G⟩ ∈ L iff there is a c where checkHamiltonian(G, c) returns true?
- Do you see why checkHamiltonian always halts?

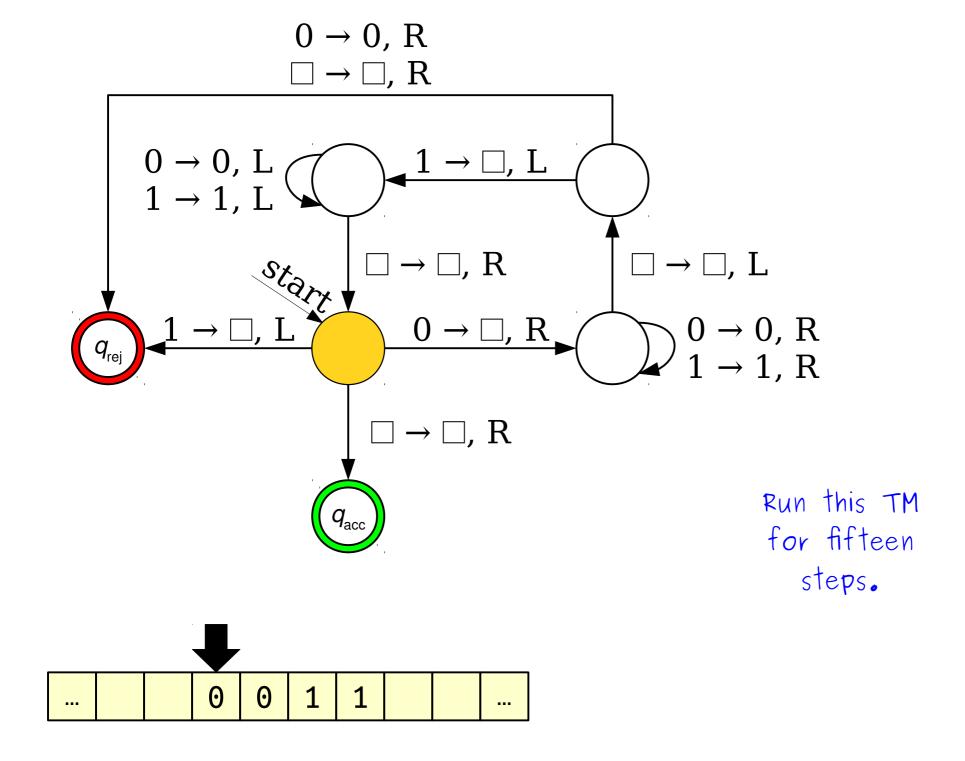
• Consider A_{TM} :

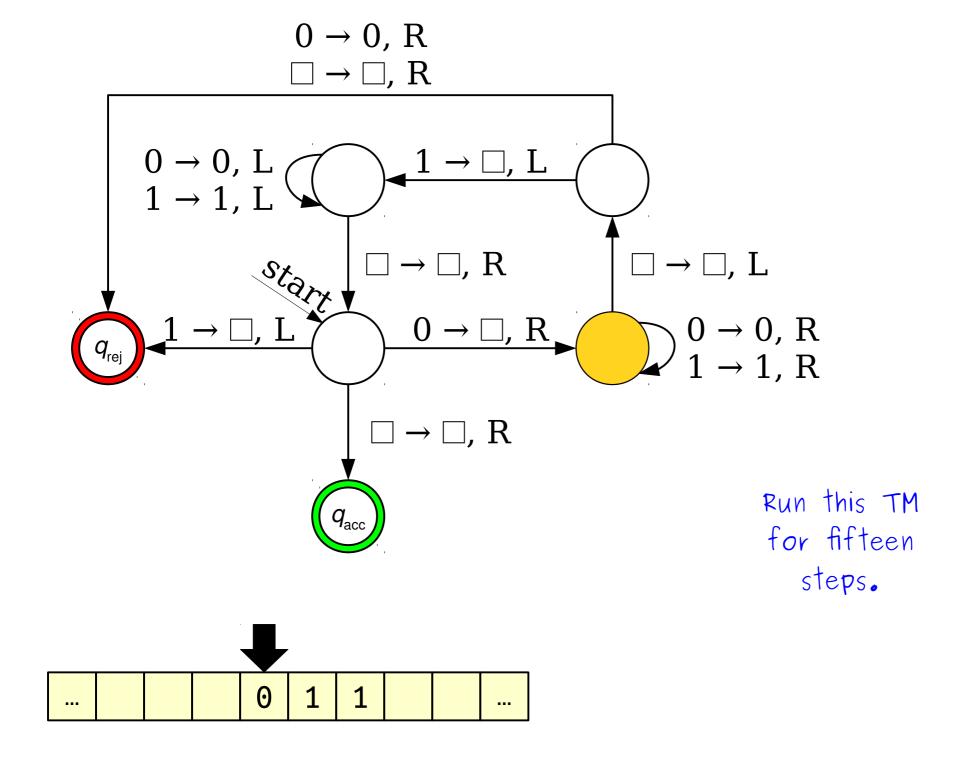
 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}.$

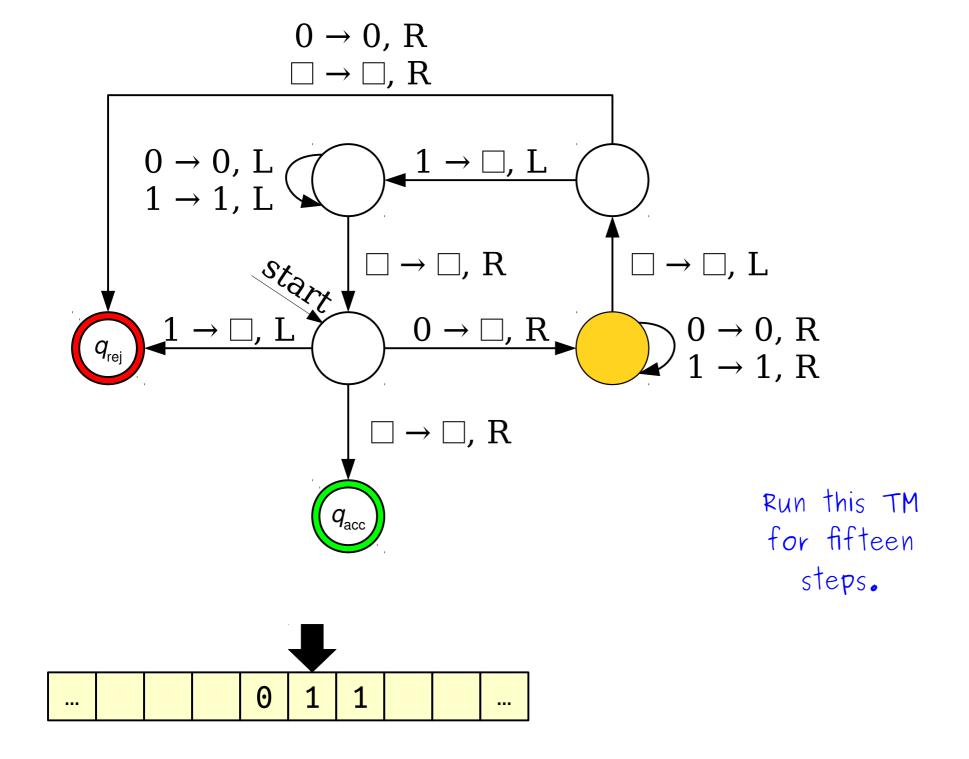
- This is a *canonical* example of an undecidable language. There's no way, in general, to tell whether a TM *M* will accept a string *w*.
- Although this language is undecidable, it's an RE language, and it's possible to build a verifier for it!

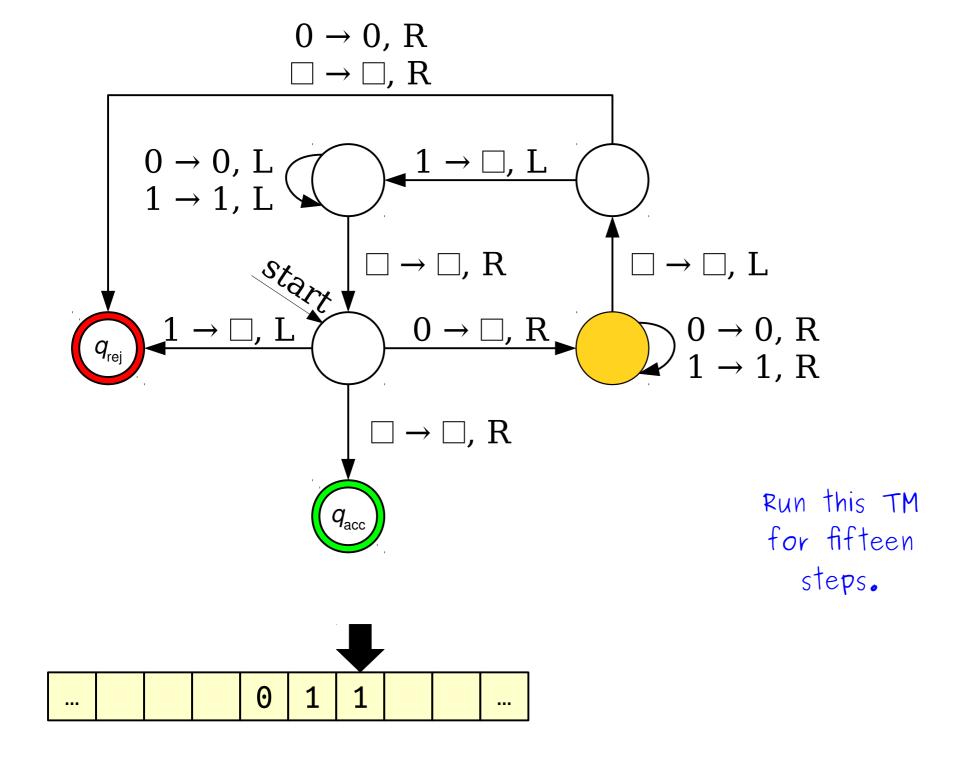


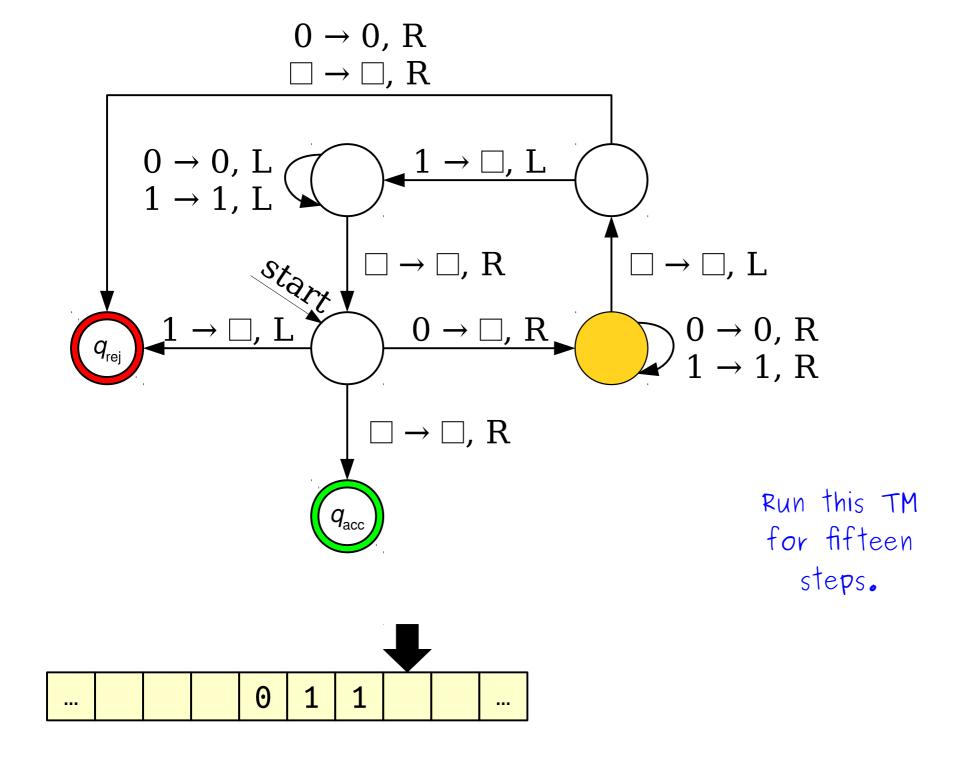


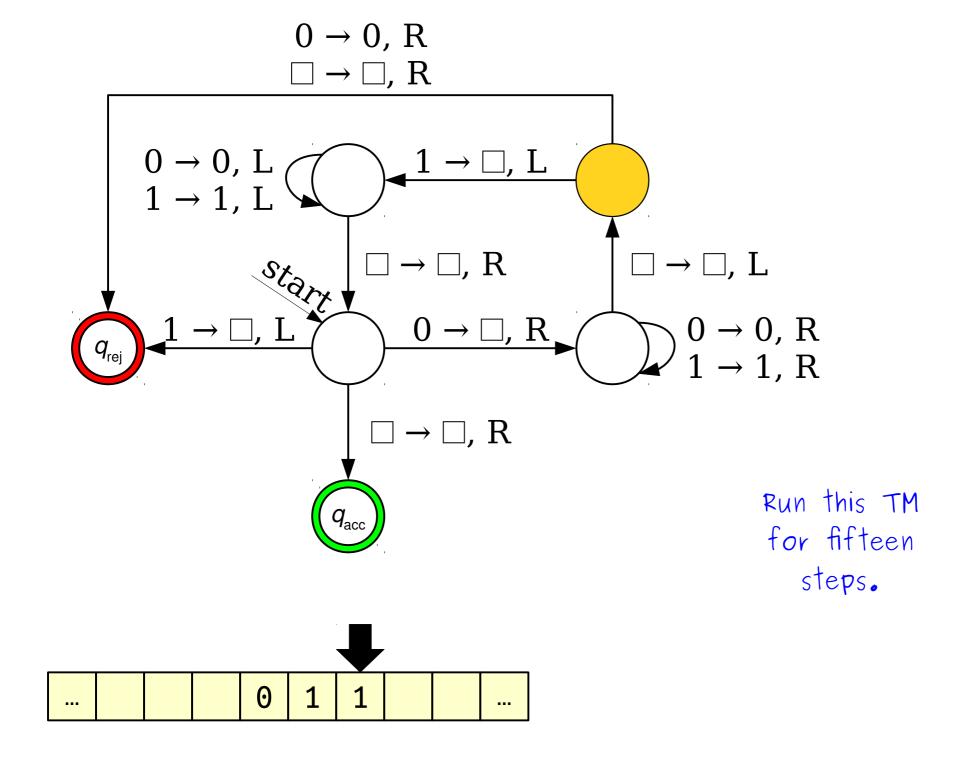


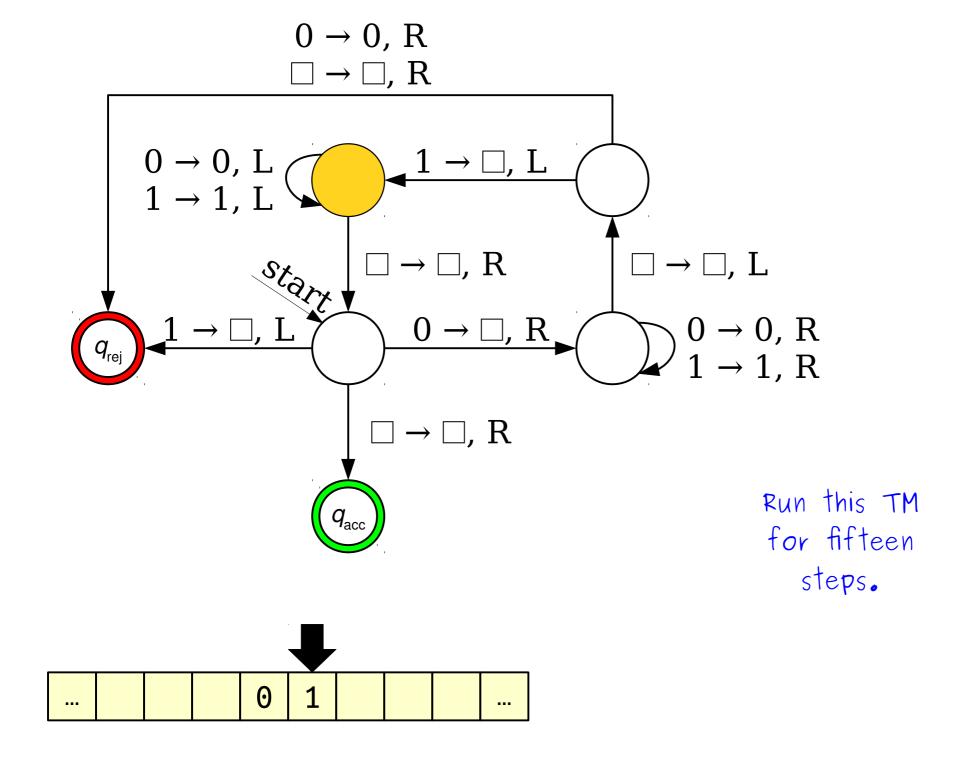


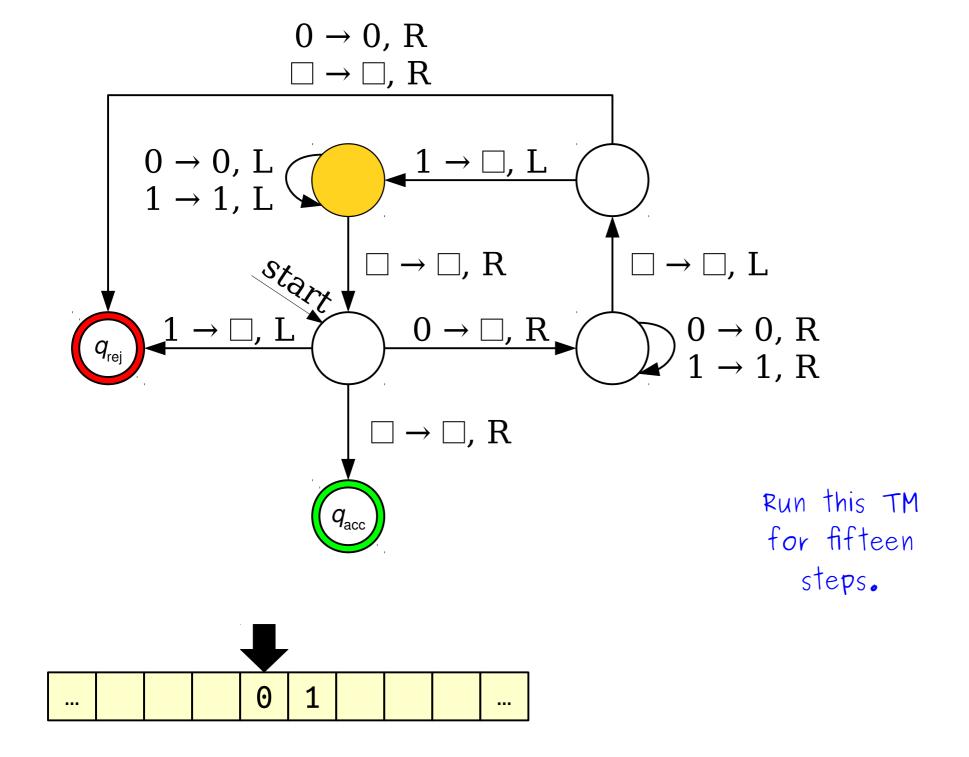


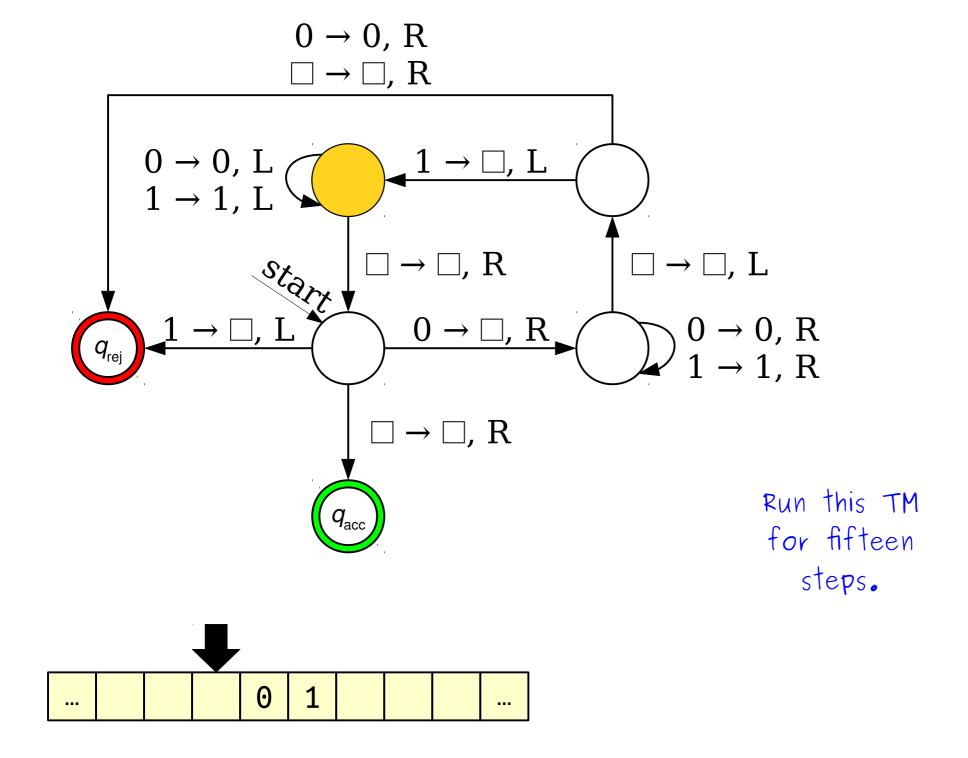


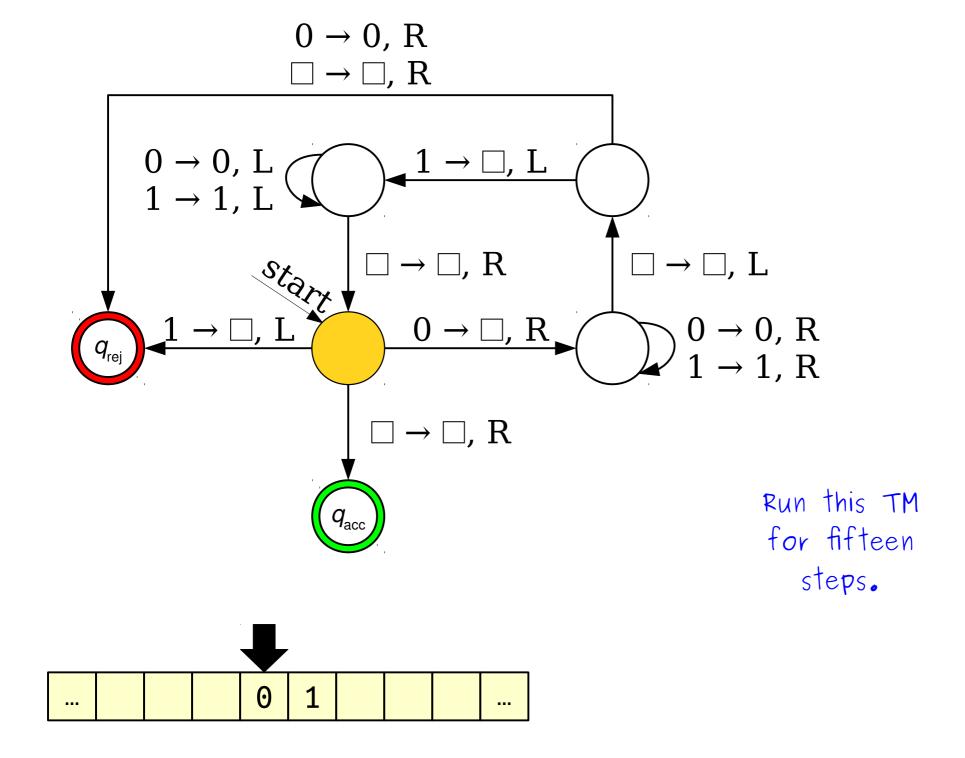


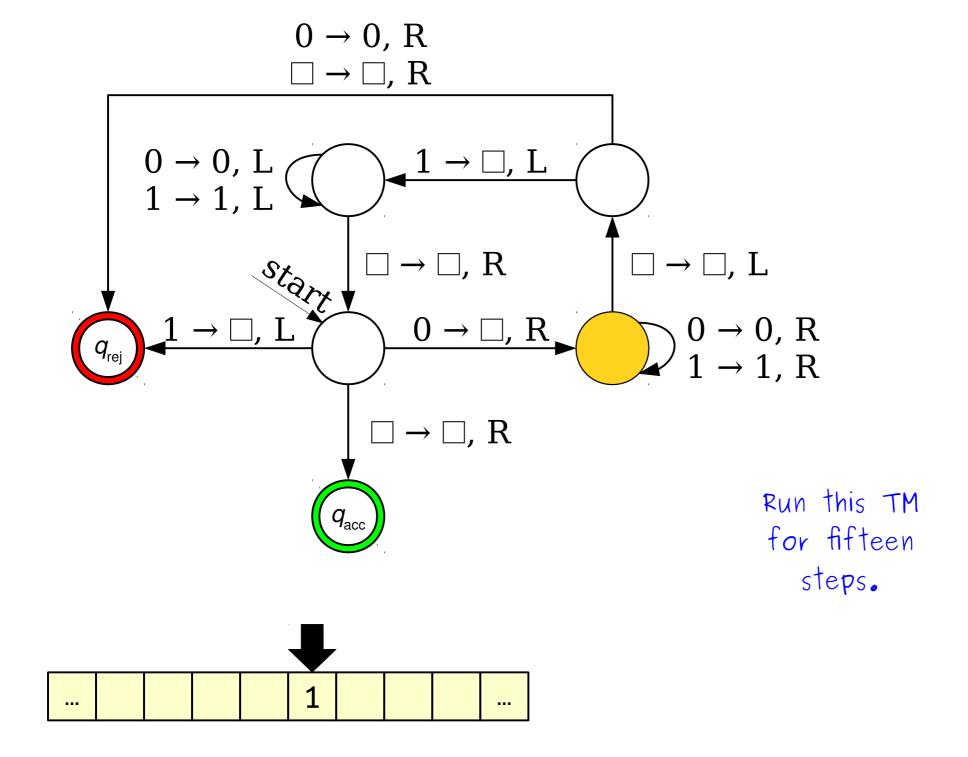


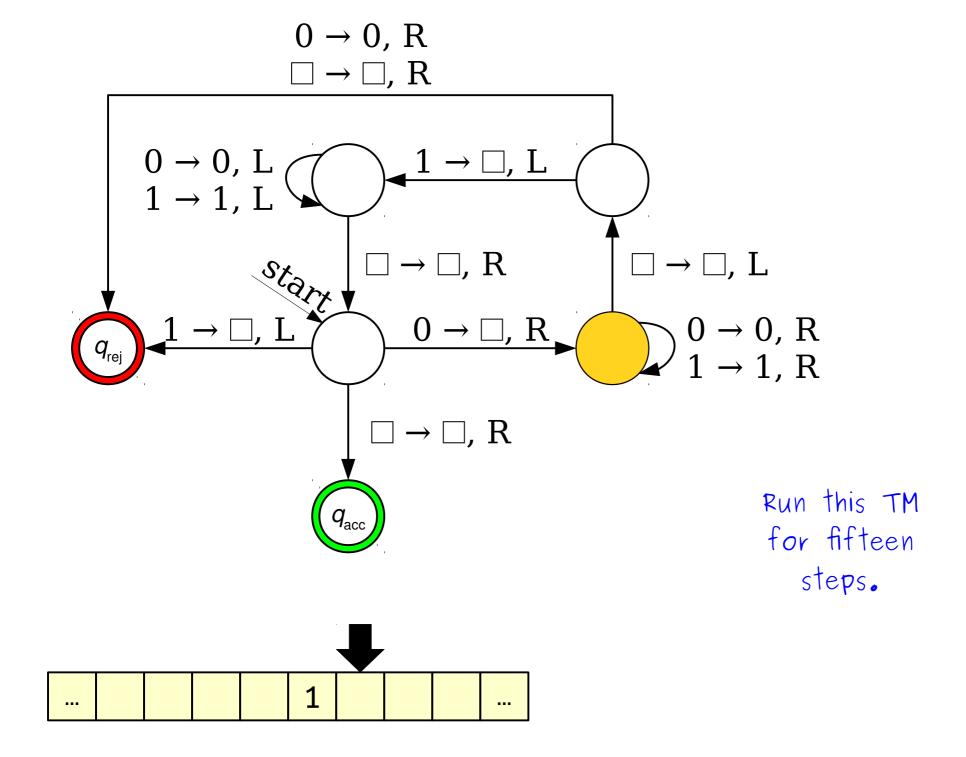


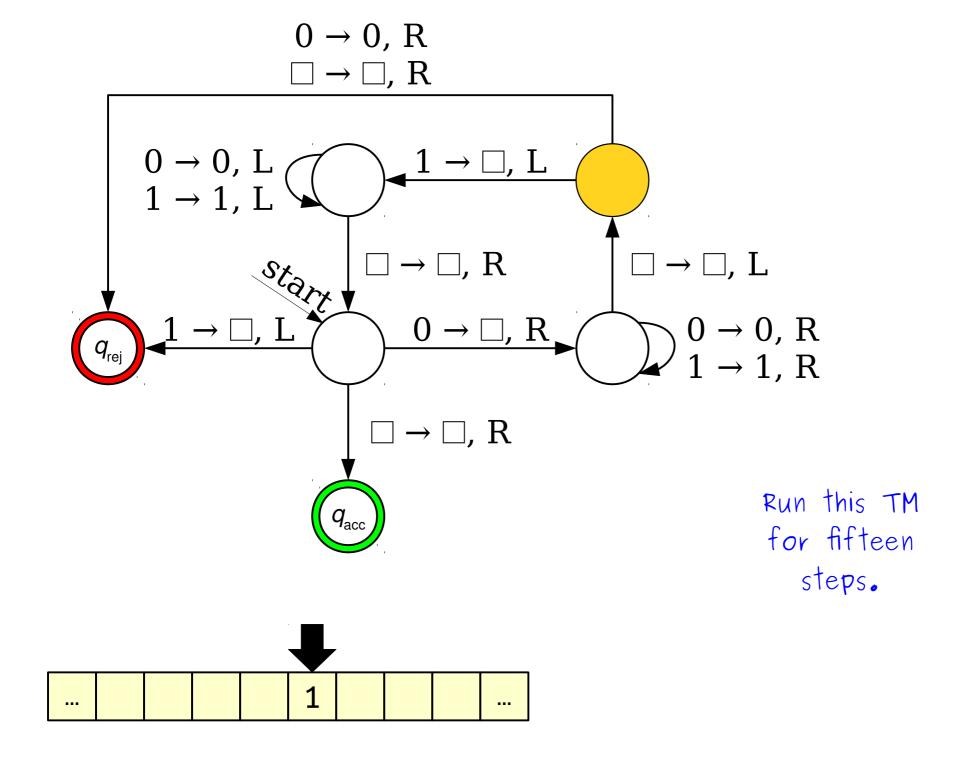


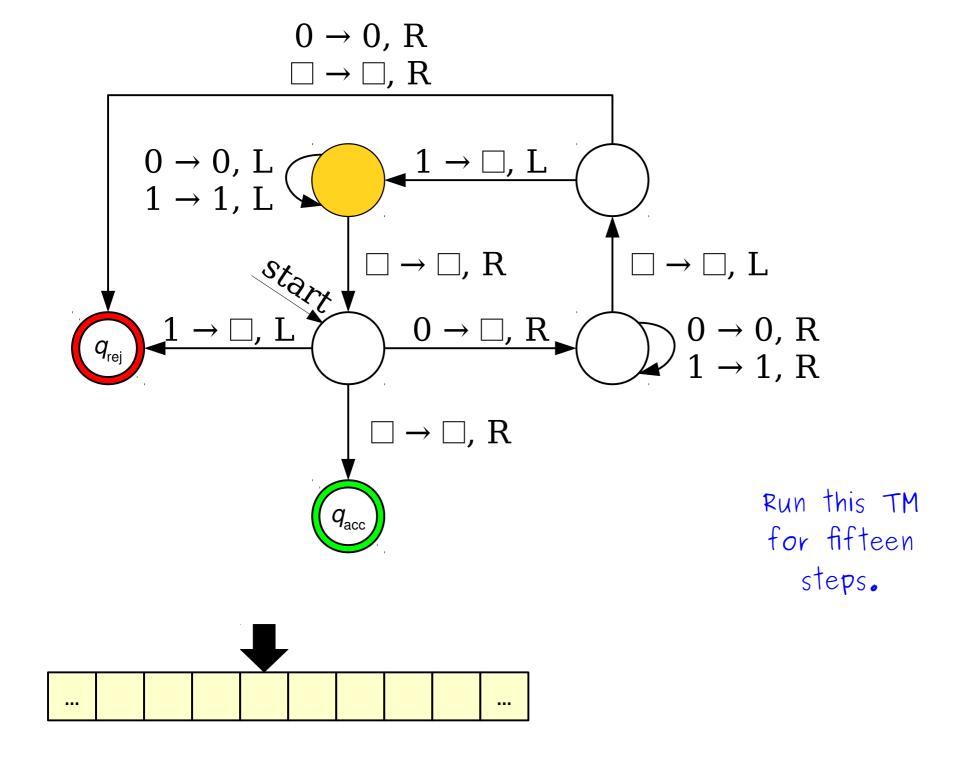


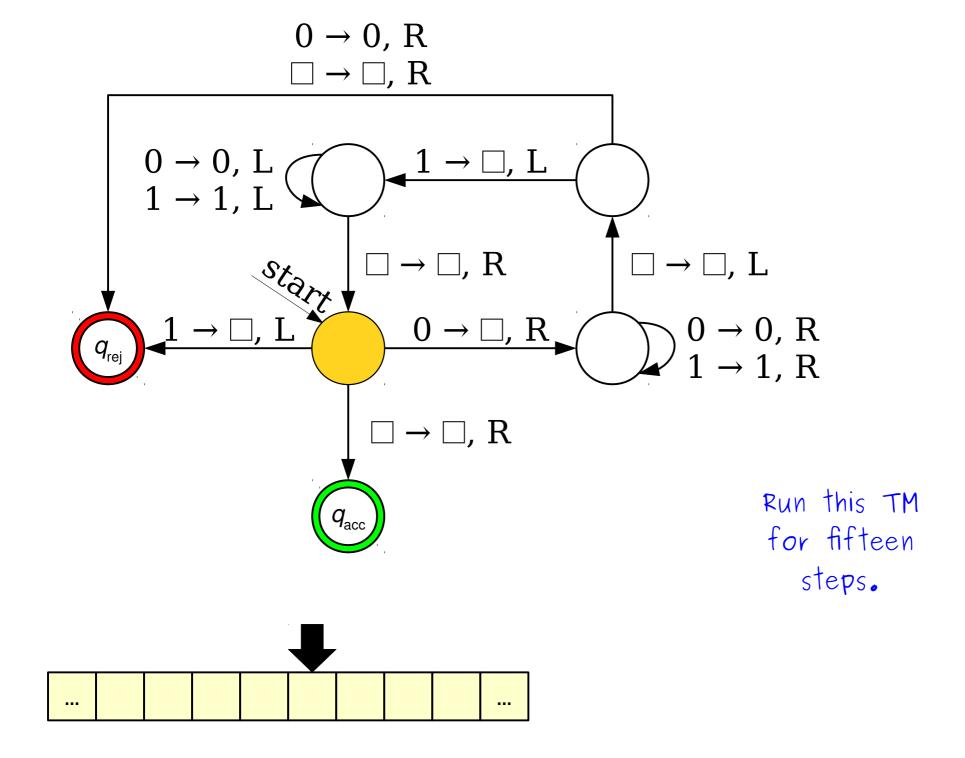


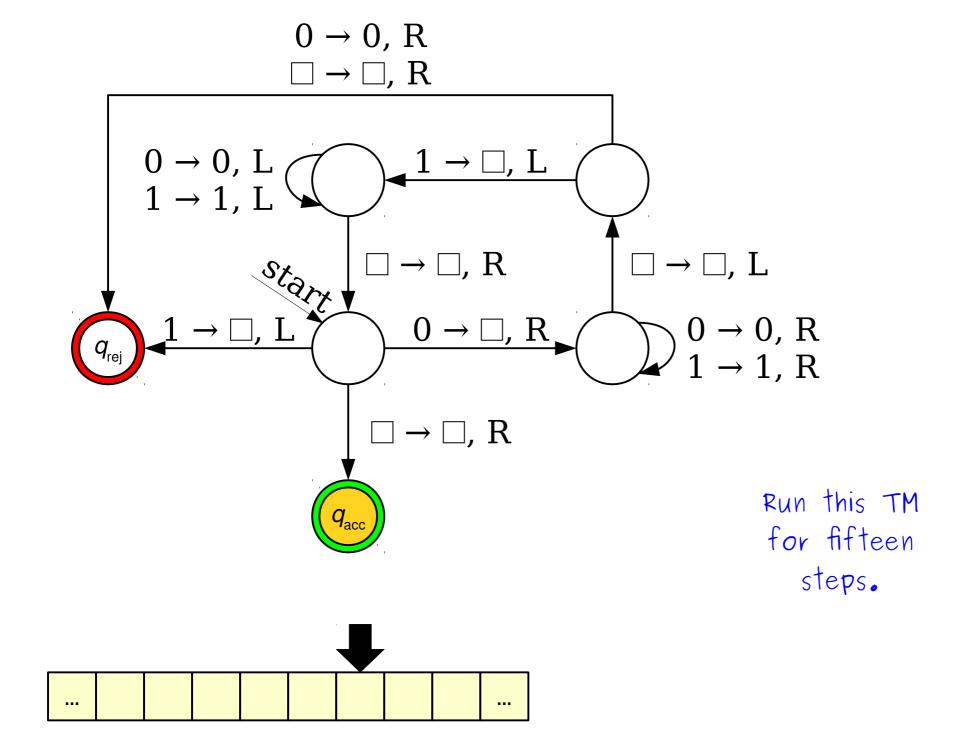












• Consider A_{TM} :

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$

bool checkWillAccept(TM M, string w, int c) {
 set up a simulation of M running on w;
 for (int i = 0; i < c; i++) {
 simulate the next step of M running on w;
 }
 return whether M is in an accepting state;
}</pre>

- Do you see why M accepts w iff there is some c such that checkWillAccept(M, w, c) returns true?
- Do you see why checkWillAccept always halts?

What languages are verifiable?

Let V be a verifier for a language L. Consider the following function given in pseudocode:

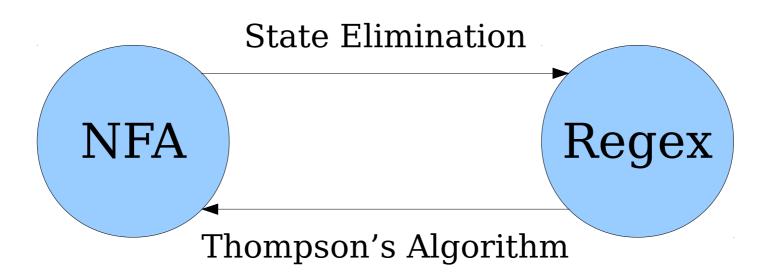
```
bool mysteryFunction(string w) {
    int i = 0;
    while (true) {
        for (each string c of length i) {
            if (V accepts (w, c)) return true;
        }
        i++;
    }
}
```

What set of strings does mysteryFunction return true on?

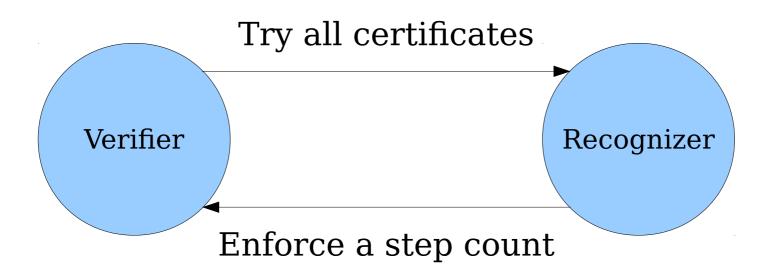
Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **your answer**.

Theorem: If L is a language, then there is a verifier for L if and only if $L \in \mathbf{RE}$.

Where We've Been

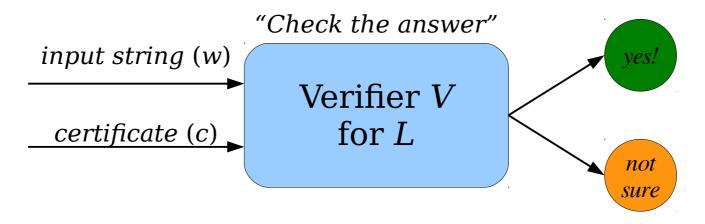


Where We're Going

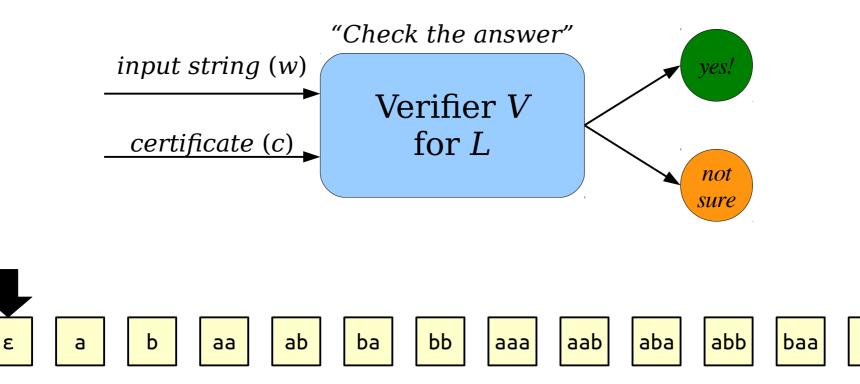


- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

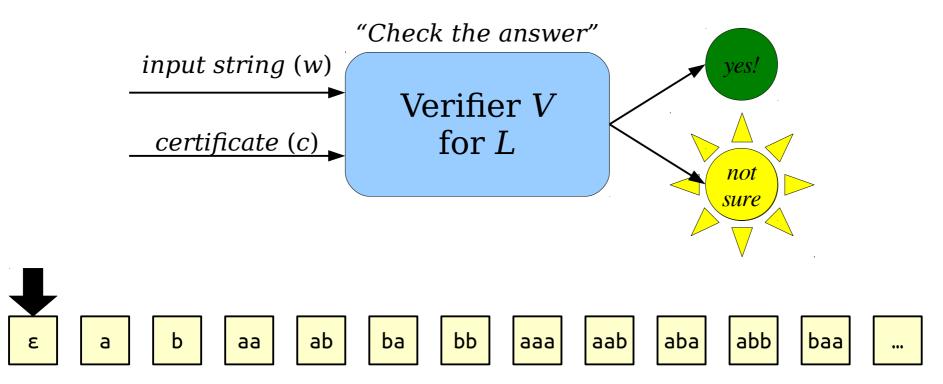
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



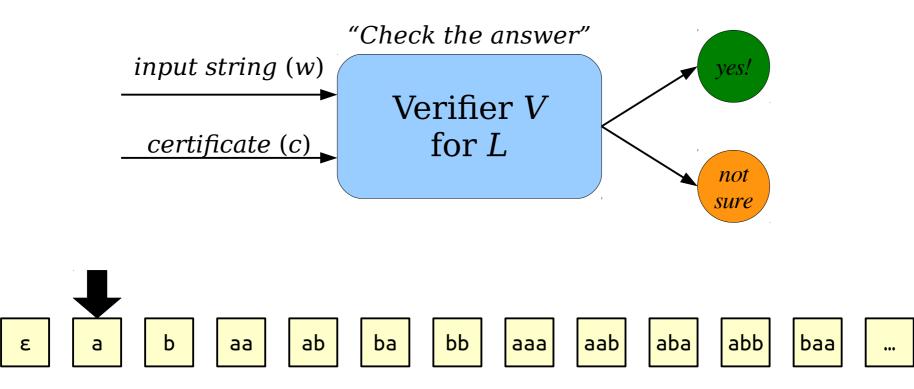
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



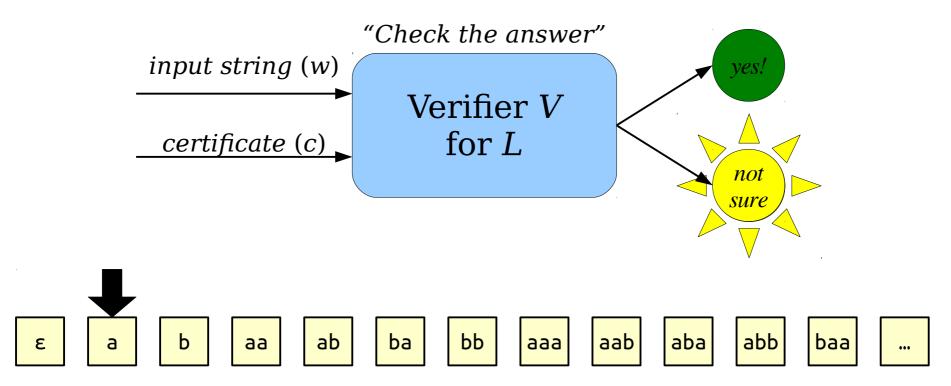
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



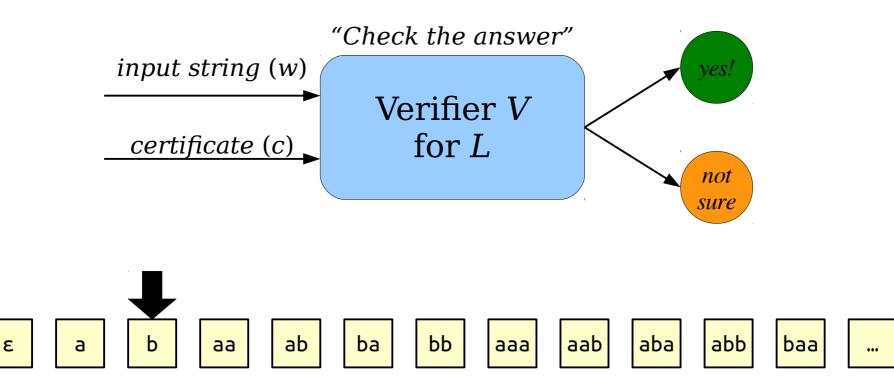
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



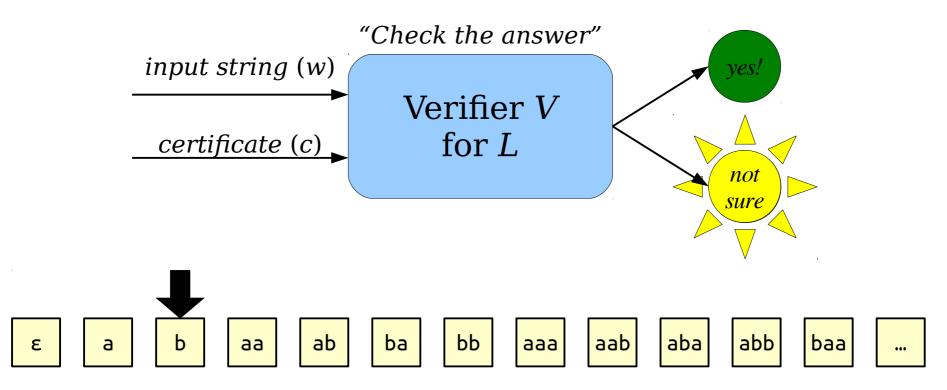
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



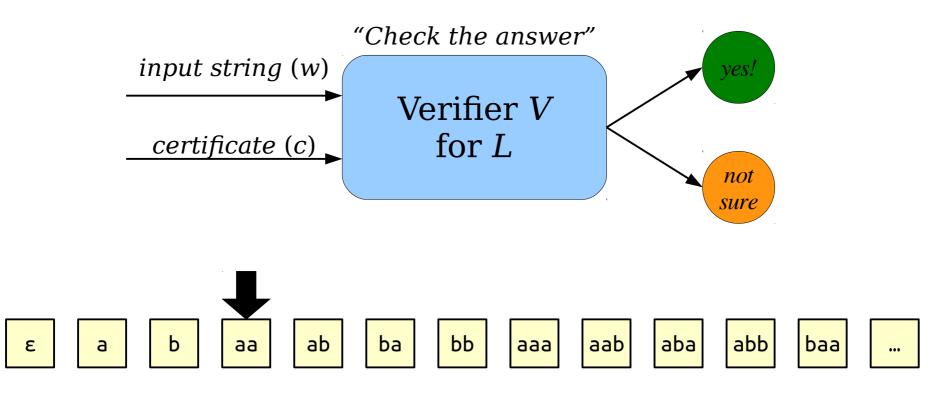
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



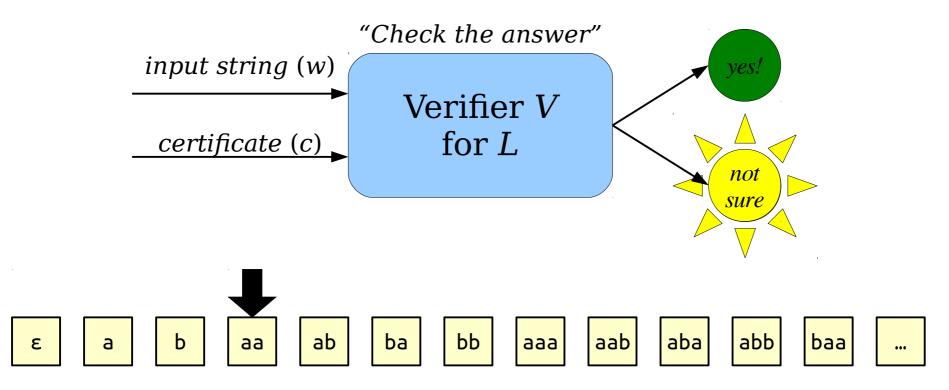
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



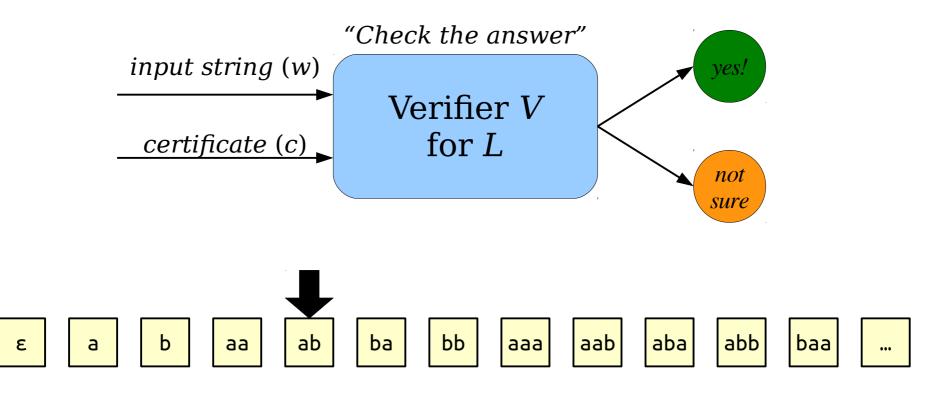
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



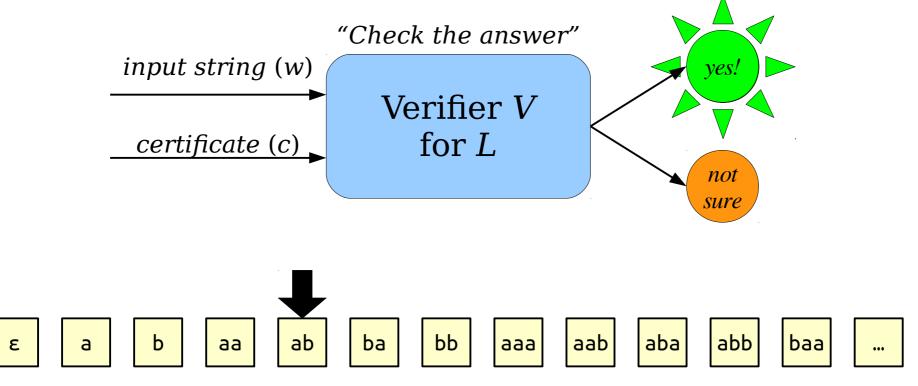
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



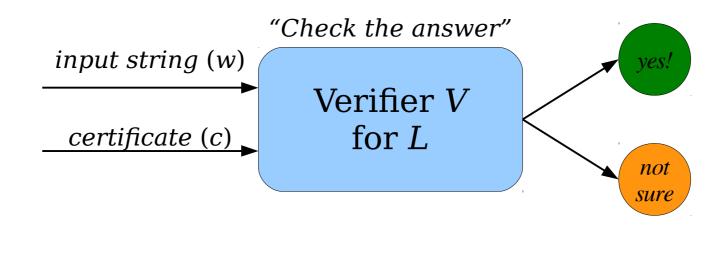
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

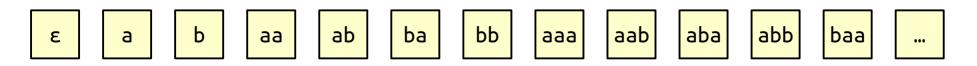


- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

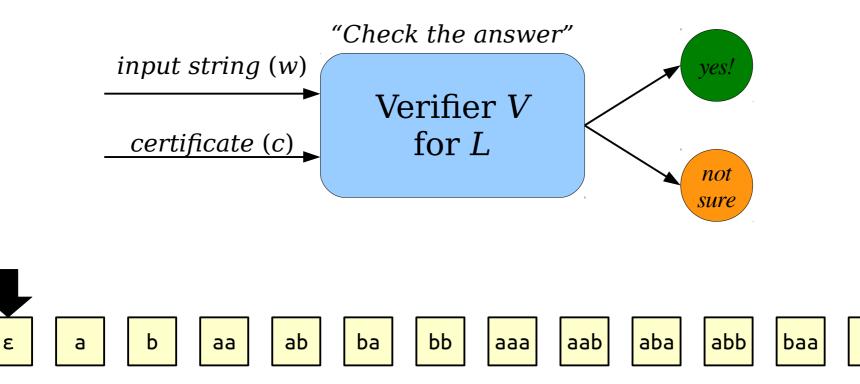


- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

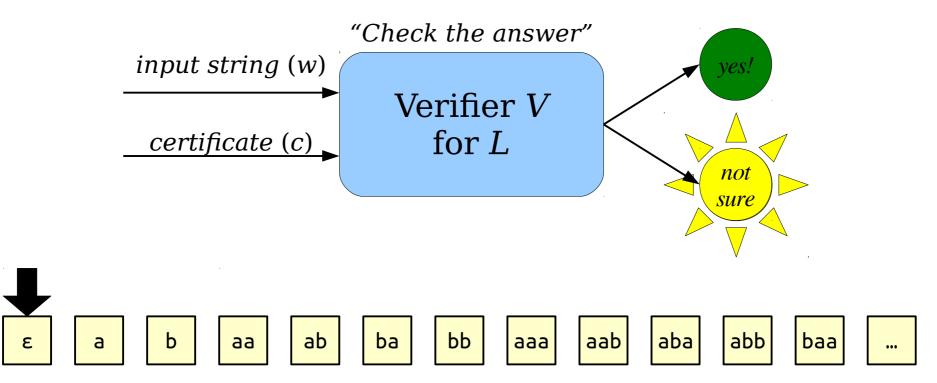




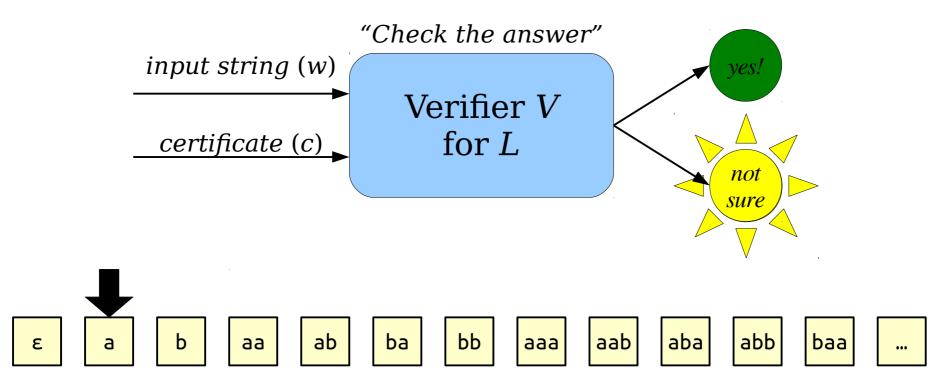
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



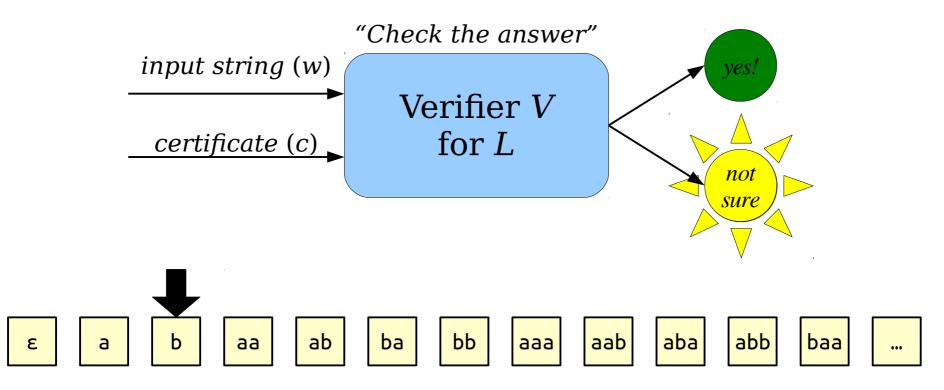
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



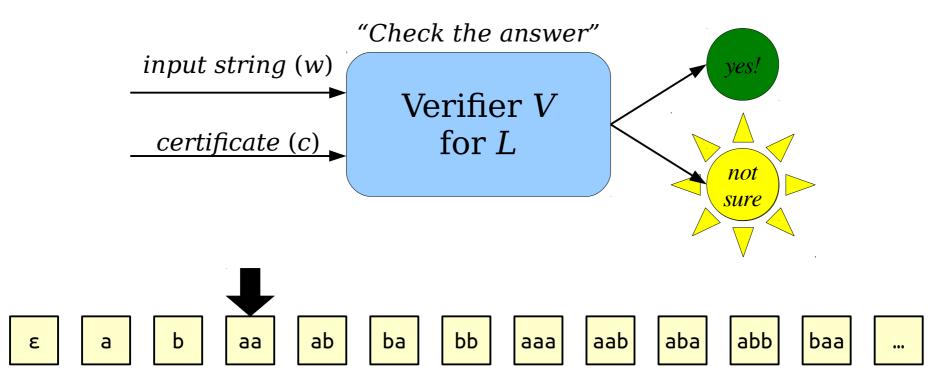
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



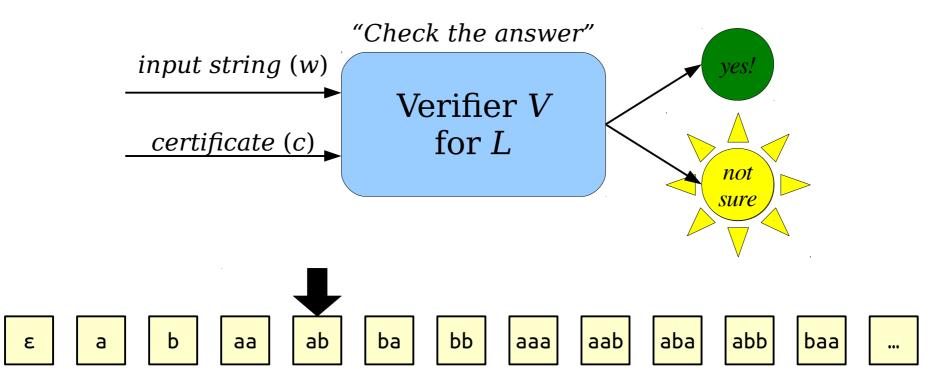
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



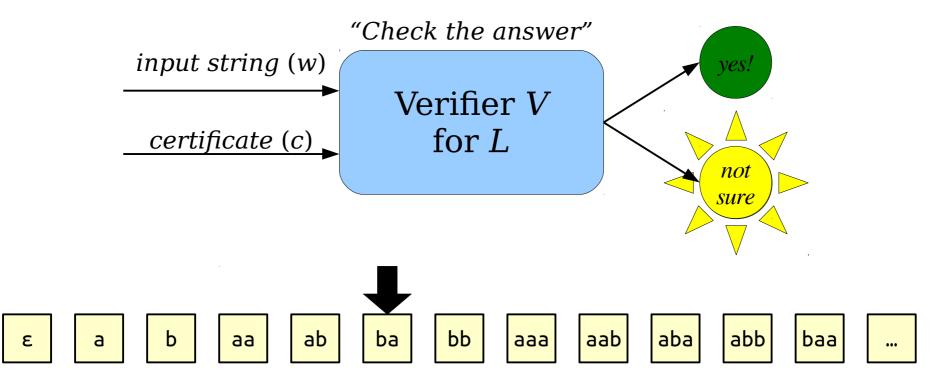
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



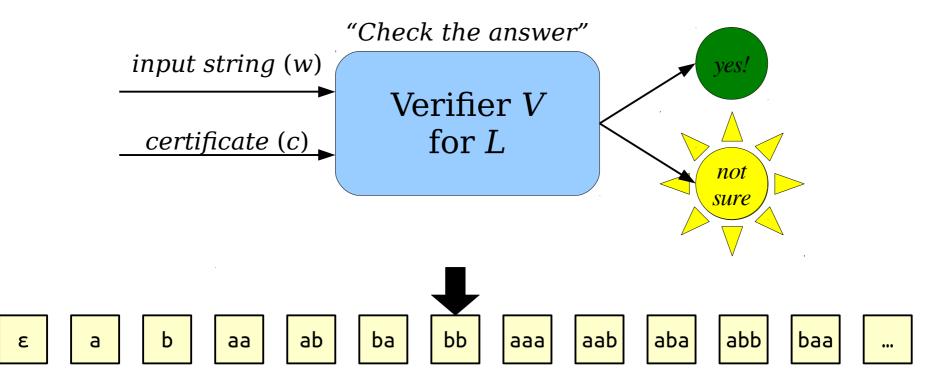
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



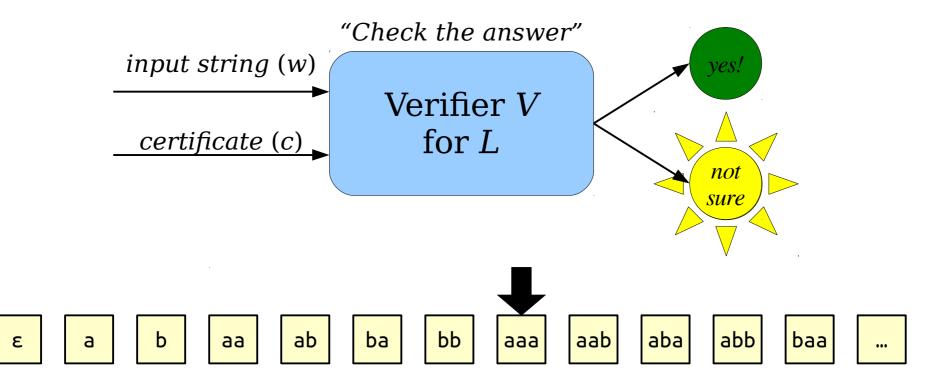
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



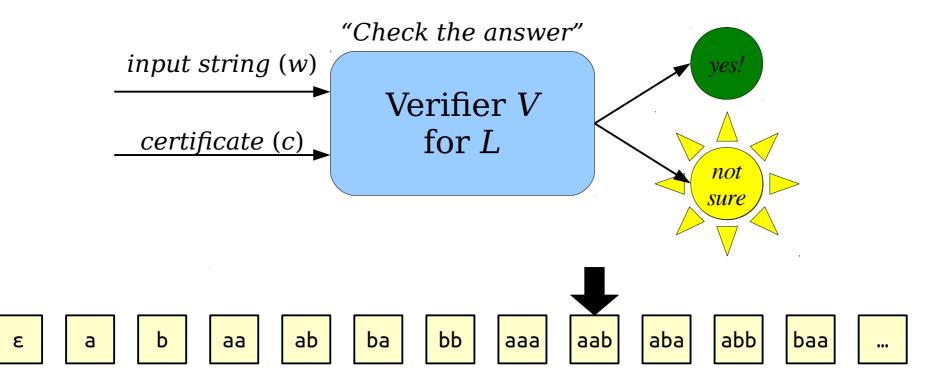
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



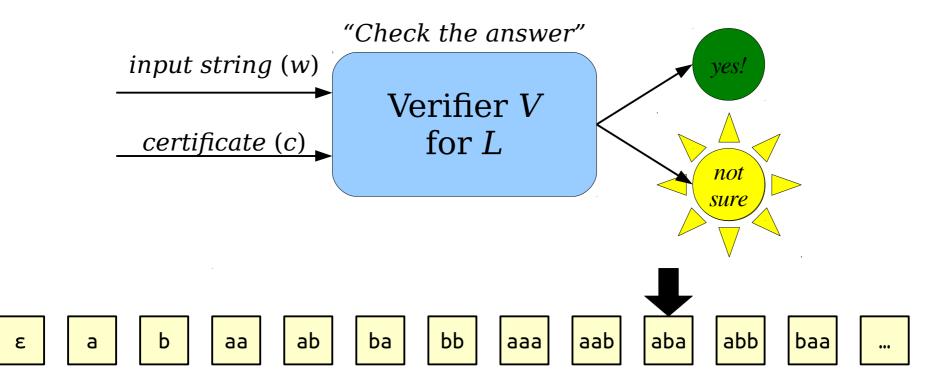
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



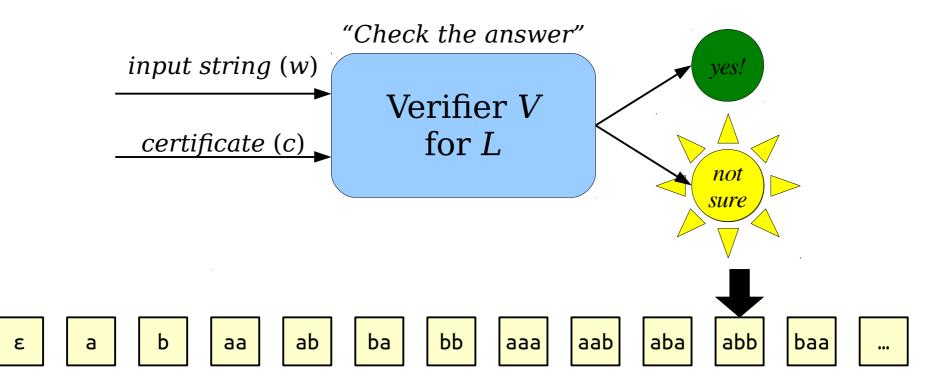
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



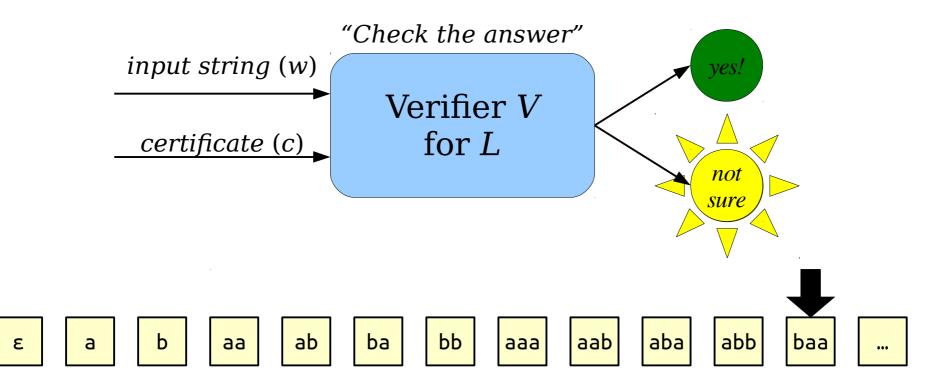
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



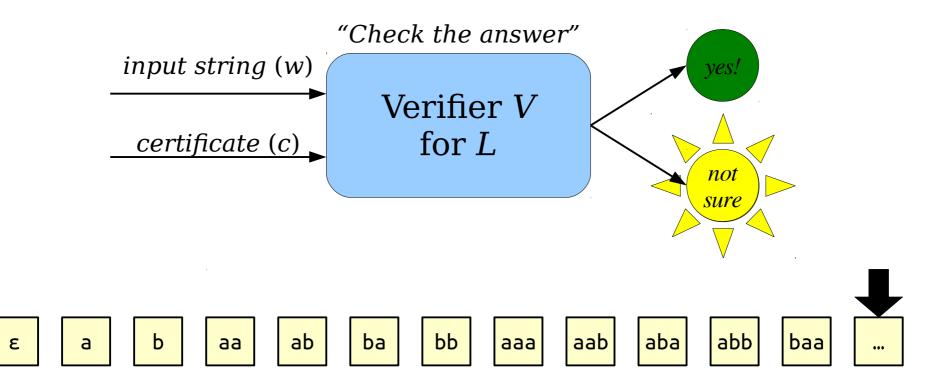
- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.



- **Theorem:** If V is a verifier for L, then $L \in \mathbf{RE}$.
- **Proof sketch:** Consider the following program:

```
bool isInL(string w) {
    int i = 0;
    while (true) {
        for (each string c of length i) {
            if (V accepts (w, c)) return true;
        }
        i++;
    }
}
```

If $w \in L$, there is some $c \in \Sigma^*$ where V accepts $\langle w, c \rangle$. The function isInL tries all possible strings as certificate, so it will eventually find c (or some other certificate), see V accept $\langle w, c \rangle$, then return true. Conversely, if isInL(w) returns true, then there was some string c such that V accepted $\langle w, c \rangle$, so $w \in L$.

- **Theorem:** If $L \in \mathbf{RE}$, then there is a verifier for L.
- **Proof goal:** Beginning with a recognizer M for the language L, show how to construct a verifier V for L.
- The challenges:
 - A recognizer M is not required to halt on all inputs. A verifier V must always halt.
 - A recognizer M takes in one single input. A verifier V takes in two inputs.
- We'll need to find a way of reconciling these requirements.

Recall: If M is a recognizer for a language L, then M accepts w iff $w \in L$.

Key insight: If *M* accepts a string *w*, it always does so in a finite number of steps.

Idea: Adapt the verifier for A_{TM} into a more general construction that turns any recognizer into a verifier by running it for a fixed number of steps.

- **Theorem:** If $L \in \mathbf{RE}$, then there is a verifier for L.
- **Proof sketch:** Consider the following program:

```
bool checkIsInL(string w, int c) {
   set up a simulation of M running on w;
   for (int i = 0; i < c; i++) {
      simulate the next step of M running on W;
   }
   return whether M is in an accepting state;
}</pre>
```

Notice that checkIsInL always halts, since each step takes only finite time to complete. Next, notice that if there is a c where checkIsInL(w, c) returns true, then M accepted w after running for c steps, so $w \in L$. Conversely, if $w \in L$, then M accepts w after some number of steps (call that number c). Then checkIsInL(w, c) will run M on w for c steps, watch M accept w, then return true.

RE and Proofs

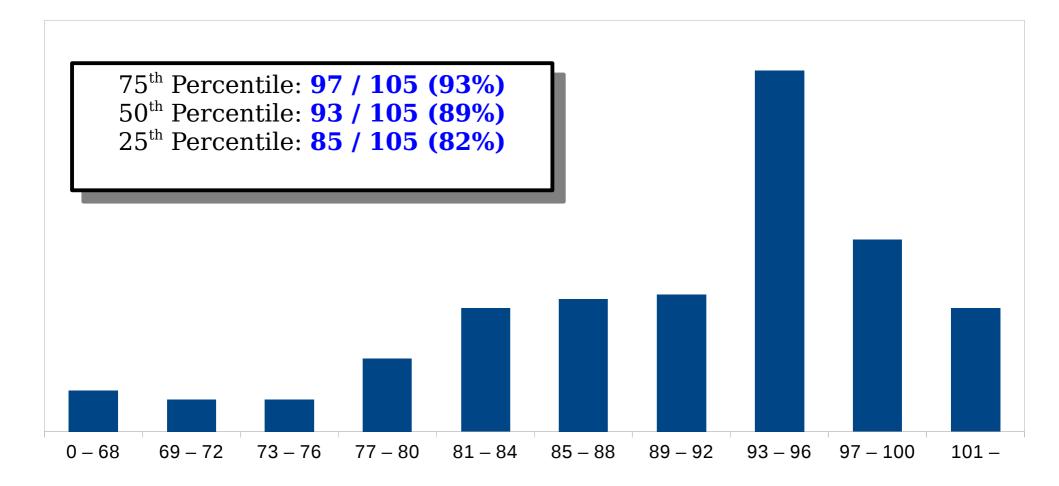
- Verifiers and recognizers give two different perspectives on the "proof" intuition for **RE**.
- Verifiers are explicitly built to check proofs that strings are in the language.
 - If you know that some string w belongs to the language and you have the proof of it, you can convince someone else that $w \in L$.
- You can think of a recognizer as a device that "searches" for a proof that $w \in L$.
 - If it finds it, great!
 - If not, it might loop forever.

RE and Proofs

- If the **RE** languages represent languages where membership can be proven, what does a non-**RE** language look like?
- Intuitively, a language is *not* in **RE** if there is no general way to prove that a given string $w \in L$ actually belongs to L.
- In other words, even if you knew that a string was in the language, you may never be able to convince anyone of it!

Time-Out for Announcements!

Problem Set Seven Graded



Problem Set Nine

- Problem Set Eight was due today at 2:30PM.
 - You *can* use late days here to extend the deadline as far as Sunday at 2:30PM, but we don't recommend this.
- Problem Set Nine goes out today. It's due next Friday at 2:30PM.
 - Play around with the limits of ${\bf R}$ and ${\bf RE}$ languages the upper extent of computation!
 - See how everything fits together!
- Due to university policies, *no late submissions will be accepted for PS9*. Please budget at least two hours before the deadline to submit the assignment.

The Last Two Guides

- We've posted two final guides to the course website:
 - The *Guide to Self-Reference*, which talks about proofs of undecidability via self-reference.
 - The *Guide to the Lava Diagram*, which provides an intuition for how different classes of languages relate to one another.
- Give these a read there's a ton of useful information in there!

Final Exam Logistics

- Our final exam is Monday, March 19th from 3:30PM 6:30PM, location Hewlett 200 & 201 (no special last name assignments).
 - Sorry about how soon that is the registrar picked this time, not us. If we had a choice, it would be on the last day of finals week.
- The exam is cumulative. You're responsible for topics from PS1 – PS9 and all of the lectures.
- As with the midterms, the exam is closed-book, closed-computer, and limited-note. You can bring one double-sided sheet of $8.5'' \times 11''$ notes with you to the exam, decorated any way you'd like.
- Students with OAE accommodations: if we don't yet have your OAE letter, please send it to us ASAP.

Preparing for the Exam

- We've posted *six* practice final exams, with solutions, to the course website.
- These exams are essentially the final exams we've given out in the last six quarters, with a few tweaks and modifications.
- Practice Final 1 and Practice Final 6 are the two most recent exams and should give you the best indicator of the expected topic coverage.
- And don't forget that Extra Practice Problems 3 is available online. After today's lecture, you know enough to take on any of those questions, including the starred ones.

Back to CS103!

Finding Non-RE Languages

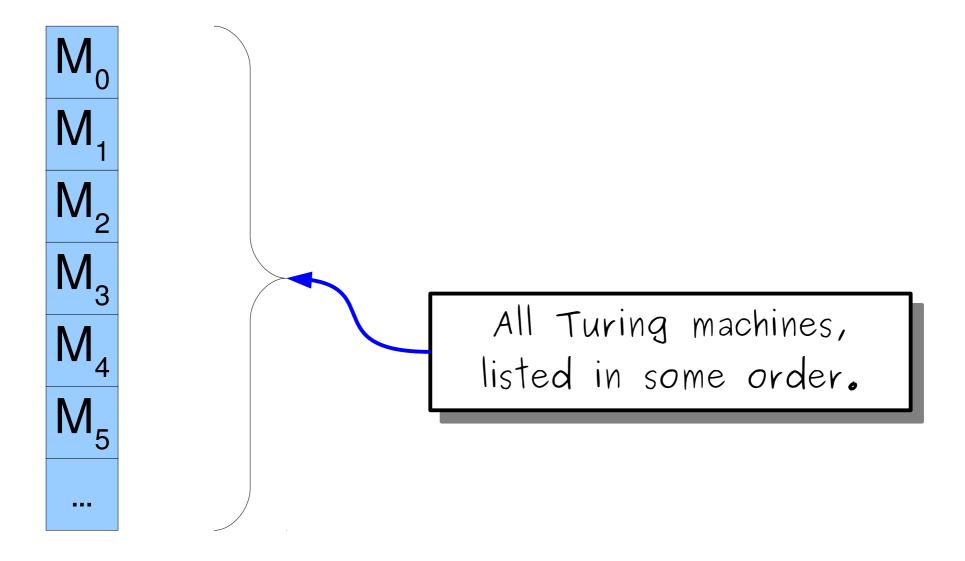
Finding Non-RE Languages

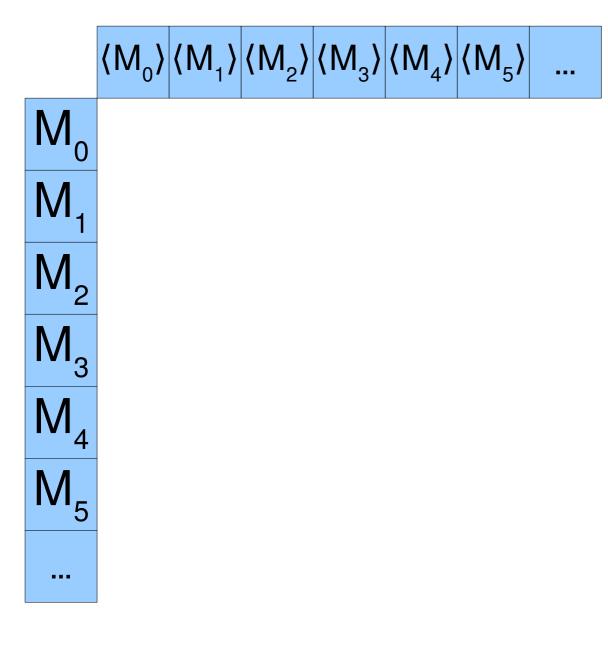
- Right now, we know that non-**RE** languages exist, but we have no idea what they look like.
- How might we find one?

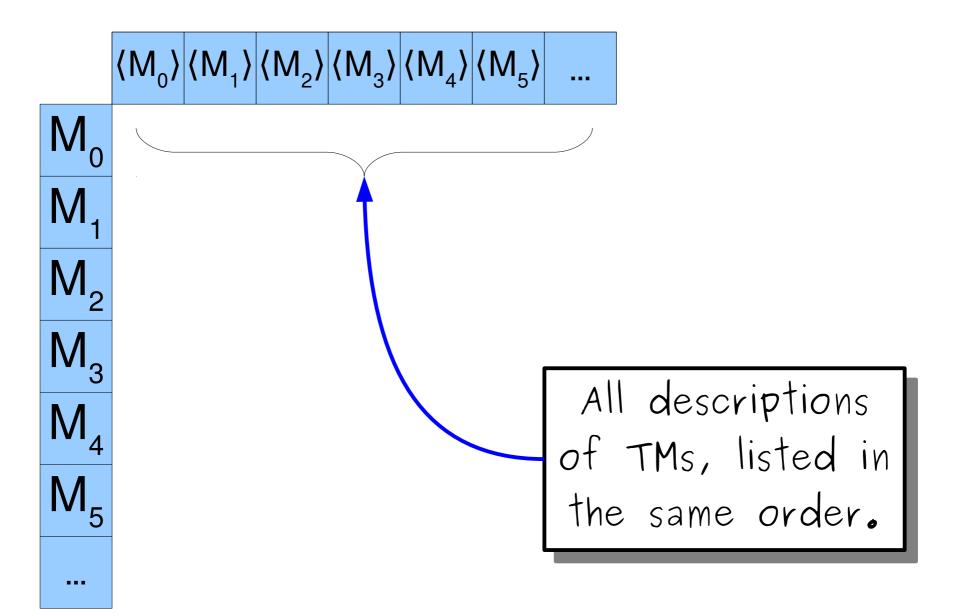
Languages, TMs, and TM Encodings

- Recall: The language of a TM M is the set $\mathscr{L}(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}$
- Some of the strings in this set might be descriptions of TMs.
- What happens if we list off all Turing machines, looking at how those TMs behave given other TMs as input?

 M_0 M_1 M_2 M_3 M_4 M_5 ...







	(Μ ₀)	(Μ ₁)	(Μ ₂)	〈 Μ ₃ 〉	$\langle M_4 \rangle$	〈 Μ ₅ 〉	
M_0	Acc	No	No	Acc	Acc	No	
M_1							
M_2							
M_3							
M_4							
M_5							

	<Μ _o >	(Μ ₁)	(Μ ₂)	$\langle M_{_3} \rangle$	$\langle M_4 \rangle$	〈 Μ ₅ 〉	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2							
M_3							
M_4							
M_5							
	-						

	(Μ ₀)	(Μ ₁)	(Μ ₂)	$\langle M_{_3} \rangle$	$\langle M_4 \rangle$	(Μ ₅)	
M_{0}	Acc	No	No	Acc	Acc	No	••••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	••••
M_2	Acc	Acc	Acc	Acc	Acc	Acc	••••
M_{3}							
M_4							
M_5							

	〈 Μ ₀ 〉	(Μ ₁)	⟨M ₂ ⟩	$\langle M_{_3} \rangle$	$\langle M_4 \rangle$	〈 Μ ₅ 〉	
M_{0}	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_{3}	No	Acc	Acc	No	Acc	Acc	•••
M_4						· I	
NЛ	-						

 M_5

...

	$\langle M_0 \rangle$	(Μ ₁)	(Μ ₂)	$\langle M_{_3} \rangle$	$\langle M_4 \rangle$	〈 Μ ₅ 〉	
M_{0}	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_{3}	No	Acc	Acc	No	Acc	Acc	•••
M_4	Acc	No	Acc	No	Acc	No	••••
M_5			<u>.</u>	<u>.</u>			

...

	〈 Μ ₀ 〉	(Μ ₁)	(Μ ₂)	$\langle M_{_3} \rangle$	$\langle M_4 \rangle$	〈 Μ ₅ 〉	
M_0	Acc	No	No	Acc	Acc	No	••••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	••••
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	•••
M_5	No	No	Acc	Acc	No	No	•••

...

	〈 Μ ₀ 〉	(Μ ₁)	(Μ ₂)	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	⟨M ₅ ⟩	
M_{0}	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_2	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_3	No	Acc	Acc	No	Acc	Acc	•••
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	••••
						•••	••••

	(M ₀)	(Μ ₁)	(M ₂)	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle M_{5} \rangle$	
M_{0}	Acc	No	No	Acc	Acc	No	•••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_{3}	No	Acc	Acc	No	Acc	Acc	•••
M_4	Acc	No	Acc	No	Acc	No	•••
M_5	No	No	Acc	Acc	No	No	•••
		•••		•••			

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **your answer**.

	$\langle M_0 \rangle$	〈 Μ ₁ 〉	(Μ ₂)	$\langle M_{_3} \rangle$	$\langle M_4 \rangle$	〈 Μ ₅ 〉	
M_{0}	Acc	No	No	Acc	Acc	No	•••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
		•••					

	〈 Μ ₀ 〉	(Μ ₁)	(Μ ₂)	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	(Μ ₅)	
M_{0}	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_2	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	•••
M_5	No	No	Acc	Acc	No	No	

Acc Acc Acc No Acc No ...

	(Μ ₀)	(Μ ₁)	(Μ ₂)	$\langle M_{_3} \rangle$	$\langle M_4 \rangle$	$\langle M_{_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	•••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_2	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_3	No	Acc	Acc	No	Acc	Acc	••••
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
	•••						

Flip all "accept" to "no" and vice-versa

	〈 Μ ₀ 〉	(Μ ₁)	⟨M ₂ ⟩	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	⟨M ₅ ⟩	
M_{0}	Acc	No	No	Acc	Acc	No	•••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_2	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	••••

	$\langle M_0 \rangle$	(Μ ₁)	(Μ ₂)	$\langle M_{_3} \rangle$	$\langle M_4 \rangle$	⟨M ₅ ⟩	
M_0	Acc	No	No	Acc	Acc	No	•••
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	•••
M_5	No	No	Acc	Acc	No	No	•••
						••••	

What TM has this behavior?

	(Μ ₀)	(Μ ₁)	⟨M ₂ ⟩	$\langle M_{_3} \rangle$	$\langle M_4 \rangle$	〈 Μ ₅ 〉	
M_{0}	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
		•••	•••	•••		•••	

	〈 Μ ₀ 〉	(Μ ₁)	(Μ ₂)	$\langle M_{_3} \rangle$	$\langle M_4 \rangle$	〈 Μ ₅ 〉	
M_{0}	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
	•••				•••	•••	

	(Μ ₀)	(Μ ₁)	⟨M ₂ ⟩	$\langle M_{_3} \rangle$	$\langle M_4 \rangle$	〈 Μ ₅ 〉	
M_{0}	Acc	No	No	Acc	Acc	No	•••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_2	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_3	No	Acc	Acc	No	Acc	Acc	•••
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	••••
						•••	

	$\langle M_0 \rangle$	(Μ ₁)	⟨M ₂ ⟩	$\langle M_{_3} \rangle$	$\langle M_4 \rangle$	⟨M ₅ ⟩	
M_{0}	Acc	No	No	Acc	Acc	No	••••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	•••
M_5	No	No	Acc	Acc	No	No	

	(Μ ₀)	(Μ ₁)	⟨M ₂ ⟩	$\langle M_{_3} \rangle$	$\langle M_4 \rangle$	〈 Μ ₅ 〉	
M_{0}	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	•••

	$\langle M_0 \rangle$	(Μ ₁)	(Μ ₂)	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	(Μ ₅)	
M_{0}	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	•••
						•••	

	$\langle M_0 \rangle$	(Μ ₁)	(Μ ₂)	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	(Μ ₅)	
M_{0}	Acc	No	No	Acc	Acc	No	•••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	••••
						•••	

	〈 Μ ₀ 〉	(Μ ₁)	(Μ ₂)	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	〈 Μ ₅ 〉	
M_{0}	Acc	No	No	Acc	Acc	No	•••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	•••
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	••••

	$\langle M_0 \rangle$	(Μ ₁)	(Μ ₂)	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	(Μ ₅)	
M_{0}	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_2	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	••••

	〈 Μ ₀ 〉	(Μ ₁)	(Μ ₂)	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	〈 Μ ₅ 〉	
M_{0}	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_3	No	Acc	Acc	No	Acc	Acc	•••
M_4	Acc	No	Acc	No	Acc	No	•••
M_5	No	No	Acc	Acc	No	No	•••

	〈 Μ ₀ 〉	(Μ ₁)	(Μ ₂)	$\langle M_{_3} \rangle$	$\langle M_4 \rangle$	(Μ ₅)	
M_{0}	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_2	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
	•••					•••	

No TM has this behavior:

	$\langle M_0 \rangle$	(Μ ₁)	⟨M ₂ ⟩	$\langle M_{_3} \rangle$	$\langle M_4 \rangle$	(Μ ₅)	
M_{0}	Acc	No	No	Acc	Acc	No	•••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	••••

	(Μ ₀)	(Μ ₁)	⟨M ₂ ⟩	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	(Μ ₅)	
M_{0}	Acc	No	No	Acc	Acc	No	•••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	••••
			•••			••••	

	〈 Μ ₀ 〉	(Μ ₁)	(Μ ₂)	$\langle M_{_3} \rangle$	$\langle M_4 \rangle$	(Μ ₅)	
M_{0}	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_3	No	Acc	Acc	No	Acc	Acc	•••
M_4	Acc	No	Acc	No	Acc	No	•••
M_5	No	No	Acc	Acc	No	No	
						•••	

"The language of all TMs that do not accept their own description."

	(Μ ₀)	(Μ ₁)	(Μ ₂)	$\langle M_{_3} \rangle$	$\langle M_4 \rangle$	〈 Μ ₅ 〉	
M_{0}	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
	•••					•••	

 $\{ \langle M \rangle | M \text{ is a TM that}$ does not accept $\langle M \rangle \}$

	$\langle M_{0} \rangle$	(Μ ₁)	(Μ ₂)	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	⟨M ₅ ⟩	
M_{0}	Acc	No	No	Acc	Acc	No	•••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	•••

{ (M) | M is a TMand $(M) \notin \mathcal{L}(M)$ }

Diagonalization Revisited

The diagonalization language, which we denote L_n, is defined as

 $L_{D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathscr{L}(M) \}$

• That is, $L_{\rm D}$ is the set of descriptions of Turing machines that do not accept themselves.

 $L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathscr{L}(M) \}$

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

$L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathscr{L}(M) \}$

Theorem: $L_{\rm D} \notin \mathbf{RE}$. **Proof:** By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$.

$L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathscr{L}(M) \}$

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (1)

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_{D'}$ we know that

 $\langle M \rangle \in \underline{L}_{\mathbf{D}} \text{ iff } \langle M \rangle \in \mathscr{L}(\mathbf{R}).$ (1)

Because $\mathcal{L}(R) = L_D$, we know that a string belongs to one set if and only if it belongs to the other.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathcal{L}(R).$ (1)

From the definition of L_{D} , we see that $\langle M \rangle \in L_{D}$ iff $\langle M \rangle \notin \mathscr{L}(M)$.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (1)

From the definition of L_D , we see that $\langle M \rangle \in L_D$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

 $\langle M \rangle \notin \mathscr{L}(M) \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (2)

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (1)

From the definition of L_D , we see that $\langle M \rangle \in L_D$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

 $\langle M \rangle \notin \mathscr{L}(M)$ iff $\langle M \rangle \in \mathscr{L}(R)$. (2)

We've replaced the left-hand side of this biconditional with an equivalent statement.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (1)

From the definition of L_D , we see that $\langle M \rangle \in L_D$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

 $\langle M \rangle \notin \mathscr{L}(M) \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (2)

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

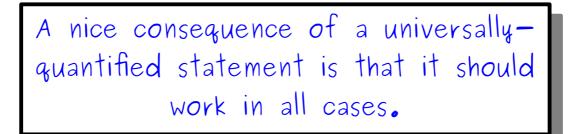
Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (1)

From the definition of L_D , we see that $\langle M \rangle \in L_D$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

```
\langle M \rangle \notin \mathscr{L}(M) \text{ iff } \langle M \rangle \in \mathscr{L}(R). (2)
```

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M.



Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (1)

From the definition of L_D , we see that $\langle M \rangle \in L_D$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

 $\langle M \rangle \notin \mathscr{L}(M) \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (2)

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M. In particular, this means that statement (2) holds for the TM R, which tells us that

 $\langle R \rangle \notin \mathscr{L}(R) \quad \text{iff} \quad \langle R \rangle \in \mathscr{L}(R).$ (3)

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (1)

From the definition of L_D , we see that $\langle M \rangle \in L_D$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

 $\langle M \rangle \notin \mathscr{L}(M) \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (2)

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M. In particular, this means that statement (2) holds for the TM R, which tells us that

 $\langle R \rangle \notin \mathscr{L}(R) \quad \text{iff} \quad \langle R \rangle \in \mathscr{L}(R).$ (3)

This is clearly impossible.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (1)

From the definition of L_D , we see that $\langle M \rangle \in L_D$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

 $\langle M \rangle \notin \mathscr{L}(M) \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (2)

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M. In particular, this means that statement (2) holds for the TM R, which tells us that

```
\langle R \rangle \notin \mathscr{L}(R) \quad \text{iff} \quad \langle R \rangle \in \mathscr{L}(R). (3)
```

This is clearly impossible. We have reached a contradiction, so our assumption must have been wrong.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (1)

From the definition of L_D , we see that $\langle M \rangle \in L_D$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

 $\langle M \rangle \notin \mathscr{L}(M) \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (2)

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M. In particular, this means that statement (2) holds for the TM R, which tells us that

```
\langle R \rangle \notin \mathscr{L}(R) \quad \text{iff} \quad \langle R \rangle \in \mathscr{L}(R). (3)
```

This is clearly impossible. We have reached a contradiction, so our assumption must have been wrong. Thus $L_{D} \notin \mathbf{RE}$.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (1)

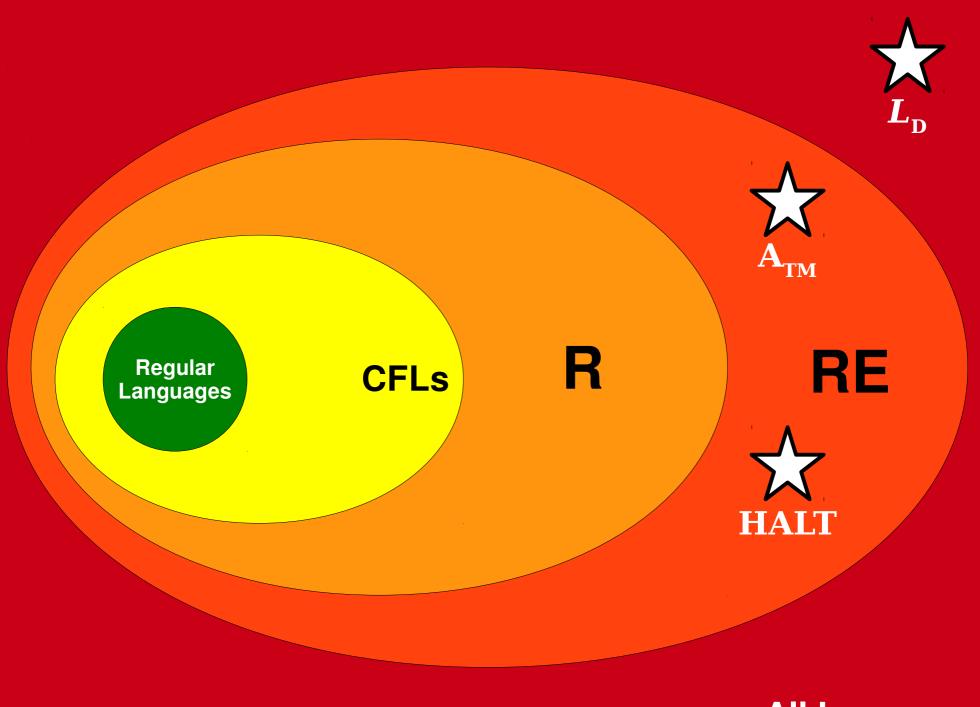
From the definition of L_D , we see that $\langle M \rangle \in L_D$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

 $\langle M \rangle \notin \mathscr{L}(M) \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (2)

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M. In particular, this means that statement (2) holds for the TM R, which tells us that

```
\langle R \rangle \notin \mathscr{L}(R) \quad \text{iff} \quad \langle R \rangle \in \mathscr{L}(R). (3)
```

This is clearly impossible. We have reached a contradiction, so our assumption must have been wrong. Thus $L_{D} \notin \mathbf{RE}$.



All Languages

What This Means

• On a deeper philosophical level, the fact that non-**RE** languages exist supports the following claim:

There are statements that are true but not provable.

- Intuitively, given any non-**RE** language, there will be some string in the language that *cannot* be proven to be in the language.
- This result can be formalized as a result called *Gödel's incompleteness theorem*, one of the most important mathematical results of all time.
- Want to learn more? Take Phil 152 or CS154!

What This Means

• On a more philosophical note, you could interpret the previous result in the following way:

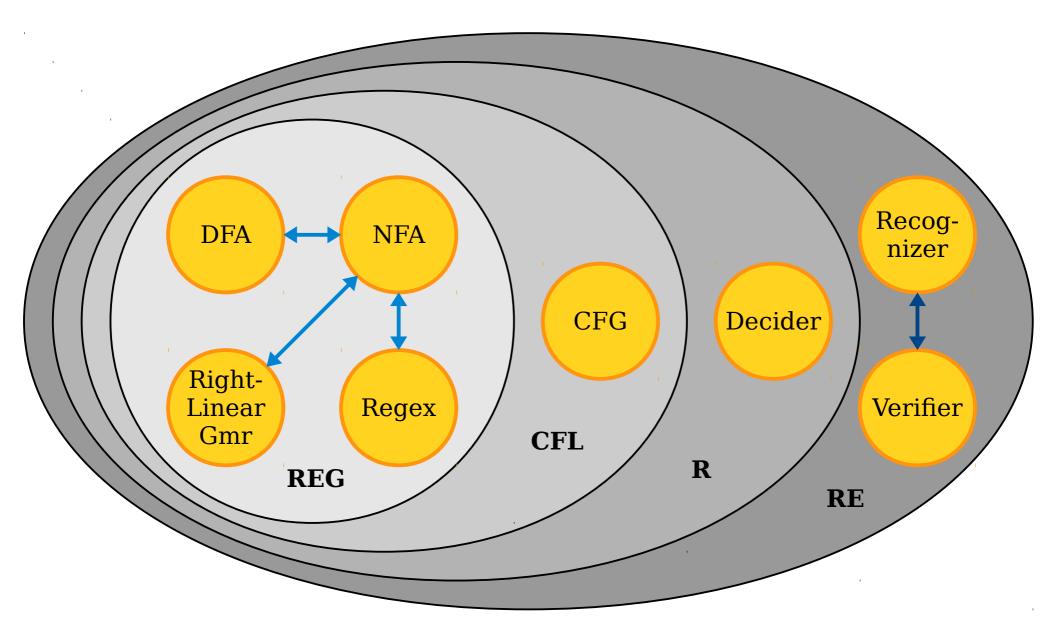
There are inherent limits about what mathematics can teach us.

- There's no automatic way to do math. There are true statements that we can't prove.
- That doesn't mean that mathematics is worthless. It just means that we need to temper our expectations about it.

Where We Stand

- We've just done a crazy, whirlwind tour of computability theory:
 - *The Church-Turing thesis* tells us that TMs give us a mechanism for studying computation in the abstract.
 - **Universal computers** computers as we know them are not just a stroke of luck. The existence of the universal TM ensures that such computers must exist.
 - **Self-reference** is an inherent consequence of computational power.
 - **Undecidable problems** exist partially as a consequence of the above and indicate that there are statements whose truth can't be determined by computational processes.
 - **Unrecognizable problems** are out there and can be discovered via diagonalization. They imply there are limits to mathematical proof.

The Big Picture



Where We've Been

- The class ${\bf R}$ represents problems that can be solved by a computer.
- The class **RE** represents problems where "yes" answers can be verified by a computer.

Where We're Going

- The class ${\bf P}$ represents problems that can be solved ${\it efficiently}$ by a computer.
- The class **NP** represents problems where "yes" answers can be verified *efficiently* by a computer.

Next Time

- Introduction to Complexity Theory
 - Not all decidable problems are created equal!
- The Classes P and NP
 - Two fundamental and important complexity classes.
- The P ² = NP Question
 - A literal million-dollar question!