Complexity Theory
 Part One

It may be that since one is customarily concerned with existence, [...] finiteness, and so forth, one is not inclined to take seriously the question of the existence of a better-than-finite algorithm.

- Jack Edmonds, "Paths, Trees, and Flowers"

A Decidable Problem

- Presburger arithmetic is a logical system for reasoning about arithmetic.
- $\forall x . x+1 \neq 0$
- $\forall x \cdot \forall y \cdot(x+1=y+1 \rightarrow x=y)$
- $\forall x . x+0=x$
- $\forall x . \forall y .(x+y)+1=x+(y+1)$
- $(P(0) \wedge \forall y .(P(y) \rightarrow P(y+1))) \rightarrow \forall x . P(x)$
- Given a statement, it is decidable whether that statement can be proven from the laws of Presburger arithmetic.
- Any Turing machine that decides whether a statement in Presburger arithmetic is true or false has to move its tape head at least $2^{2^{2 n}}$ times on some inputs of length n (for some fixed constant $c \geq 1$).

For Reference

- Assume $c=1$.

$$
\begin{gathered}
2^{2^{0}}=2 \\
2^{2^{1}}=4 \\
2^{2^{2}}=16 \\
2^{2^{3}}=256 \\
2^{2^{4}}=65536 \\
2^{2^{5}}=18446744073709551616 \\
2^{2^{6}}=340282366920938463463374607431768211456
\end{gathered}
$$

The Limits of Decidability

- The fact that a problem is decidable does not mean that it is feasibly decidable.
- In computability theory, we ask the question

What problems can be solved by a computer?

- In complexity theory, we ask the question What problems can be solved efficiently by a computer?
- In the remainder of this course, we will explore this question in more detail.

Where We're Going

- The class \mathbf{P} represents problems that can be solved efficiently by a computer.
- The class NP represents problems where "yes" answers can be verified efficiently by a computer.

The Setup

- In order to study computability, we needed to answer these questions:
- What is "computation?"
- What is a "problem?"
- What does it mean to "solve" a problem?
- To study complexity, we need to answer these questions:
- What does "complexity" even mean?
- What is an "efficient" solution to a problem?

Measuring Complexity

- Suppose that we have a decider D for some language L.
- How might we measure the complexity of D ?

Measuring Complexity

- Suppose that we have a decider D for some language L.
- How might we measure the complexity of D ?

Number of states.
Size of tape alphabet.
Size of input alphabet.
Amount of tape required.

- Amount of time required.

Number of times a given state is entered.
Number of times a given symbol is printed.
Number of times a given transition is taken.
(Plus a whole lot more...)

What is an efficient algorithm?

Searching Finite Spaces

- Many decidable problems can be solved by searching over a large but finite space of possible options.
- Searching this space might take a staggeringly long time, but only finite time.
- From a decidability perspective, this is totally fine.
- From a complexity perspective, this may be totally unacceptable.

A Sample Problem

$$
\begin{array}{llllllllllllll}
4 & 3 & 11 & 9 & 7 & 13 & 5 & 6 & 1 & 12 & 2 & 8 & 0 & 10
\end{array}
$$

Goal: Find the length of the longest increasing subsequence of this sequence.

Longest Increasing Subsequences

- One possible algorithm: try all subsequences, find the longest one that's increasing, and return that.
- There are 2^{n} subsequences of an array of length n.
- (Each subset of the elements gives back a subsequence.)
- Checking all of them to find the longest increasing subsequence will take time $\mathrm{O}\left(n \cdot 2^{n}\right)$.
- Nifty fact: the age of the universe is about 4.3×10^{26} nanoseconds old. That's about 285 nanoseconds.
- Practically speaking, this algorithm doesn't terminate if you give it an input of size 100 or more.

Longest Increasing Subsequences

- Theorem: There is an algorithm that can find the longest increasing subsequence of an array in time $O(n \log n)$.
- The algorithm is beautiful and surprisingly elegant. Look up patience sorting if you're curious.
- This algorithm works by exploiting particular aspects of how longest increasing subsequences are constructed. It's not immediately obvious that it works correctly.

Another Problem

Shortest Paths

- It is possible to find the shortest path in a graph by listing off all sequences of nodes in the graph in ascending order of length and finding the first that's a path.
- This takes time $\mathrm{O}(n \cdot n!)$ in an n-node graph.
- For reference: 29! nanoseconds is longer than the lifetime of the universe.

Shortest Paths

- Theorem: It's possible to find the shortest path between two nodes in an n node, m-edge graph in time $\mathrm{O}(m+n)$.
- Proof idea: Use breadth-first search!
- The algorithm is a bit nuanced. It uses some specific properties of shortest paths and the proof of correctness is nontrivial.

For Comparison

- Longest increasing • Shortest path subsequence:
- Naive: $\mathrm{O}\left(n \cdot 2^{n}\right)$
- Fast: $\mathrm{O}\left(n^{2}\right)$
- Naive: $\mathrm{O}(n \cdot n!)$
- Fast: $\mathrm{O}(n+m)$.

Defining Efficiency

- When dealing with problems that search for the "best" object of some sort, there are often at least exponentially many possible options.
- Brute-force solutions tend to take at least exponential time to complete.
- Clever algorithms often run in time $O(n)$, or $\mathrm{O}\left(n^{2}\right)$, or $\mathrm{O}\left(n^{3}\right)$, etc.

Polynomials and Exponentials

- An algorithm runs in polynomial time if its runtime is some polynomial in n.
- That is, time $\mathrm{O}\left(n^{k}\right)$ for some constant k.
- Polynomial functions "scale well."
- Small changes to the size of the input do not typically induce enormous changes to the overall runtime.
- Exponential functions scale terribly.
- Small changes to the size of the input induce huge changes in the overall runtime.

The Cobham-Edmonds Thesis

A language L can be decided efficiently if there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently if it can be decided in time $O\left(n^{k}\right)$ for some $k \in \mathbb{N}$.

Like the Church-Turing thesis, this is not a theorem!

It's an assumption about the nature of efficient computation, and it is somewhat controversial.

The Cobham-Edmonds Thesis

According to the Cobham-Edmonds thesis, how many of the following runtimes are considered efficient?

$$
\begin{gathered}
4 n^{2}-3 n+137 \\
10^{500} \\
2^{n} \\
1.000000000001^{n} \\
n^{1,000,000,000,000} \\
n^{\log n}
\end{gathered}
$$

The Cobham-Edmonds Thesis

- Efficient runtimes:
- $4 n+13$
- $n^{3}-2 n^{2}+4 n$
- $n \log \log n$
- "Efficient" runtimes:
- $n^{1,000,000,000,000}$
- 10^{500}
- Inefficient runtimes:
- 2^{n}
- n !
- n^{n}
- "Inefficient" runtimes:
- $n^{0.0001 \log n}$
- 1.000000001^{n}

Why Polynomials?

- Polynomial time somewhat captures efficient computation, but has a few edge cases.
- However, polynomials have very nice mathematical properties:
- The sum of two polynomials is a polynomial. (Running one efficient algorithm, then another, gives an efficient algorithm.)
- The product of two polynomials is a polynomial. (Running one efficient algorithm a "reasonable" number of times gives an efficient algorithm.)
- The composition of two polynomials is a polynomial. (Using the output of one efficient algorithm as the input to another efficient algorithm gives an efficient algorithm.)

The Complexity Class \mathbf{P}

- The complexity class \mathbf{P} (for polynomial time) contains all problems that can be solved in polynomial time.
- Formally:

$$
\begin{gathered}
\mathbf{P}=\left\{L \left\lvert\, \begin{array}{l}
\text { There is a polynomial-time } \\
\text { decider for } L\}
\end{array}\right.\right.
\end{gathered}
$$

- Assuming the Cobham-Edmonds thesis, a language is in \mathbf{P} if it can be decided efficiently.

Examples of Problems in \mathbf{P}

- All regular languages are in \mathbf{P}.
- All have linear-time TMs.
- All CFLs are in \mathbf{P}.
- Requires a more nuanced argument (the CYK algorithm or Earley's algorithm.)
- And a ton of other problems are in \mathbf{P} as well.
- Curious? Take CS161!

Regular Languages

CFLs

P

Undecidable Languages

What can't you do in polynomial time?

How many simple paths are there from the start node to the end node?

How many subsets of this set are there?

An Interesting Observation

- There are (at least) exponentially many objects of each of the preceding types.
- However, each of those objects is not very large.
- Each simple path has length no longer than the number of nodes in the graph.
- Each subset of a set has no more elements than the original set.
- This brings us to our next topic...

What if you need to search a large space for a single object?

Verifiers - Again

2	5	$\mathbf{7}$	9	$\mathbf{6}$	4	$\mathbf{1}$	8	3
4	9	1	8	7	$\mathbf{3}$	6	$\mathbf{5}$	$\mathbf{2}$
$\mathbf{3}$	8	6	$\mathbf{1}$	2	$\mathbf{5}$	$\mathbf{9}$	4	$\mathbf{7}$
$\mathbf{6}$	4	$\mathbf{5}$	7	$\mathbf{3}$	2	$\mathbf{8}$	1	$\mathbf{9}$
$\mathbf{7}$	$\mathbf{1}$	9	5	4	8	3	$\mathbf{2}$	6
$\mathbf{8}$	3	$\mathbf{2}$	6	$\mathbf{1}$	9	$\mathbf{5}$	7	$\mathbf{4}$
$\mathbf{1}$	6	$\mathbf{3}$	$\mathbf{2}$	5	$\mathbf{7}$	4	9	$\mathbf{8}$
$\mathbf{5}$	$\mathbf{7}$	8	$\mathbf{4}$	9	6	2	3	1
9	2	$\mathbf{4}$	3	$\mathbf{8}$	1	$\mathbf{7}$	6	5

Does this Sudoku problem have a solution?

Verifiers - Again

$\begin{array}{llllllllllllll}9 & 3 & 11 & 4 & 2 & 13 & 5 & 6 & 1 & 12 & 7 & 8 & 0 & 10\end{array}$

Is there an ascending subsequence of length at least 7?

Verifiers - Again

Is there a simple path that goes through every node exactly once?

Polynomial-Time Verifiers

- A polynomial-time verifier for L is a TM V such that
- V halts on all inputs.
- $w \in L \quad$ iff $\quad \exists c \in \Sigma^{*} . V$ accepts $\langle w, c\rangle$.
- V 's runtime is a polynomial in $|w|$ (that is, V 's runtime is $\mathrm{O}\left(|w|^{k}\right)$ for some integer k)

The Complexity Class NP

- The complexity class NP (nondeterministic polynomial time) contains all problems that can be verified in polynomial time.
- Formally:

$$
\begin{gathered}
\mathbf{N P}=\{L \mid \\
\text { There is a polynomial-time } \\
\text { verifier for } L\}
\end{gathered}
$$

- The name NP comes from another way of characterizing NP. If you introduce nondeterministic Turing machines and appropriately define "polynomial time," then NP is the set of problems that an NTM can solve in polynomial time.
- Although it's not immediately obvious, NP $\subsetneq \mathbf{R}$. Come talk to me after class if you're curious why!

And now...

The

Most Important Question
 in

Theoretical Computer Science

What is the connection between \mathbf{P} and $\mathbf{N P}$?

$\mathbf{P}=\{L \mid$ There is a polynomial-time decider for L \}

$\mathbf{N P}=\{L \mid$ There is a polynomial-time verifier for $L\}$

$\mathbf{P} \subseteq \mathbf{N P}$

Does $\mathbf{P}=\mathbf{N P}$?

$\mathbf{P} \xlongequal{=} \mathbf{N} \mathbf{P}$

- The $\mathbf{P} \xlongequal{=} \mathbf{N P}$ question is the most important question in theoretical computer science.
- With the verifier definition of NP, one way of phrasing this question is
If a solution to a problem can be checked efficiently, can that problem be solved efficiently?
- An answer either way will give fundamental insights into the nature of computation.

Why This Matters

- The following problems are known to be efficiently verifiable, but have no known efficient solutions:
- Determining whether an electrical grid can be built to link up some number of houses for some price (Steiner tree problem).
- Determining whether a simple DNA strand exists that multiple gene sequences could be a part of (shortest common supersequence).
- Determining the best way to assign hardware resources in a compiler (optimal register allocation).
- Determining the best way to distribute tasks to multiple workers to minimize completion time (job scheduling).
- And many more.
- If $\mathbf{P}=\mathbf{N P}$, all of these problems have efficient solutions.
- If $\mathbf{P} \neq \mathbf{N P}$, none of these problems have efficient solutions.

Why This Matters

- If $\mathbf{P}=\mathbf{N P}$:
- A huge number of seemingly difficult problems could be solved efficiently.
- Our capacity to solve many problems will scale well with the size of the problems we want to solve.
- If $\mathbf{P} \neq \mathbf{N P}$:
- Enormous computational power would be required to solve many seemingly easy tasks.
- Our capacity to solve problems will fail to keep up with our curiosity.

What We Know

- Resolving $\mathbf{P} \stackrel{2}{=} \mathbf{N P}$ has proven extremely difficult.
- In the past 45 years:
- Not a single correct proof either way has been found.
- Many types of proofs have been shown to be insufficiently powerful to determine whether $\mathbf{P} \stackrel{\imath}{=} \mathbf{N P}$.
- A majority of computer scientists believe $\mathbf{P} \neq \mathbf{N P}$, but this isn't a large majority.
- Interesting read: Interviews with leading thinkers about $\mathbf{P} \stackrel{?}{=} \mathbf{N P}$:
- http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

The Million-Dollar Question

 CHALLENGE ACGEPTED

The Clay Mathematics Institute has offered a $\mathbf{\$ 1 , 0 0 0 , 0 0 0}$ prize to anyone who proves or disproves $\mathbf{P}=\mathbf{N P}$.

Do you think $\mathbf{P}=\mathbf{N P}$?

Answer at PollEv.com/cs103 or text CS103 to 22333 once to join, then \mathbf{Y} or \mathbf{N}.

Time-Out for Announcements!

Please evaluate this course in Axess. Your comments really make a difference.

Problem Set Nine

- Problem Set Nine is due this Friday at 2:30PM.
- As a reminder, no late submissions will be accepted. Please budget enough time to get your submission in!
- Very smart idea: submit at least three hours early.
- As always, feel free to ask questions in office hours or online via Piazza.

Final Exam Logistics

- Our final exam is Monday, March 19th from 3:30PM 6:30PM, location Hewlett 200 \& 201 (no special last name assignments).
- Sorry about how soon that is - the registrar picked this time, not us. If we had a choice, it would be on the last day of finals week.
- The exam is cumulative. You're responsible for topics from PS1 - PS9 and all of the lectures.
- As with the midterms, the exam is closed-book, closedcomputer, and limited-note. You can bring one doublesided sheet of $8.5^{\prime \prime} \times 11^{\prime \prime}$ notes with you to the exam, decorated any way you'd like.
- Students with OAE accommodations: if we don't yet have your OAE letter, please send it to us ASAP.

Preparing for the Final

- On the course website you'll find
- six practice final exams, which are all real exams with minor modifications, with solutions, and
- a giant set of 46 practice problems (EPP3), with solutions.
- Our recommendation: Look back over the exams and problem sets and redo any problems that you didn't really get the first time around.
- Keep the TAs in the loop: stop by office hours to have them review your answers and offer feedback.

Practice Final Exam

- If you're interested in attending a proctored practice final exam this Wednesday from 7PM - 10PM, please send us an email by the end of the evening.
- We can then book a space with enough room to hold everyone.

Back to CS103!

What do we know about $\mathbf{P} \stackrel{?}{=} \mathbf{N P}$?

Adapting our Techniques

A Problem

- The \mathbf{R} and $\mathbf{R E}$ languages correspond to problems that can be decided and verified, period, without any time bounds.
- To reason about what's in \mathbf{R} and what's in RE, we used two key techniques:
- Universality: TMs can run other TMs as subroutines.
- Self-Reference: TMs can get their own source code.
- Why can't we just do that for \mathbf{P} and NP?

Theorem (Baker-Gill-Solovay): Any proof that purely relies on universality and self-reference cannot resolve $\mathbf{P} \stackrel{?}{=} \mathbf{N P}$.

Proof: Take CS154!

So how are we going to reason about \mathbf{P} and $\mathbf{N P}$?

Next Time

- Reducibility
- A technique for connecting problems to one another.
- NP-Completeness
- What are the hardest problems in NP?

