
  

Complexity Theory
Part One



  

It may be that since one is customarily 
concerned with existence, […] fniteness, 
and so forth, one is not inclined to take 
seriously the question of the existence of a 
better-than-fnite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”



  

A Decidable Problem
● Presburger arithmetic is a logical system for reasoning 

about arithmetic.

● ∀x. x + 1 ≠ 0

● ∀x. ∀y. (x + 1 = y + 1 → x = y)

● ∀x. x + 0 = x

● ∀x. ∀y. (x + y) + 1 = x + (y + 1)

● (P(0) ∧ ∀y. (P(y) → P(y + 1))) → ∀x. P(x)

● Given a statement, it is decidable whether that statement can 
be proven from the laws of Presburger arithmetic.

● Any Turing machine that decides whether a statement in 
Presburger arithmetic is true or false has to move its tape 
head at least       times on some inputs of length n (for some 
fxed constant c ≥ 1).
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The Limits of Decidability

● The fact that a problem is decidable does not 
mean that it is feasibly decidable.

● In computability theory, we ask the question

What problems can be solved by a computer?
● In complexity theory, we ask the question

What problems can be solved
eficiently by a computer?

● In the remainder of this course, we will 
explore this question in more detail.



  

Where We're Going

● The class P represents problems that can be 
solved eficiently by a computer.

● The class NP represents problems where “yes” 
answers can be verifed eficiently by a 
computer.
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The Setup

● In order to study computability, we 
needed to answer these questions:
● What is “computation?”
● What is a “problem?”
● What does it mean to “solve” a problem?

● To study complexity, we need to answer 
these questions:
● What does “complexity” even mean?
● What is an “eficient” solution to a problem?



  

Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

s
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text CS103 to 22333 once to join, then your answer.



  

Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

Number of states.

Size of tape alphabet.

Size of input alphabet.

Amount of tape required.
● Amount of time required.

Number of times a given state is entered.

Number of times a given symbol is printed.

Number of times a given transition is taken.

(Plus a whole lot more...)



  

What is an eficient algorithm?



  

Searching Finite Spaces

● Many decidable problems can be solved by 
searching over a large but fnite space of 
possible options.

● Searching this space might take a 
staggeringly long time, but only fnite time.

● From a decidability perspective, this is totally 
fne.

● From a complexity perspective, this may be 
totally unacceptable.



  

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10

Goal: Find the length of 
the longest increasing 
subsequence of this 

sequence.

Goal: Find the length of 
the longest increasing 
subsequence of this 

sequence.



  

Longest Increasing Subsequences

● One possible algorithm: try all subsequences, fnd 
the longest one that's increasing, and return that.

● There are 2n subsequences of an array of length n.
● (Each subset of the elements gives back a subsequence.)

● Checking all of them to fnd the longest increasing 
subsequence will take time O(n · 2n).

● Nifty fact: the age of the universe is about 4.3 × 1026 
nanoseconds old. That's about 285 nanoseconds.

● Practically speaking, this algorithm doesn't terminate 
if you give it an input of size 100 or more.



  

Longest Increasing Subsequences

● Theorem: There is an algorithm that can fnd 
the longest increasing subsequence of an array 
in time O(n log n).

● The algorithm is beautiful and surprisingly 
elegant. Look up patience sorting if you're 
curious.

● This algorithm works by exploiting particular 
aspects of how longest increasing subsequences 
are constructed. It's not immediately obvious 
that it works correctly.



  

Another Problem

E

A

F

C

D

B

To   

From
   

Goal: Determine the 
length of the shortest 
path from A to F in 

this graph.

Goal: Determine the 
length of the shortest 
path from A to F in 

this graph.



  

Shortest Paths

● It is possible to fnd the shortest path in a 
graph by listing of all sequences of 
nodes in the graph in ascending order of 
length and fnding the frst that's a path.

● This takes time O(n · n!) in an n-node 
graph.

● For reference: 29! nanoseconds is longer 
than the lifetime of the universe.



  

Shortest Paths

● Theorem: It's possible to fnd the 
shortest path between two nodes in an n-
node, m-edge graph in time O(m + n).

● Proof idea: Use breadth-frst search!
● The algorithm is a bit nuanced. It uses 

some specifc properties of shortest 
paths and the proof of correctness is 
nontrivial.



  

For Comparison

● Longest increasing 
subsequence:
● Naive: O(n · 2n)
● Fast: O(n2)

● Shortest path 
problem:
● Naive: O(n · n!)
● Fast: O(n + m).



  

Defning Eficiency

● When dealing with problems that search 
for the “best” object of some sort, there 
are often at least exponentially many 
possible options.

● Brute-force solutions tend to take at least 
exponential time to complete.

● Clever algorithms often run in time O(n), 
or O(n2), or O(n3), etc.



  

Polynomials and Exponentials

● An algorithm runs in polynomial time if 
its runtime is some polynomial in n.
● That is, time O(nk) for some constant k.

● Polynomial functions “scale well.”
● Small changes to the size of the input do not 

typically induce enormous changes to the 
overall runtime.

● Exponential functions scale terribly.
● Small changes to the size of the input induce 

huge changes in the overall runtime.



  

The Cobham-Edmonds Thesis

A language L can be decided eficiently if
there is a TM that decides it in polynomial time.

 

Equivalently, L can be decided eficiently if
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is 
not a theorem!

 

It's an assumption about the nature of 
eficient computation, and it is 

somewhat controversial.

Like the Church-Turing thesis, this is 
not a theorem!

 

It's an assumption about the nature of 
eficient computation, and it is 

somewhat controversial.



  

The Cobham-Edmonds Thesis

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

According to the Cobham-Edmonds thesis, how many of
the following runtimes are considered eficient?

4n2 – 3n + 137
10500

2n

1.000000000001n

n1,000,000,000,000

nlog n

According to the Cobham-Edmonds thesis, how many of
the following runtimes are considered eficient?

4n2 – 3n + 137
10500

2n

1.000000000001n

n1,000,000,000,000

nlog n



  

The Cobham-Edmonds Thesis

● Eficient runtimes:
● 4n + 13
● n3 – 2n2 + 4n
● n log log n

● “Eficient” runtimes:
● n1,000,000,000,000

● 10500

● Ineficient runtimes:
● 2n

● n!
● nn

● “Ineficient” runtimes:
● n0.0001 log n

● 1.000000001n



  

Why Polynomials?

● Polynomial time somewhat captures eficient 
computation, but has a few edge cases.

● However, polynomials have very nice mathematical 
properties:
● The sum of two polynomials is a polynomial. (Running one 

eficient algorithm, then another, gives an eficient 
algorithm.)

● The product of two polynomials is a polynomial. (Running 
one eficient algorithm a “reasonable” number of times 
gives an eficient algorithm.)

● The composition of two polynomials is a polynomial. 
(Using the output of one eficient algorithm as the input to 
another eficient algorithm gives an eficient algorithm.)



  

The Complexity Class P

● The complexity class P (for polynomial 
time) contains all problems that can be 
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time   
decider for L }      

● Assuming the Cobham-Edmonds thesis, a 
language is in P if it can be decided 
eficiently.



  

Examples of Problems in P

● All regular languages are in P.
● All have linear-time TMs.

● All CFLs are in P.
● Requires a more nuanced argument (the 

CYK algorithm or Earley's algorithm.)
● And a ton of other problems are in P as 

well.
● Curious? Take CS161!



  Undecidable Languages
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What can't you do in polynomial time?



  

start

end

How many simple 
paths are there 
from the start 
node to the end 

node?

How many simple 
paths are there 
from the start 
node to the end 

node?



  

, , ,

How many 
subsets of this 
set are there?

How many 
subsets of this 
set are there?



  

An Interesting Observation

● There are (at least) exponentially many 
objects of each of the preceding types.

● However, each of those objects is not very 
large.
● Each simple path has length no longer than the 

number of nodes in the graph.
● Each subset of a set has no more elements than 

the original set.
● This brings us to our next topic...



  

What if you need to search a large 
space for a single object?



  

Verifers – Again
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Does this Sudoku problem 
have a solution?



  

4 3 11 9 7 13 5 6 1 12 2 8 0 109 3 11 4 2 13 5 6 1 12 7 8 0 10

Verifers – Again

Is there an ascending subsequence of 
length at least 7?



  

Verifers – Again

Is there a simple path that goes 
through every node exactly once?

1

2

5

4

6

3



  

Polynomial-Time Verifers

● A polynomial-time verifer for L is a 
TM V such that
● V halts on all inputs.
● w ∈ L    if    ∃c ∈ Σ*. V accepts ⟨w, c⟩.
● V's runtime is a polynomial in |w| (that is, V's 

runtime is O(|w|k) for some integer k)



  

The Complexity Class NP

● The complexity class NP (nondeterministic polynomial 
time) contains all problems that can be verifed in 
polynomial time.

● Formally:

             NP = { L | There is a polynomial-time 
                                 verifer for L }

● The name NP comes from another way of characterizing 
NP. If you introduce nondeterministic Turing machines 
and appropriately defne “polynomial time,” then NP is 
the set of problems that an NTM can solve in polynomial 
time.

● Although it’s not immediately obvious, NP  ⊊ R. Come talk 
to me after class if you’re curious why!



  

And now...



  

The
 

Most Important Question
 

in
 

Theoretical Computer Science



  

What is the connection between P and NP?



  

     P = { L | There is a polynomial-time
                       decider for L }

     NP = { L | There is a polynomial-time
                        verifer for L }

P ⊆ NP

Polynomial-Time
Verifer for L

yes!

no!

input string (w)     

certifcate (c)  
(ignored)



  

Does P = NP?



  

P  ≟ NP

● The P ≟ NP question is the most important question in 
theoretical computer science.

● With the verifer defnition of NP, one way of phrasing 
this question is

If a solution to a problem can be checked eficiently,
can that problem be solved eficiently?

● An answer either way will give fundamental insights 
into the nature of computation.



  

Why This Matters

● The following problems are known to be eficiently 
verifable, but have no known eficient solutions:

● Determining whether an electrical grid can be built to link up 
some number of houses for some price (Steiner tree problem).

● Determining whether a simple DNA strand exists that multiple 
gene sequences could be a part of (shortest common 
supersequence).

● Determining the best way to assign hardware resources in a 
compiler (optimal register allocation).

● Determining the best way to distribute tasks to multiple 
workers to minimize completion time (job scheduling).

● And many more.

● If P = NP, all of these problems have eficient solutions.

● If P ≠ NP, none of these problems have eficient solutions.



  

Why This Matters

● If P = NP:
● A huge number of seemingly dificult problems 

could be solved eficiently.
● Our capacity to solve many problems will scale 

well with the size of the problems we want to 
solve.

● If P ≠ NP:
● Enormous computational power would be 

required to solve many seemingly easy tasks.
● Our capacity to solve problems will fail to keep up 

with our curiosity.



  

What We Know

● Resolving P  ≟ NP has proven extremely dificult.
● In the past 45 years:

● Not a single correct proof either way has been 
found.

● Many types of proofs have been shown to be 
insuficiently powerful to determine whether 
P ≟ NP.

● A majority of computer scientists believe P ≠ NP, 
but this isn't a large majority.

● Interesting read: Interviews with leading thinkers 
about P  ≟ NP:

● http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf


  

The Million-Dollar Question

The Clay Mathematics Institute has ofered 
a $1,000,000 prize to anyone who proves 

or disproves P = NP.



  

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then Y or N.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then Y or N.

Do you think P = NP?Do you think P = NP?



  

Time-Out for Announcements!



  

Please evaluate this course in Axess.
Your comments really make a diference.



  

Problem Set Nine

● Problem Set Nine is due this Friday at 
2:30PM.
● As a reminder, no late submissions will be 

accepted. Please budget enough time to get 
your submission in!

● Very smart idea: submit at least three hours 
early.

● As always, feel free to ask questions in 
ofice hours or online via Piazza.



  

Final Exam Logistics

● Our fnal exam is Monday, March 19th from 3:30PM – 
6:30PM, location Hewlett 200 & 201 (no special last name 
assignments).
● Sorry about how soon that is – the registrar picked this time, not 

us. If we had a choice, it would be on the last day of fnals week.
● The exam is cumulative. You’re responsible for topics from 

PS1 – PS9 and all of the lectures.
● As with the midterms, the exam is closed-book, closed-

computer, and limited-note. You can bring one double-
sided sheet of 8.5” × 11” notes with you to the exam, 
decorated any way you’d like.

● Students with OAE accommodations: if we don’t yet have 
your OAE letter, please send it to us ASAP.



  

Preparing for the Final

● On the course website you’ll fnd
● six practice fnal exams, which are all real exams 

with minor modifcations, with solutions, and
● a giant set of 46 practice problems (EPP3), with 

solutions.
● Our recommendation: Look back over the 

exams and problem sets and redo any problems 
that you didn’t really get the frst time around.

● Keep the TAs in the loop: stop by ofice hours to 
have them review your answers and ofer 
feedback.



  

Practice Final Exam

● If you’re interested in attending a 
proctored practice fnal exam this 
Wednesday from 7PM – 10PM, please 
send us an email by the end of the 
evening.

● We can then book a space with enough 
room to hold everyone.



  

Back to CS103!



  

What do we know about P  ≟ NP?



  

Adapting our Techniques



  

A Problem

● The R and RE languages correspond to 
problems that can be decided and verifed, 
period, without any time bounds.

● To reason about what's in R and what's in RE, 
we used two key techniques:
● Universality: TMs can run other TMs as 

subroutines.
● Self-Reference: TMs can get their own source code.

● Why can't we just do that for P and NP?



  

Theorem (Baker-Gill-Solovay): Any 
proof that purely relies on universality and 
self-reference cannot resolve P  ≟ NP.

Proof: Take CS154!



  

So how are we going to
reason about P and NP?



  

Next Time

● Reducibility
● A technique for connecting problems to one 

another.
● NP-Completeness

● What are the hardest problems in NP?
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