

Complexity Theory
Part One

It may be that since one is customarily
concerned with existence, […] fniteness,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-fnite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”

A Decidable Problem
● Presburger arithmetic is a logical system for reasoning

about arithmetic.

● ∀x. x + 1 ≠ 0

● ∀x. ∀y. (x + 1 = y + 1 → x = y)

● ∀x. x + 0 = x

● ∀x. ∀y. (x + y) + 1 = x + (y + 1)

● (P(0) ∧ ∀y. (P(y) → P(y + 1))) → ∀x. P(x)

● Given a statement, it is decidable whether that statement can
be proven from the laws of Presburger arithmetic.

● Any Turing machine that decides whether a statement in
Presburger arithmetic is true or false has to move its tape
head at least times on some inputs of length n (for some
fxed constant c ≥ 1).

22cn

For Reference

● Assume c = 1.

220

= 2

221

= 4
222

= 16

223

= 256

224

= 65536

225

= 18446744073709551616
226

= 340282366920938463463374607431768211456

The Limits of Decidability

● The fact that a problem is decidable does not
mean that it is feasibly decidable.

● In computability theory, we ask the question

What problems can be solved by a computer?
● In complexity theory, we ask the question

What problems can be solved
eficiently by a computer?

● In the remainder of this course, we will
explore this question in more detail.

Where We're Going

● The class P represents problems that can be
solved eficiently by a computer.

● The class NP represents problems where “yes”
answers can be verifed eficiently by a
computer.

 Undecidable Languages

Regular
Languages CFLs R

Efficiently
Decidable

Languages

The Setup

● In order to study computability, we
needed to answer these questions:
● What is “computation?”
● What is a “problem?”
● What does it mean to “solve” a problem?

● To study complexity, we need to answer
these questions:
● What does “complexity” even mean?
● What is an “eficient” solution to a problem?

Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

s

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then your answer.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then your answer.

Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

Number of states.

Size of tape alphabet.

Size of input alphabet.

Amount of tape required.
● Amount of time required.

Number of times a given state is entered.

Number of times a given symbol is printed.

Number of times a given transition is taken.

(Plus a whole lot more...)

What is an eficient algorithm?

Searching Finite Spaces

● Many decidable problems can be solved by
searching over a large but fnite space of
possible options.

● Searching this space might take a
staggeringly long time, but only fnite time.

● From a decidability perspective, this is totally
fne.

● From a complexity perspective, this may be
totally unacceptable.

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

Longest Increasing Subsequences

● One possible algorithm: try all subsequences, fnd
the longest one that's increasing, and return that.

● There are 2n subsequences of an array of length n.
● (Each subset of the elements gives back a subsequence.)

● Checking all of them to fnd the longest increasing
subsequence will take time O(n · 2n).

● Nifty fact: the age of the universe is about 4.3 × 1026
nanoseconds old. That's about 285 nanoseconds.

● Practically speaking, this algorithm doesn't terminate
if you give it an input of size 100 or more.

Longest Increasing Subsequences

● Theorem: There is an algorithm that can fnd
the longest increasing subsequence of an array
in time O(n log n).

● The algorithm is beautiful and surprisingly
elegant. Look up patience sorting if you're
curious.

● This algorithm works by exploiting particular
aspects of how longest increasing subsequences
are constructed. It's not immediately obvious
that it works correctly.

Another Problem

E

A

F

C

D

B

To

From

Goal: Determine the
length of the shortest
path from A to F in

this graph.

Goal: Determine the
length of the shortest
path from A to F in

this graph.

Shortest Paths

● It is possible to fnd the shortest path in a
graph by listing of all sequences of
nodes in the graph in ascending order of
length and fnding the frst that's a path.

● This takes time O(n · n!) in an n-node
graph.

● For reference: 29! nanoseconds is longer
than the lifetime of the universe.

Shortest Paths

● Theorem: It's possible to fnd the
shortest path between two nodes in an n-
node, m-edge graph in time O(m + n).

● Proof idea: Use breadth-frst search!
● The algorithm is a bit nuanced. It uses

some specifc properties of shortest
paths and the proof of correctness is
nontrivial.

For Comparison

● Longest increasing
subsequence:
● Naive: O(n · 2n)
● Fast: O(n2)

● Shortest path
problem:
● Naive: O(n · n!)
● Fast: O(n + m).

Defning Eficiency

● When dealing with problems that search
for the “best” object of some sort, there
are often at least exponentially many
possible options.

● Brute-force solutions tend to take at least
exponential time to complete.

● Clever algorithms often run in time O(n),
or O(n2), or O(n3), etc.

Polynomials and Exponentials

● An algorithm runs in polynomial time if
its runtime is some polynomial in n.
● That is, time O(nk) for some constant k.

● Polynomial functions “scale well.”
● Small changes to the size of the input do not

typically induce enormous changes to the
overall runtime.

● Exponential functions scale terribly.
● Small changes to the size of the input induce

huge changes in the overall runtime.

The Cobham-Edmonds Thesis

A language L can be decided eficiently if
there is a TM that decides it in polynomial time.

Equivalently, L can be decided eficiently if
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
eficient computation, and it is

somewhat controversial.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
eficient computation, and it is

somewhat controversial.

The Cobham-Edmonds Thesis

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

According to the Cobham-Edmonds thesis, how many of
the following runtimes are considered eficient?

4n2 – 3n + 137
10500

2n

1.000000000001n

n1,000,000,000,000

nlog n

According to the Cobham-Edmonds thesis, how many of
the following runtimes are considered eficient?

4n2 – 3n + 137
10500

2n

1.000000000001n

n1,000,000,000,000

nlog n

The Cobham-Edmonds Thesis

● Eficient runtimes:
● 4n + 13
● n3 – 2n2 + 4n
● n log log n

● “Eficient” runtimes:
● n1,000,000,000,000

● 10500

● Ineficient runtimes:
● 2n

● n!
● nn

● “Ineficient” runtimes:
● n0.0001 log n

● 1.000000001n

Why Polynomials?

● Polynomial time somewhat captures eficient
computation, but has a few edge cases.

● However, polynomials have very nice mathematical
properties:
● The sum of two polynomials is a polynomial. (Running one

eficient algorithm, then another, gives an eficient
algorithm.)

● The product of two polynomials is a polynomial. (Running
one eficient algorithm a “reasonable” number of times
gives an eficient algorithm.)

● The composition of two polynomials is a polynomial.
(Using the output of one eficient algorithm as the input to
another eficient algorithm gives an eficient algorithm.)

The Complexity Class P

● The complexity class P (for polynomial
time) contains all problems that can be
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time
decider for L }

● Assuming the Cobham-Edmonds thesis, a
language is in P if it can be decided
eficiently.

Examples of Problems in P

● All regular languages are in P.
● All have linear-time TMs.

● All CFLs are in P.
● Requires a more nuanced argument (the

CYK algorithm or Earley's algorithm.)
● And a ton of other problems are in P as

well.
● Curious? Take CS161!

 Undecidable Languages

Regular
Languages CFLs RP

What can't you do in polynomial time?

start

end

How many simple
paths are there
from the start
node to the end

node?

How many simple
paths are there
from the start
node to the end

node?

, , ,

How many
subsets of this
set are there?

How many
subsets of this
set are there?

An Interesting Observation

● There are (at least) exponentially many
objects of each of the preceding types.

● However, each of those objects is not very
large.
● Each simple path has length no longer than the

number of nodes in the graph.
● Each subset of a set has no more elements than

the original set.
● This brings us to our next topic...

What if you need to search a large
space for a single object?

Verifers – Again

2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

Does this Sudoku problem
have a solution?

4 3 11 9 7 13 5 6 1 12 2 8 0 109 3 11 4 2 13 5 6 1 12 7 8 0 10

Verifers – Again

Is there an ascending subsequence of
length at least 7?

Verifers – Again

Is there a simple path that goes
through every node exactly once?

1

2

5

4

6

3

Polynomial-Time Verifers

● A polynomial-time verifer for L is a
TM V such that
● V halts on all inputs.
● w ∈ L if ∃c ∈ Σ*. V accepts ⟨w, c⟩.
● V's runtime is a polynomial in |w| (that is, V's

runtime is O(|w|k) for some integer k)

The Complexity Class NP

● The complexity class NP (nondeterministic polynomial
time) contains all problems that can be verifed in
polynomial time.

● Formally:

 NP = { L | There is a polynomial-time
 verifer for L }

● The name NP comes from another way of characterizing
NP. If you introduce nondeterministic Turing machines
and appropriately defne “polynomial time,” then NP is
the set of problems that an NTM can solve in polynomial
time.

● Although it’s not immediately obvious, NP ⊊ R. Come talk
to me after class if you’re curious why!

And now...

The

Most Important Question

in

Theoretical Computer Science

What is the connection between P and NP?

 P = { L | There is a polynomial-time
 decider for L }

 NP = { L | There is a polynomial-time
 verifer for L }

P ⊆ NP

Polynomial-Time
Verifer for L

yes!

no!

input string (w)

certifcate (c)
(ignored)

Does P = NP?

P ≟ NP

● The P ≟ NP question is the most important question in
theoretical computer science.

● With the verifer defnition of NP, one way of phrasing
this question is

If a solution to a problem can be checked eficiently,
can that problem be solved eficiently?

● An answer either way will give fundamental insights
into the nature of computation.

Why This Matters

● The following problems are known to be eficiently
verifable, but have no known eficient solutions:

● Determining whether an electrical grid can be built to link up
some number of houses for some price (Steiner tree problem).

● Determining whether a simple DNA strand exists that multiple
gene sequences could be a part of (shortest common
supersequence).

● Determining the best way to assign hardware resources in a
compiler (optimal register allocation).

● Determining the best way to distribute tasks to multiple
workers to minimize completion time (job scheduling).

● And many more.

● If P = NP, all of these problems have eficient solutions.

● If P ≠ NP, none of these problems have eficient solutions.

Why This Matters

● If P = NP:
● A huge number of seemingly dificult problems

could be solved eficiently.
● Our capacity to solve many problems will scale

well with the size of the problems we want to
solve.

● If P ≠ NP:
● Enormous computational power would be

required to solve many seemingly easy tasks.
● Our capacity to solve problems will fail to keep up

with our curiosity.

What We Know

● Resolving P ≟ NP has proven extremely dificult.
● In the past 45 years:

● Not a single correct proof either way has been
found.

● Many types of proofs have been shown to be
insuficiently powerful to determine whether
P ≟ NP.

● A majority of computer scientists believe P ≠ NP,
but this isn't a large majority.

● Interesting read: Interviews with leading thinkers
about P ≟ NP:

● http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

The Million-Dollar Question

The Clay Mathematics Institute has ofered
a $1,000,000 prize to anyone who proves

or disproves P = NP.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then Y or N.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then Y or N.

Do you think P = NP?Do you think P = NP?

Time-Out for Announcements!

Please evaluate this course in Axess.
Your comments really make a diference.

Problem Set Nine

● Problem Set Nine is due this Friday at
2:30PM.
● As a reminder, no late submissions will be

accepted. Please budget enough time to get
your submission in!

● Very smart idea: submit at least three hours
early.

● As always, feel free to ask questions in
ofice hours or online via Piazza.

Final Exam Logistics

● Our fnal exam is Monday, March 19th from 3:30PM –
6:30PM, location Hewlett 200 & 201 (no special last name
assignments).
● Sorry about how soon that is – the registrar picked this time, not

us. If we had a choice, it would be on the last day of fnals week.
● The exam is cumulative. You’re responsible for topics from

PS1 – PS9 and all of the lectures.
● As with the midterms, the exam is closed-book, closed-

computer, and limited-note. You can bring one double-
sided sheet of 8.5” × 11” notes with you to the exam,
decorated any way you’d like.

● Students with OAE accommodations: if we don’t yet have
your OAE letter, please send it to us ASAP.

Preparing for the Final

● On the course website you’ll fnd
● six practice fnal exams, which are all real exams

with minor modifcations, with solutions, and
● a giant set of 46 practice problems (EPP3), with

solutions.
● Our recommendation: Look back over the

exams and problem sets and redo any problems
that you didn’t really get the frst time around.

● Keep the TAs in the loop: stop by ofice hours to
have them review your answers and ofer
feedback.

Practice Final Exam

● If you’re interested in attending a
proctored practice fnal exam this
Wednesday from 7PM – 10PM, please
send us an email by the end of the
evening.

● We can then book a space with enough
room to hold everyone.

Back to CS103!

What do we know about P ≟ NP?

Adapting our Techniques

A Problem

● The R and RE languages correspond to
problems that can be decided and verifed,
period, without any time bounds.

● To reason about what's in R and what's in RE,
we used two key techniques:
● Universality: TMs can run other TMs as

subroutines.
● Self-Reference: TMs can get their own source code.

● Why can't we just do that for P and NP?

Theorem (Baker-Gill-Solovay): Any
proof that purely relies on universality and
self-reference cannot resolve P ≟ NP.

Proof: Take CS154!

So how are we going to
reason about P and NP?

Next Time

● Reducibility
● A technique for connecting problems to one

another.
● NP-Completeness

● What are the hardest problems in NP?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

