
  

Complexity Theory
Part Two



  

Recap from Last Time



  

The Cobham-Edmonds Thesis

A language L can be decided eficiently if
there is a TM that decides it in polynomial time.

 

Equivalently, L can be decided eficiently if
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is 
not a theorem!

 

It's an assumption about the nature of 
eficient computation, and it is 

somewhat controversial.

Like the Church-Turing thesis, this is 
not a theorem!

 

It's an assumption about the nature of 
eficient computation, and it is 

somewhat controversial.



  

The Complexity Class P

● The complexity class P (for polynomial 
time) contains all problems that can be 
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time   
decider for L }      

● Assuming the Cobham-Edmonds thesis, a 
language is in P if it can be decided 
eficiently.



  

Polynomial-Time Verifers

● A polynomial-time verifer for L is a 
TM V such that
● V halts on all inputs.
● w ∈ L    if    ∃c ∈ Σ*. V accepts ⟨w, c⟩.
● V's runtime is a polynomial in |w| (that is, V's 

runtime is O(|w|k) for some integer k)



  

The Complexity Class NP

● The complexity class NP (nondeterministic 
polynomial time) contains all problems that can be 
verifed in polynomial time.

● Formally:

             NP = { L | There is a polynomial-time 
                                 verifer for L }

● The name NP comes from another way of 
characterizing NP. If you introduce nondeterministic 
Turing machines and appropriately defne 
“polynomial time,” then NP is the set of problems 
that an NTM can solve in polynomial time.



  

Theorem (Baker-Gill-Solovay): Any 
proof that purely relies on universality and 
self-reference cannot resolve P  ≟ NP.

Proof: Take CS154!



  

So how are we going to
reason about P and NP?



New Stuf!



  

A Challenge



  

      NP        PREG

Problems in NP vary widely in their 
dificulty, even if P = NP.

 

How can we rank the relative dificulties 
of problems?



  

Reducibility



  

Maximum Matching

● Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.

A matching, but 
not a maximum 

matching.

A matching, but 
not a maximum 

matching.



  

Maximum Matching

● Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.

A maximum 
matching.

A maximum 
matching.



  

Maximum Matching

● Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.



  

Maximum Matching

● Jack Edmonds' paper “Paths, Trees, and 
Flowers” gives a polynomial-time 
algorithm for fnding maximum 
matchings.
● (This is the same Edmonds as in “Cobham-

Edmonds Thesis.”)
● Using this fact, what other problems can 

we solve?



  

Solving Domino Tiling



  

Solving Domino Tiling



  

Solving Domino Tiling



  

In Pseudocode

boolean canPlaceDominos(Grid G, int k) {

 return hasMatching(gridToGraph(G), k);

}



  

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A or B.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A or B.

Based on this connection between maximum matching
and domino tiling, which of the following statements

would be more proper to conclude?

A. Finding a maximum matching isn’t any more dificult
than tiling a grid with dominoes.

B. Tiling a grid with dominoes isn’t any more dificult
than fnding a maximum matching.

Based on this connection between maximum matching
and domino tiling, which of the following statements

would be more proper to conclude?

A. Finding a maximum matching isn’t any more dificult
than tiling a grid with dominoes.

B. Tiling a grid with dominoes isn’t any more dificult
than fnding a maximum matching.



  

Intuition:

Tiling a grid with dominoes can't be 
“harder” than solving maximum matching, 

because if we can solve maximum 
matching eficiently, we can solve domino 

tiling eficiently.



  

Another Example



  

Reachability

● Consider the following problem:

Given an directed graph G and nodes s 
and t in G, is there a path from s to t? 

● It's known that this problem can be solved in 
polynomial time (use DFS or BFS).

● Given that we can solve the reachability 
problem in polynomial time, what other 
problems can we solve in polynomial time?



  

Converter Conundrums

● Suppose that you want to plug your laptop into a 
projector.

● Your laptop only has a VGA output, but the 
projector needs HDMI input.

● You have a box of connectors that convert various 
types of input into various types of output (for 
example, VGA to DVI, DVI to DisplayPort, etc.)

● Question: Can you plug your laptop into the 
projector?



  

Converter Conundrums

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI

Connectors
RGB to USB

VGA to DisplayPort
DB13W3 to CATV

DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

Connectors
RGB to USB

VGA to DisplayPort
DB13W3 to CATV

DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI



  

In Pseudocode

boolean canPlugIn(List<Plug> plugs) {

 return isReachable(plugsToGraph(plugs),
                     VGA, HDMI);

}



  

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A or B.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A or B.

Based on this connection between plugging a laptop into
a projector and determining reachability, which of the

following statements would be more proper to conclude?

A. Plugging a laptop into a projector isn’t any more
dificult that computing reachability in a directed graph.

B. Computing reachability in a directed graph isn’t any
more dificult than plugging a laptop into a projector.

Based on this connection between plugging a laptop into
a projector and determining reachability, which of the

following statements would be more proper to conclude?

A. Plugging a laptop into a projector isn’t any more
dificult that computing reachability in a directed graph.

B. Computing reachability in a directed graph isn’t any
more dificult than plugging a laptop into a projector.



  

Intuition:

Finding a way to plug a computer into a 
projector can't be “harder” than 

determining reachability in a graph, since 
if we can determine reachability in a graph, 
we can fnd a way to plug a computer into a 

projector.



  

Intuition:

Problem A can't be “harder” than problem 
B, because solving problem B lets us solve 

problem A.

bool solveProblemA(string input) {
    return solveProblemB(transform(input));
}



  

bool solveProblemA(string input) {
    return solveProblemB(transform(input));
}

● If A and B are problems where it's 
possible to solve problem A using the 
strategy shown above*, we write

A ≤p B. 

● We say that A is polynomial-time 
reducible to B.

* Assuming that transform
* runs in polynomial time.



  

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

      NPP



This ≤ₚ relation lets us rank the relative 
dificulties of problems in P and NP.

What else can we do with it?



Time-Out for Announcements!



Please evaluate this course on Axess.

Your feedback makes a diference.



  

Problem Set Nine

● Problem Set Nine is due this Friday at 
2:30PM.
● No late submissions can be accepted. 

This is university policy – sorry!
● As always, if you have questions, stop by 

ofice hours or ask on Piazza!



  

Final Exam Logistics

● Our fnal exam is Monday, March 19th from 3:30PM – 
6:30PM, location Hewlett 200 & 201 (no special last name 
assignments).
● Sorry about how soon that is – the registrar picked this time, not 

us. If we had a choice, it would be on the last day of fnals week.
● The exam is cumulative. You’re responsible for topics from 

PS1 – PS9 and all of the lectures.
● As with the midterms, the exam is closed-book, closed-

computer, and limited-note. You can bring one double-
sided sheet of 8.5” × 11” notes with you to the exam, 
decorated any way you’d like.

● Students with OAE accommodations: if we don’t yet have 
your OAE letter, please send it to us ASAP.



  

Preparing for the Final

● On the course website you’ll fnd
● six practice fnal exams, which are all real exams 

with minor modifcations, with solutions, and
● a giant set of 46 practice problems (EPP3), with 

solutions.
● Our recommendation: Look back over the 

exams and problem sets and redo any problems 
that you didn’t really get the frst time around.

● Keep the TAs in the loop: stop by ofice hours to 
have them review your answers and ofer 
feedback.



  

Practice Final Exam

● We will be holding a practice fnal exam 
in room 380-380X tonight from 7PM – 
10PM.

● We’ll print out copies of a few of the 
diferent practice exams and you can 
pick whichever one you’d like!



  

Back to CS103!



  

NP-Hardness and NP-Completeness



  

Question: What makes a problem
hard to solve?



  

Intuition: If A ≤ₚ B, then problem B is at 
least as hard* as problem A.

* for some defnition of “at least as hard as.”



  

Intuition: To show that some problem is 
hard, show that lots of other problems 

reduce to it.

 



  

NP-Hardness

● A language L is called NP-hard if for every A ∈ NP, we have 
A ≤P L.

A language in L is called NP-complete if L is NP-hard and 
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

      NP NP-Hard

Intuitively: L has to be at least as 
hard as every problem in NP, since 
an algorithm for L can be used to 

decide all problems in NP.

Intuitively: L has to be at least as 
hard as every problem in NP, since 
an algorithm for L can be used to 

decide all problems in NP.



  

NP-Hardness

● A language L is called NP-hard if for every A ∈ NP, we have 
A ≤P L.

A language in L is called NP-complete if L is NP-hard and 
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

      NP NP-Hard

What's in here?What's in here?



  

NP-Hardness

● A language L is called NP-hard if for every A ∈ NP, we have 
A ≤P L.

● A language in L is called NP-complete if L is NP-hard and 
L ∈ NP.

● The class NPC is the set of NP-complete problems.

P

      NP NP-Hard
NPC



  

The Tantalizing Truth

     P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem A. Since L is NP-complete, we know
that A ≤p L. Since L ∈ P and A ≤p L, we see that A ∈ P. Since
our choice of A was arbitrary, this means that NP ⊆ P, so
P = NP. ■



  

The Tantalizing Truth

      NP

P 
NPC

Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■



  

How do we even know NP-complete
problems exist in the frst place?



  

Satisfability

● A propositional logic formula φ is called 
satisfable if there is some assignment to 
its variables that makes it evaluate to true.
● p ∧ q is satisfable.
● p ∧ ¬p is unsatisfable.
● p → (q ∧ ¬q) is satisfable.

● An assignment of true and false to the 
variables of φ that makes it evaluate to 
true is called a satisfying assignment.



  

SAT

● The boolean satisfability problem 
(SAT) is the following:

Given a propositional logic
formula φ, is φ satisfable?

● Formally:

SAT = { ⟨φ⟩ | φ is a satisfable PL       
formula }



  

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, B, C, or D.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, B, C, or D.

The language SAT happens to be in NP. Think about how
a polynomial-time verifer for SAT might work. Which of

the following would work as certifcates for such a verifer,
given that the input is a propositional formula φ?

A. The truth table of φ.
B. One possible variable assignment to φ.
C. A list of all possible variable assignments for φ.
D. None of the above, or two or more of the above.

The language SAT happens to be in NP. Think about how
a polynomial-time verifer for SAT might work. Which of

the following would work as certifcates for such a verifer,
given that the input is a propositional formula φ?

A. The truth table of φ.
B. One possible variable assignment to φ.
C. A list of all possible variable assignments for φ.
D. None of the above, or two or more of the above.

SAT = { ⟨φ⟩ | φ is a satisfable PL       
formula }



  

Theorem (Cook-Levin): SAT is NP-complete.

Proof Idea: To see that SAT ∈ NP, show how to 
make a polynomial-time verifer for it. Key idea: 
have the certifcate be a satisfying assignment.

To show that SAT is NP-hard, given a 
polymomial-time verifer V for an arbitrary NP 
language L, for any string w you can construct a 
polynomially-sized formula φ(w) that says “there 
is a certifcate c where V accepts ⟨w, c⟩.” This 
formula is satisfable if and only if w ∈ L, so 
deciding whether the formula is satisfable 
decides whether w is in L.

Proof: Take CS154!



  

Why All This Matters

● Resolving P   ≟ NP is equivalent to just fguring 
out how hard SAT is.
● If SAT ∈ P, then P = NP.

If SAT ∉ P, then P ≠ NP.
● We've turned a huge, abstract, theoretical 

problem about solving problems versus 
checking solutions into the concrete task of 
seeing how hard one problem is.

● You can get a sense for how little we know 
about algorithms and computation given that 
we can't yet answer this question!



  

Why All This Matters

● You will almost certainly encounter NP-hard 
problems in practice – they're everywhere!

● If a problem is NP-hard, then there is no known 
algorithm for that problem that
● is eficient on all inputs,
● always gives back the right answer, and
● runs deterministically.

● Useful intuition: If you need to solve an NP-hard 
problem, you will either need to settle for an 
approximate answer, an answer that's likely but not 
necessarily right, or have to work on really small 
inputs.



  

Sample NP-Hard Problems
● Computational biology: Given a set of genomes, what is the most 

probable evolutionary tree that would give rise to those genomes? 
(Maximum parsimony problem)

● Game theory: Given an arbitrary perfect-information, fnite, twoplayer 
game, who wins? (Generalized geography problem)

● Operations research: Given a set of jobs and workers who can 
perform those tasks in parallel, can you complete all the jobs within 
some time bound? (Job scheduling problem)

● Machine learning: Given a set of data, fnd the simplest way of 
modeling the statistical patterns in that data (Bayesian network 
inference problem)

● Medicine: Given a group of people who need kidneys and a group of 
kidney donors, fnd the maximum number of people who can end up 
with kidneys (Cycle cover problem)

● Systems: Given a set of processes and a number of processors, fnd the 
optimal way to assign those tasks so that they complete as soon as 
possible (Processor scheduling problem)



  

Coda: What if P  ≟ NP is resolved?



  

Intermediate Problems

● With few exceptions, every problem we've discovered in 
NP has either
● defnitely been proven to be in P, or
● defnitely been proven to be NP-complete.

● A problem that's NP, not in P, but not NP-complete is 
called NP-intermediate.

● Theorem (Ladner): There are NP-intermediate 
problems if and only if P ≠ NP.

P

    NP

NPC



  

What if P ≠ NP?



  

A Good Read:

“A Personal View of Average-Case 
Complexity” by Russell Impagliazzo



  

What if P = NP?



  

And a Dismal Third Option



  

Next Time

● The Big Picture
● Where to Go from Here
● A Final “Your Questions”
● Parting Words!
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