

Complexity Theory
Part Two

Recap from Last Time

The Cobham-Edmonds Thesis

A language L can be decided eficiently if
there is a TM that decides it in polynomial time.

Equivalently, L can be decided eficiently if
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
eficient computation, and it is

somewhat controversial.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
eficient computation, and it is

somewhat controversial.

The Complexity Class P

● The complexity class P (for polynomial
time) contains all problems that can be
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time
decider for L }

● Assuming the Cobham-Edmonds thesis, a
language is in P if it can be decided
eficiently.

Polynomial-Time Verifers

● A polynomial-time verifer for L is a
TM V such that
● V halts on all inputs.
● w ∈ L if ∃c ∈ Σ*. V accepts ⟨w, c⟩.
● V's runtime is a polynomial in |w| (that is, V's

runtime is O(|w|k) for some integer k)

The Complexity Class NP

● The complexity class NP (nondeterministic
polynomial time) contains all problems that can be
verifed in polynomial time.

● Formally:

 NP = { L | There is a polynomial-time
 verifer for L }

● The name NP comes from another way of
characterizing NP. If you introduce nondeterministic
Turing machines and appropriately defne
“polynomial time,” then NP is the set of problems
that an NTM can solve in polynomial time.

Theorem (Baker-Gill-Solovay): Any
proof that purely relies on universality and
self-reference cannot resolve P ≟ NP.

Proof: Take CS154!

So how are we going to
reason about P and NP?

New Stuf!

A Challenge

 NP PREG

Problems in NP vary widely in their
dificulty, even if P = NP.

How can we rank the relative dificulties
of problems?

Reducibility

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

A matching, but
not a maximum

matching.

A matching, but
not a maximum

matching.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

A maximum
matching.

A maximum
matching.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Jack Edmonds' paper “Paths, Trees, and
Flowers” gives a polynomial-time
algorithm for fnding maximum
matchings.
● (This is the same Edmonds as in “Cobham-

Edmonds Thesis.”)
● Using this fact, what other problems can

we solve?

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

In Pseudocode

boolean canPlaceDominos(Grid G, int k) {

 return hasMatching(gridToGraph(G), k);

}

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A or B.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A or B.

Based on this connection between maximum matching
and domino tiling, which of the following statements

would be more proper to conclude?

A. Finding a maximum matching isn’t any more dificult
than tiling a grid with dominoes.

B. Tiling a grid with dominoes isn’t any more dificult
than fnding a maximum matching.

Based on this connection between maximum matching
and domino tiling, which of the following statements

would be more proper to conclude?

A. Finding a maximum matching isn’t any more dificult
than tiling a grid with dominoes.

B. Tiling a grid with dominoes isn’t any more dificult
than fnding a maximum matching.

Intuition:

Tiling a grid with dominoes can't be
“harder” than solving maximum matching,

because if we can solve maximum
matching eficiently, we can solve domino

tiling eficiently.

Another Example

Reachability

● Consider the following problem:

Given an directed graph G and nodes s
and t in G, is there a path from s to t?

● It's known that this problem can be solved in
polynomial time (use DFS or BFS).

● Given that we can solve the reachability
problem in polynomial time, what other
problems can we solve in polynomial time?

Converter Conundrums

● Suppose that you want to plug your laptop into a
projector.

● Your laptop only has a VGA output, but the
projector needs HDMI input.

● You have a box of connectors that convert various
types of input into various types of output (for
example, VGA to DVI, DVI to DisplayPort, etc.)

● Question: Can you plug your laptop into the
projector?

Converter Conundrums

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI

Connectors
RGB to USB

VGA to DisplayPort
DB13W3 to CATV

DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

Connectors
RGB to USB

VGA to DisplayPort
DB13W3 to CATV

DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

In Pseudocode

boolean canPlugIn(List<Plug> plugs) {

 return isReachable(plugsToGraph(plugs),
 VGA, HDMI);

}

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A or B.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A or B.

Based on this connection between plugging a laptop into
a projector and determining reachability, which of the

following statements would be more proper to conclude?

A. Plugging a laptop into a projector isn’t any more
dificult that computing reachability in a directed graph.

B. Computing reachability in a directed graph isn’t any
more dificult than plugging a laptop into a projector.

Based on this connection between plugging a laptop into
a projector and determining reachability, which of the

following statements would be more proper to conclude?

A. Plugging a laptop into a projector isn’t any more
dificult that computing reachability in a directed graph.

B. Computing reachability in a directed graph isn’t any
more dificult than plugging a laptop into a projector.

Intuition:

Finding a way to plug a computer into a
projector can't be “harder” than

determining reachability in a graph, since
if we can determine reachability in a graph,
we can fnd a way to plug a computer into a

projector.

Intuition:

Problem A can't be “harder” than problem
B, because solving problem B lets us solve

problem A.

bool solveProblemA(string input) {
 return solveProblemB(transform(input));
}

bool solveProblemA(string input) {
 return solveProblemB(transform(input));
}

● If A and B are problems where it's
possible to solve problem A using the
strategy shown above*, we write

A ≤p B.

● We say that A is polynomial-time
reducible to B.

* Assuming that transform
* runs in polynomial time.

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

 NPP

This ≤ₚ relation lets us rank the relative
dificulties of problems in P and NP.

What else can we do with it?

Time-Out for Announcements!

Please evaluate this course on Axess.

Your feedback makes a diference.

Problem Set Nine

● Problem Set Nine is due this Friday at
2:30PM.
● No late submissions can be accepted.

This is university policy – sorry!
● As always, if you have questions, stop by

ofice hours or ask on Piazza!

Final Exam Logistics

● Our fnal exam is Monday, March 19th from 3:30PM –
6:30PM, location Hewlett 200 & 201 (no special last name
assignments).
● Sorry about how soon that is – the registrar picked this time, not

us. If we had a choice, it would be on the last day of fnals week.
● The exam is cumulative. You’re responsible for topics from

PS1 – PS9 and all of the lectures.
● As with the midterms, the exam is closed-book, closed-

computer, and limited-note. You can bring one double-
sided sheet of 8.5” × 11” notes with you to the exam,
decorated any way you’d like.

● Students with OAE accommodations: if we don’t yet have
your OAE letter, please send it to us ASAP.

Preparing for the Final

● On the course website you’ll fnd
● six practice fnal exams, which are all real exams

with minor modifcations, with solutions, and
● a giant set of 46 practice problems (EPP3), with

solutions.
● Our recommendation: Look back over the

exams and problem sets and redo any problems
that you didn’t really get the frst time around.

● Keep the TAs in the loop: stop by ofice hours to
have them review your answers and ofer
feedback.

Practice Final Exam

● We will be holding a practice fnal exam
in room 380-380X tonight from 7PM –
10PM.

● We’ll print out copies of a few of the
diferent practice exams and you can
pick whichever one you’d like!

Back to CS103!

NP-Hardness and NP-Completeness

Question: What makes a problem
hard to solve?

Intuition: If A ≤ₚ B, then problem B is at
least as hard* as problem A.

* for some defnition of “at least as hard as.”

Intuition: To show that some problem is
hard, show that lots of other problems

reduce to it.

NP-Hardness

● A language L is called NP-hard if for every A ∈ NP, we have
A ≤P L.

A language in L is called NP-complete if L is NP-hard and
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

 NP NP-Hard

Intuitively: L has to be at least as
hard as every problem in NP, since
an algorithm for L can be used to

decide all problems in NP.

Intuitively: L has to be at least as
hard as every problem in NP, since
an algorithm for L can be used to

decide all problems in NP.

NP-Hardness

● A language L is called NP-hard if for every A ∈ NP, we have
A ≤P L.

A language in L is called NP-complete if L is NP-hard and
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

 NP NP-Hard

What's in here?What's in here?

NP-Hardness

● A language L is called NP-hard if for every A ∈ NP, we have
A ≤P L.

● A language in L is called NP-complete if L is NP-hard and
L ∈ NP.

● The class NPC is the set of NP-complete problems.

P

 NP NP-Hard
NPC

The Tantalizing Truth

 P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem A. Since L is NP-complete, we know
that A ≤p L. Since L ∈ P and A ≤p L, we see that A ∈ P. Since
our choice of A was arbitrary, this means that NP ⊆ P, so
P = NP. ■

The Tantalizing Truth

 NP

P
NPC

Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■

How do we even know NP-complete
problems exist in the frst place?

Satisfability

● A propositional logic formula φ is called
satisfable if there is some assignment to
its variables that makes it evaluate to true.
● p ∧ q is satisfable.
● p ∧ ¬p is unsatisfable.
● p → (q ∧ ¬q) is satisfable.

● An assignment of true and false to the
variables of φ that makes it evaluate to
true is called a satisfying assignment.

SAT

● The boolean satisfability problem
(SAT) is the following:

Given a propositional logic
formula φ, is φ satisfable?

● Formally:

SAT = { ⟨φ⟩ | φ is a satisfable PL
formula }

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, B, C, or D.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A, B, C, or D.

The language SAT happens to be in NP. Think about how
a polynomial-time verifer for SAT might work. Which of

the following would work as certifcates for such a verifer,
given that the input is a propositional formula φ?

A. The truth table of φ.
B. One possible variable assignment to φ.
C. A list of all possible variable assignments for φ.
D. None of the above, or two or more of the above.

The language SAT happens to be in NP. Think about how
a polynomial-time verifer for SAT might work. Which of

the following would work as certifcates for such a verifer,
given that the input is a propositional formula φ?

A. The truth table of φ.
B. One possible variable assignment to φ.
C. A list of all possible variable assignments for φ.
D. None of the above, or two or more of the above.

SAT = { ⟨φ⟩ | φ is a satisfable PL
formula }

Theorem (Cook-Levin): SAT is NP-complete.

Proof Idea: To see that SAT ∈ NP, show how to
make a polynomial-time verifer for it. Key idea:
have the certifcate be a satisfying assignment.

To show that SAT is NP-hard, given a
polymomial-time verifer V for an arbitrary NP
language L, for any string w you can construct a
polynomially-sized formula φ(w) that says “there
is a certifcate c where V accepts ⟨w, c⟩.” This
formula is satisfable if and only if w ∈ L, so
deciding whether the formula is satisfable
decides whether w is in L.

Proof: Take CS154!

Why All This Matters

● Resolving P ≟ NP is equivalent to just fguring
out how hard SAT is.
● If SAT ∈ P, then P = NP.

If SAT ∉ P, then P ≠ NP.
● We've turned a huge, abstract, theoretical

problem about solving problems versus
checking solutions into the concrete task of
seeing how hard one problem is.

● You can get a sense for how little we know
about algorithms and computation given that
we can't yet answer this question!

Why All This Matters

● You will almost certainly encounter NP-hard
problems in practice – they're everywhere!

● If a problem is NP-hard, then there is no known
algorithm for that problem that
● is eficient on all inputs,
● always gives back the right answer, and
● runs deterministically.

● Useful intuition: If you need to solve an NP-hard
problem, you will either need to settle for an
approximate answer, an answer that's likely but not
necessarily right, or have to work on really small
inputs.

Sample NP-Hard Problems
● Computational biology: Given a set of genomes, what is the most

probable evolutionary tree that would give rise to those genomes?
(Maximum parsimony problem)

● Game theory: Given an arbitrary perfect-information, fnite, twoplayer
game, who wins? (Generalized geography problem)

● Operations research: Given a set of jobs and workers who can
perform those tasks in parallel, can you complete all the jobs within
some time bound? (Job scheduling problem)

● Machine learning: Given a set of data, fnd the simplest way of
modeling the statistical patterns in that data (Bayesian network
inference problem)

● Medicine: Given a group of people who need kidneys and a group of
kidney donors, fnd the maximum number of people who can end up
with kidneys (Cycle cover problem)

● Systems: Given a set of processes and a number of processors, fnd the
optimal way to assign those tasks so that they complete as soon as
possible (Processor scheduling problem)

Coda: What if P ≟ NP is resolved?

Intermediate Problems

● With few exceptions, every problem we've discovered in
NP has either
● defnitely been proven to be in P, or
● defnitely been proven to be NP-complete.

● A problem that's NP, not in P, but not NP-complete is
called NP-intermediate.

● Theorem (Ladner): There are NP-intermediate
problems if and only if P ≠ NP.

P

 NP

NPC

What if P ≠ NP?

A Good Read:

“A Personal View of Average-Case
Complexity” by Russell Impagliazzo

What if P = NP?

And a Dismal Third Option

Next Time

● The Big Picture
● Where to Go from Here
● A Final “Your Questions”
● Parting Words!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

