
  

Direct Proofs



  

Outline for Today

● Mathematical Proof
● What is a mathematical proof? What does a 

proof look like?
● Direct Proofs

● A versatile, powerful proof technique.
● Universal and Existential Statements

● What exactly are we trying to prove?
● Proofs on Set Theory

● Formalizing our reasoning.



  

What is a Proof?



  

A proof is an argument that
demonstrates why a conclusion is true, 
subject to certain standards of truth.



  

A mathematical proof is an argument 
that demonstrates why a mathematical 
statement is true, following the rules of 

mathematics.



  



  

Modern Proofs



  

Two Quick Definitions

● An integer n is even if there is an integer 
k such that n = 2k.
● This means that 0 is even.

● An integer n is odd if there is an integer
k such that n = 2k + 1.
● This means that 0 is not odd.

● We'll assume the following for now:
● Every integer is either even or odd.
● No integer is both even and odd.



  

Our First Direct Proof

Theorem: If n is an even integer, then n2 is even.
Proof: Let n be an even integer.
 

Since n is even, there is some integer k
such that n = 2k.

 

This means that n2 = (2k)2 = 4k2 = 2(2k2).
 

From this, we see that there is an integer
m (namely, 2k2) where n2 = 2m.

 

Therefore, n2 is even. ■
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That wasn't so bad! Let's do another one.



  

Theorem: For any integers m and n, if m and n are odd, then
m + n is even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. Since m is odd, we know that there is an integer k where

                         m = 2k + 1.     (1)

Similarly, because n is odd there must be some integer r such 
that

                         n = 2r + 1.         (2)

By adding equations (1) and (2) we learn that

                          m + n = 2k + 1 + 2r + 1

         = 2k + 2r + 2

         = 2(k + r + 1).      (3)

Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■
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Proving Something Always Holds

● Many statements have the form

For any x, [some-property] holds of x.
● Examples:

For all integers n, if n is even, n2 is even.

For any sets A, B, and C, if A ⊆ B and B ⊆ C, then A ⊆ C.

For all sets S: |S| < | (S)|.℘(S)|.

Everything that drowns me makes me wanna fly.

● How do we prove these statements when there 
are (potentially) infinitely many cases to check?



  

Arbitrary Choices

● To prove that some property holds true for all 
possible x, show that no matter what choice 
of x you make, that property must be true.

● Start the proof by choosing x arbitrarily:
● “Let x be an arbitrary even integer.”
● “Let x be any set containing 137.”
● “Consider any x.”
● “Pick an odd integer x.”

● Demonstrate that the property holds true for 
this choice of x.
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that
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By adding equations (1) and (2) we learn that
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Equation (3) tells us that there is an integer s (namely, k + r + 1) 
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Theorem: The product of any two consecutive integers is even.

Proof: Pick any two consecutive integers n and n+1. We’ll prove
that their product n(n+1) is even. Let’s consider two cases:

Case 1: n is even. This means there exists an integer k such
that n = 2k. Therefore, we learn that

  n(n+1) =  2k(n+1)
 =  2(k(n+1)).

Therefore, there is an integer m (namely, k(n+1)) such that 
n(n+1) = 2m, so n(n+1) is even.

Case 2: n is odd. Then there is an integer k where n = 2k+1.
This tells us n+1 = 2k+2. We then see that

   n(n+1) =  n(2k + 2)
 =  2(n(k+1)).

This means there is an integer m (namely, n(k+1)) such 
that n(n+1) = 2m, so n(n+1) is even.

In either case, we find that n(n+1) is even, which is what we 
needed to show. ■
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Some Little Exercises

● Here’s a list of other theorems that are true about odd 
and even numbers:
● Theorem: The sum and difference of any two even numbers is 

even.
● Theorem: The sum and difference of an odd number and an 

even number is odd.
● Theorem: The product of any integer and an even number is 

even.
● Theorem: The product of any two odd numbers is odd.

● Going forward, we’ll just take these results for granted. 
Feel free to use them in the problem sets.

● If you’d like to practice the techniques from today, try 
your hand at proving these results!



  

Universal and Existential Statements



  

Theorem: For any odd integer n, there exist integers
r and s where r2 – s2 = n.

Proof: Pick any odd integer n. Since n is odd, we
know there is some integer k where n = 2k + 1.

 Now, let r = k+1 and s = k. Then we see that

      r2 – s2 =   (k+1)2 – k2

        =   k2 + 2k + 1 – k2

        =   2k + 1

        =   n.

This means that r2 – s2 = n, which is what we 
needed to show. ■
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Universal vs. Existential Statements

● A universal statement is a statement of 
the form

For all x, [some-property] holds for x.

● We've seen how to prove these statements.
● An existential statement is a statement of 

the form
There is some x where [some-property] holds for x.

● How do you prove an existential statement?



  

Proving an Existential Statement

● Over the course of the quarter, we will 
see several different ways to prove an 
existential statement of the form
There is an x where [some-property] holds for x.

● Simplest approach: Search far and 
wide, find an x that has the right 
property, then show why your choice is 
correct.
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Follow-Up Question: There are some 
integers that can’t be written as r2 – s2 for 

any integers r and s.

Can you prove that every integer can be 
formed by adding and subtracting some 

combination of at most three perfect 
squares?



  

Time-Out for Announcements!



  

Campus-Wide Announcements



  



  

[tl;dr] CS+Social Good is looking for bright, driven, and excited individuals to 
join our leadership team! Apply!

Have you ever thought that critically thinking about the impact of technology of society 
and/or using technology to effect meaningful change are maybe kinda, like, lowkey 

good ideas? If so, join the club! CS+Social Good is looking for folks who are committed 
to social impact, excited about technology, and motivated to inspire change.

Apply here!👉Apply here! 👈  👈

You'll be leading some of the most exciting projects and events on campus, all centered 
around how technology can be a force for good. This year, we're teaching a 

class that builds projects in partnership with nonprofits & social ventures, funding 
summer fellowships for students to work on impactful projects all over the world, 

helping high school teachers teach tech for good in AP CS classes — and much more! 
Read more about what we did last year here or visit our website at cs4good.org.

If you have any questions, drop us a line at cs4good@cs.stanford.edu. Applications are 
open here until 11:59 PM on Friday, October 5.    

https://docs.google.com/forms/d/e/1FAIpQLSdls7ol29CVM9FsvNu1aOelWBSHtARaKHetJY09HY7XP7xj9g/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSdls7ol29CVM9FsvNu1aOelWBSHtARaKHetJY09HY7XP7xj9g/viewform?usp=sf_link
http://web.stanford.edu/class/cs51/
https://teachcsforsocialgood.github.io/
https://drive.google.com/file/d/1bb9aTL5ob716abHMN30OjVbbLRttKfd7/view
https://cs4good.org/
mailto:cs4good@cs.stanford.edu
https://docs.google.com/forms/d/e/1FAIpQLSdls7ol29CVM9FsvNu1aOelWBSHtARaKHetJY09HY7XP7xj9g/viewform?usp=sf_link


  

Interested in engineering and sustainable development? 

Join Engineers for a Sustainable World!

ESW is a student group that runs projects addressing global 
and local challenges around engineering, sustainability, and 

social impact. 

Past and future projects include:
-Building remote monitoring systems with Indonesian rural 

development NGO IBEKA
- Partnerships with Engineers Without Borders Malaysia

- Sunpower solar panel installations
- Patagonia Worn Wear Truck

- Repair Cafes

Find out more at our first meeting: 
Tuesday October 2, 8:00 PM, Crothers Big Lounge

To learn more, fill out this form: 
https://goo.gl/forms/Q6QqESh0CD6X02qx2 or reach out to 

riyav@stanford.edu

https://goo.gl/forms/Q6QqESh0CD6X02qx2
mailto:riyav@stanford.edu


  

Interested in improving online education software for 
underprivileged students across the world? Enjoy growing a social 

forum for migrants to become more comfortable in their new 
cultures? Wish you could help UNICEF visualize mobility data?

Code the Change is a student-led group that works on year-long 
social good projects. We are looking for developers and designers to 

help social good organizations with their CS needs. 

If interested, consider applying here and check out our website. 
Applications are due October 3rd. Be sure to also attend our info 

session this Saturday in the Haas Center DK Room from 4-5pm (there 
will be pizza!). 

If you have any questions, feel free to email 
drewgreg@stanford.edu.

https://docs.google.com/forms/u/1/d/e/1FAIpQLSeqVJHe76hJgHTsaMJ6qeR6kj8dQpgZwoZVb_SiU-uRc4WRVw/viewform?usp=send_form
http://codethechange.stanford.edu/
mailto:drewgreg@stanford.edu


  

CURIS Poster Session

● CURIS, the CS department’s undergrad 
research program, is hosting a poster session 
showcasing last summer’s research projects.

● Held Friday, September 28 from 
3:00PM – 5:00PM on the lawn of the 
Packard building.

● Interested in learning what research is like? 
Want to see what undergraduates have been 
up to? Stop on by!



  

Register to Vote

● Want to register to 
vote in Santa Clara 
county? Feel free to 
pick up a voter 
registration form up 
front.

● If you are eligible to 
vote in the US, please 
do so! It’s really 
important.



  



  

Flu Shots!

● The selfish reason to get a flu shot: the flu is 
horrible. Don’t get it.

● The altruistic reason to get a flu shot: the flu is 
horrible. Don’t give it to your friends or family.

● Stanford offers free flu shots. Stop by Vaden 
between 3:00PM – 6:00PM on Monday, 
October 1st to get one.

● There are lots of other times; for more 
information, check this link.

https://ehs.stanford.edu/flu/information


  

Some CS103 Announcements!



  

Reading Recommendations

● We’ve released two handouts online that you 
should read over:
● Handout 06: How to Succeed in CS103
● Handout 07: Guide to Set Theory Proofs

● Additionally, if you haven’t yet read over the 
Guide to Elements and Subsets, we’d 
recommend doing so.

● Finally, we strongly recommend reading over 
Chapter 1 and Chapter 2 of the online course 
reader to get some more background with 
proofs and set theory.



  

Piazza

● We have a Piazza site for CS103.
● Sign in to www.piazza.com and search 

for the course CS103 to sign in.
● Feel free to ask us questions!
● Use the site to find a partner for the 

problem sets!

http://www.piazza.com/


  

Qt Creator Help Session

● The lovely CS106B/X folks have invited all y’all 
to join them for a Qt Creator Help Session this 
evening if you’re having trouble getting Qt 
Creator up and running on your system.

● Runs 7:00PM – 9:00PM in the Tresidder first 
floor lounge.

● SCPD students – please reach out to us if you 
need help setting things up. We’ll do our best 
to help out.



  

Problem Set 0

● Problem Set 0 went out on Monday. It’s due 
this Friday at 2:30PM.
● Even though this just involves setting up your 

compiler and submitting things, please start this 
one early. If you start things on Friday morning, 
we can’t help you troubleshoot Qt Creator issues!

● There’s a very detailed troubleshooting guide up 
on the CS103 website and a Piazza post detailing 
common fixes. If you’re still having trouble, 
please feel free to ask on Piazza!



  

Back to CS103!



  

Proofs on Sets



  

Set Theory Review

● Recall from last time that we write x ∈ S if 
x is an element of set S and x ∉ S if x is not 
an element of set S.

● If S and T are sets, we say that S is a subset 
of T (denoted S ⊆ T) if the following 
statement is true:

For every object x, if x ∈ S, then x ∈ T.
● Let's explore some properties of the subset 

relation.



  

Theorem: For any sets A, B, and C, if A ⊆ B and
B ⊆ C, then A ⊆ C.

Proof: Let A, B, and C be arbitrary sets where A ⊆ B
and B ⊆ C. We need to prove that A ⊆ C. To do so,
consider any x ∈ A. We will prove that x ∈ C.

Since A ⊆ B and x ∈ A, we see that x ∈ B. Also, 
because B ⊆ C and x ∈ B, we see that x ∈ C, which 
is what we needed to show. ■
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Set Equality

● As we mentioned on Monday, two sets A and B are 
equal when they have exactly the same elements.

● Here’s a little theorem that’s very useful for 
showing that two sets are equal:

 Theorem: If A and B are sets where A ⊆ B
                    and B ⊆ A, then A = B.

● We’ve included a proof of this result as an 
appendix to this slide deck. You should read over 
it on your own time.



  

A Trickier Theorem

● Our last theorem for today is this one, which 
comes to us from the annals of set theory:

Theorem: If A and B are sets and
A ∪ B ⊆ A ∩ B, then A = B.

● Unlike our previous theorem, this one is a lot 
harder to see using Venn diagrams alone.

A B



  

Tackling our Theorem

Theorem: If A and B are sets and
A ∪ B ⊆ A ∩ B, then A = B. 

● Before we Flail and Panic, let’s see if we 
can tease out some info about what this 
proof might look like.

We’re going to pick arbitrary sets A and B.

We’re going to assume A ∪ B ⊆ A ∩ B.

We’re going to prove that A = B.
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Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Proof: Let S and T be any sets where S ∪ T ⊆ S ∩ T. We
will prove that S ⊆ T. To do so, consider any x ∈ S. We
will prove that x ∈ T.

Since x ∈ S, we know that x ∈ S ∪ T because x belongs 
to at least one of S and T. We then see that x ∈ S ∩ T 
because x ∈ S ∪ T and S ∪ T ⊆ S ∩ T. Finally, since
x ∈ S ∩ T, we learn that x ∈ T, since x belongs to both S 
and T.

Overall, we’ve started with an arbitrary choice of x ∈ S 
and concluded that x ∈ T. Therefore, we see that S ⊆ T 
holds, which is what we needed to prove. ■

A lemma is a smaller proof 
that’s designed to build into 
a larger one. Think of it 
like program decomposition, 

except for proofs!

A lemma is a smaller proof 
that’s designed to build into 
a larger one. Think of it 
like program decomposition, 

except for proofs!



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Proof: Let S and T be any sets where S ∪ T ⊆ S ∩ T. We
will prove that S ⊆ T. To do so, consider any x ∈ S. We
will prove that x ∈ T.

Since x ∈ S, we know that x ∈ S ∪ T because x belongs 
to at least one of S and T. We then see that x ∈ S ∩ T 
because x ∈ S ∪ T and S ∪ T ⊆ S ∩ T. Finally, since
x ∈ S ∩ T, we learn that x ∈ T, since x belongs to both S 
and T.

Overall, we’ve started with an arbitrary choice of x ∈ S 
and concluded that x ∈ T. Therefore, we see that S ⊆ T 
holds, which is what we needed to prove. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Proof: Let S and T be any sets where S ∪ T ⊆ S ∩ T. We
will prove that S ⊆ T. To do so, consider any x ∈ S. We
will prove that x ∈ T.

Since x ∈ S, we know that x ∈ S ∪ T because x belongs 
to at least one of S and T. We then see that x ∈ S ∩ T 
because x ∈ S ∪ T and S ∪ T ⊆ S ∩ T. Finally, since
x ∈ S ∩ T, we learn that x ∈ T, since x belongs to both S 
and T.

Overall, we’ve started with an arbitrary choice of x ∈ S 
and concluded that x ∈ T. Therefore, we see that S ⊆ T 
holds, which is what we needed to prove. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Proof: Let S and T be any sets where S ∪ T ⊆ S ∩ T. We
will prove that S ⊆ T. To do so, consider any x ∈ S. We
will prove that x ∈ T.

Since x ∈ S, we know that x ∈ S ∪ T because x belongs 
to at least one of S and T. We then see that x ∈ S ∩ T 
because x ∈ S ∪ T and S ∪ T ⊆ S ∩ T. Finally, since
x ∈ S ∩ T, we learn that x ∈ T, since x belongs to both S 
and T.

Overall, we’ve started with an arbitrary choice of x ∈ S 
and concluded that x ∈ T. Therefore, we see that S ⊆ T 
holds, which is what we needed to prove. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Proof: Let S and T be any sets where S ∪ T ⊆ S ∩ T. We
will prove that S ⊆ T. To do so, consider any x ∈ S. We
will prove that x ∈ T.

Since x ∈ S, we know that x ∈ S ∪ T because x belongs 
to at least one of S and T. We then see that x ∈ S ∩ T 
because x ∈ S ∪ T and S ∪ T ⊆ S ∩ T. Finally, since
x ∈ S ∩ T, we learn that x ∈ T, since x belongs to both S 
and T.

Overall, we’ve started with an arbitrary choice of x ∈ S 
and concluded that x ∈ T. Therefore, we see that S ⊆ T 
holds, which is what we needed to prove. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Proof: Let S and T be any sets where S ∪ T ⊆ S ∩ T. We
will prove that S ⊆ T. To do so, consider any x ∈ S. We
will prove that x ∈ T.

Since x ∈ S, we know that x ∈ S ∪ T because x belongs 
to at least one of S and T. We then see that x ∈ S ∩ T 
because x ∈ S ∪ T and S ∪ T ⊆ S ∩ T. Finally, since
x ∈ S ∩ T, we learn that x ∈ T, since x belongs to both S 
and T.

Overall, we’ve started with an arbitrary choice of x ∈ S 
and concluded that x ∈ T. Therefore, we see that S ⊆ T 
holds, which is what we needed to prove. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Proof: Let S and T be any sets where S ∪ T ⊆ S ∩ T. We
will prove that S ⊆ T. To do so, consider any x ∈ S. We
will prove that x ∈ T.

Since x ∈ S, we know that x ∈ S ∪ T because x belongs 
to at least one of S and T. We then see that x ∈ S ∩ T 
because x ∈ S ∪ T and S ∪ T ⊆ S ∩ T. Finally, since
x ∈ S ∩ T, we learn that x ∈ T, since x belongs to both S 
and T.

Overall, we’ve started with an arbitrary choice of x ∈ S 
and concluded that x ∈ T. Therefore, we see that S ⊆ T 
holds, which is what we needed to prove. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Proof: Let S and T be any sets where S ∪ T ⊆ S ∩ T. We
will prove that S ⊆ T. To do so, consider any x ∈ S. We
will prove that x ∈ T.

Since x ∈ S, we know that x ∈ S ∪ T because x belongs 
to at least one of S and T. We then see that x ∈ S ∩ T 
because x ∈ S ∪ T and S ∪ T ⊆ S ∩ T. Finally, since
x ∈ S ∩ T, we learn that x ∈ T, since x belongs to both S 
and T.

Overall, we’ve started with an arbitrary choice of x ∈ S 
and concluded that x ∈ T. Therefore, we see that S ⊆ T 
holds, which is what we needed to prove. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Proof: Let S and T be any sets where S ∪ T ⊆ S ∩ T. We
will prove that S ⊆ T. To do so, consider any x ∈ S. We
will prove that x ∈ T.

Since x ∈ S, we know that x ∈ S ∪ T because x belongs 
to at least one of S and T. We then see that x ∈ S ∩ T 
because x ∈ S ∪ T and S ∪ T ⊆ S ∩ T. Finally, since
x ∈ S ∩ T, we learn that x ∈ T, since x belongs to both S 
and T.

Overall, we’ve started with an arbitrary choice of x ∈ S 
and concluded that x ∈ T. Therefore, we see that S ⊆ T 
holds, which is what we needed to prove. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Proof: Let S and T be any sets where S ∪ T ⊆ S ∩ T. We
will prove that S ⊆ T. To do so, consider any x ∈ S. We
will prove that x ∈ T.

Since x ∈ S, we know that x ∈ S ∪ T because x belongs 
to at least one of S and T. We then see that x ∈ S ∩ T 
because x ∈ S ∪ T and S ∪ T ⊆ S ∩ T. Finally, since
x ∈ S ∩ T, we learn that x ∈ T, since x belongs to both S 
and T.

Overall, we’ve started with an arbitrary choice of x ∈ S 
and concluded that x ∈ T. Therefore, we see that S ⊆ T 
holds, which is what we needed to prove. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Proof: Let S and T be any sets where S ∪ T ⊆ S ∩ T. We
will prove that S ⊆ T. To do so, consider any x ∈ S. We
will prove that x ∈ T.

Since x ∈ S, we know that x ∈ S ∪ T because x belongs 
to at least one of S and T. We then see that x ∈ S ∩ T 
because x ∈ S ∪ T and S ∪ T ⊆ S ∩ T. Finally, since
x ∈ S ∩ T, we learn that x ∈ T, since x belongs to both S 
and T.

Overall, we’ve started with an arbitrary choice of x ∈ S 
and concluded that x ∈ T. Therefore, we see that S ⊆ T 
holds, which is what we needed to prove. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Theorem: If A and B are sets and A ∪ B ⊆ A ∩ B, then
A = B.

Proof: Let A and B be any sets where A ∪ B ⊆ A ∩ B. We
will prove that A = B by showing A ⊆ B and B ⊆ A.

First, notice that by our lemma, since A ∪ B ⊆ A ∩ B, we 
know that A ⊆ B.

Next, since A ∪ B = B ∪ A and A ∩ B = B ∩ A, from
A ∪ B ⊆ A ∩ B we learn that B ∪ A ⊆ B ∩ A. Applying our 
lemma again in this case tells us that B ⊆ A.

Since both A ⊆ B and B ⊆ A, we conclude that A = B, 
which is what we needed to show. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Theorem: If A and B are sets and A ∪ B ⊆ A ∩ B, then
A = B.

Proof: Let A and B be any sets where A ∪ B ⊆ A ∩ B. We
will prove that A = B by showing A ⊆ B and B ⊆ A.

First, notice that by our lemma, since A ∪ B ⊆ A ∩ B, we 
know that A ⊆ B.

Next, since A ∪ B = B ∪ A and A ∩ B = B ∩ A, from
A ∪ B ⊆ A ∩ B we learn that B ∪ A ⊆ B ∩ A. Applying our 
lemma again in this case tells us that B ⊆ A.

Since both A ⊆ B and B ⊆ A, we conclude that A = B, 
which is what we needed to show. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Theorem: If A and B are sets and A ∪ B ⊆ A ∩ B, then
A = B.

Proof: Let A and B be any sets where A ∪ B ⊆ A ∩ B. We
will prove that A = B by showing A ⊆ B and B ⊆ A.

First, notice that by our lemma, since A ∪ B ⊆ A ∩ B, we 
know that A ⊆ B.

Next, since A ∪ B = B ∪ A and A ∩ B = B ∩ A, from
A ∪ B ⊆ A ∩ B we learn that B ∪ A ⊆ B ∩ A. Applying our 
lemma again in this case tells us that B ⊆ A.

Since both A ⊆ B and B ⊆ A, we conclude that A = B, 
which is what we needed to show. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Theorem: If A and B are sets and A ∪ B ⊆ A ∩ B, then
A = B.

Proof: Let A and B be any sets where A ∪ B ⊆ A ∩ B. We
will prove that A = B by showing A ⊆ B and B ⊆ A.

First, notice that by our lemma, since A ∪ B ⊆ A ∩ B, we 
know that A ⊆ B.

Next, since A ∪ B = B ∪ A and A ∩ B = B ∩ A, from
A ∪ B ⊆ A ∩ B we learn that B ∪ A ⊆ B ∩ A. Applying our 
lemma again in this case tells us that B ⊆ A.

Since both A ⊆ B and B ⊆ A, we conclude that A = B, 
which is what we needed to show. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Theorem: If A and B are sets and A ∪ B ⊆ A ∩ B, then
A = B.

Proof: Let A and B be any sets where A ∪ B ⊆ A ∩ B. We
will prove that A = B by showing A ⊆ B and B ⊆ A.

First, notice that by our lemma, since A ∪ B ⊆ A ∩ B, we 
know that A ⊆ B.

Next, since A ∪ B = B ∪ A and A ∩ B = B ∩ A, from
A ∪ B ⊆ A ∩ B we learn that B ∪ A ⊆ B ∩ A. Applying our 
lemma again in this case tells us that B ⊆ A.

Since both A ⊆ B and B ⊆ A, we conclude that A = B, 
which is what we needed to show. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Theorem: If A and B are sets and A ∪ B ⊆ A ∩ B, then
A = B.

Proof: Let A and B be any sets where A ∪ B ⊆ A ∩ B. We
will prove that A = B by showing A ⊆ B and B ⊆ A.

First, notice that by our lemma, since A ∪ B ⊆ A ∩ B, we 
know that A ⊆ B.

Next, since A ∪ B = B ∪ A and A ∩ B = B ∩ A, from
A ∪ B ⊆ A ∩ B we learn that B ∪ A ⊆ B ∩ A. Applying our 
lemma again in this case tells us that B ⊆ A.

Since both A ⊆ B and B ⊆ A, we conclude that A = B, 
which is what we needed to show. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Theorem: If A and B are sets and A ∪ B ⊆ A ∩ B, then
A = B.

Proof: Let A and B be any sets where A ∪ B ⊆ A ∩ B. We
will prove that A = B by showing A ⊆ B and B ⊆ A.

First, notice that by our lemma, since A ∪ B ⊆ A ∩ B, we 
know that A ⊆ B.

Next, since A ∪ B = B ∪ A and A ∩ B = B ∩ A, from
A ∪ B ⊆ A ∩ B we learn that B ∪ A ⊆ B ∩ A. Applying our 
lemma again in this case tells us that B ⊆ A.

Since both A ⊆ B and B ⊆ A, we conclude that A = B, 
which is what we needed to show. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Theorem: If A and B are sets and A ∪ B ⊆ A ∩ B, then
A = B.

Proof: Let A and B be any sets where A ∪ B ⊆ A ∩ B. We
will prove that A = B by showing A ⊆ B and B ⊆ A.

First, notice that by our lemma, since A ∪ B ⊆ A ∩ B, we 
know that A ⊆ B.

Next, since A ∪ B = B ∪ A and A ∩ B = B ∩ A, from
A ∪ B ⊆ A ∩ B we learn that B ∪ A ⊆ B ∩ A. Applying our 
lemma again in this case tells us that B ⊆ A.

Since both A ⊆ B and B ⊆ A, we conclude that A = B, 
which is what we needed to show. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Theorem: If A and B are sets and A ∪ B ⊆ A ∩ B, then
A = B.

Proof: Let A and B be any sets where A ∪ B ⊆ A ∩ B. We
will prove that A = B by showing A ⊆ B and B ⊆ A.

First, notice that by our lemma, since A ∪ B ⊆ A ∩ B, we 
know that A ⊆ B.

Next, since A ∪ B = B ∪ A and A ∩ B = B ∩ A, from
A ∪ B ⊆ A ∩ B we learn that B ∪ A ⊆ B ∩ A. Applying our 
lemma again in this case tells us that B ⊆ A.

Since both A ⊆ B and B ⊆ A, we conclude that A = B, 
which is what we needed to show. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Theorem: If A and B are sets and A ∪ B ⊆ A ∩ B, then
A = B.

Proof: Let A and B be any sets where A ∪ B ⊆ A ∩ B. We
will prove that A = B by showing A ⊆ B and B ⊆ A.

First, notice that by our lemma, since A ∪ B ⊆ A ∩ B, we 
know that A ⊆ B.

Next, since A ∪ B = B ∪ A and A ∩ B = B ∩ A, from
A ∪ B ⊆ A ∩ B we learn that B ∪ A ⊆ B ∩ A. Applying our 
lemma again in this case tells us that B ⊆ A.

Since both A ⊆ B and B ⊆ A, we conclude that A = B, 
which is what we needed to show. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Theorem: If A and B are sets and A ∪ B ⊆ A ∩ B, then
A = B.

Proof: Let A and B be any sets where A ∪ B ⊆ A ∩ B. We
will prove that A = B by showing A ⊆ B and B ⊆ A.

First, notice that by our lemma, since A ∪ B ⊆ A ∩ B, we 
know that A ⊆ B.

Next, since A ∪ B = B ∪ A and A ∩ B = B ∩ A, from
A ∪ B ⊆ A ∩ B we learn that B ∪ A ⊆ B ∩ A. Applying our 
lemma again in this case tells us that B ⊆ A.

Since both A ⊆ B and B ⊆ A, we conclude that A = B, 
which is what we needed to show. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Theorem: If A and B are sets and A ∪ B ⊆ A ∩ B, then
A = B.

Proof: Let A and B be any sets where A ∪ B ⊆ A ∩ B. We
will prove that A = B by showing A ⊆ B and B ⊆ A.

First, notice that by our lemma, since A ∪ B ⊆ A ∩ B, we 
know that A ⊆ B.

Next, since A ∪ B = B ∪ A and A ∩ B = B ∩ A, from
A ∪ B ⊆ A ∩ B we learn that B ∪ A ⊆ B ∩ A. Applying our 
lemma again in this case tells us that B ⊆ A.

Since both A ⊆ B and B ⊆ A, we conclude that A = B, 
which is what we needed to show. ■



  

Lemma: If S and T are sets and S ∪ T ⊆ S ∩ T, then S ⊆ T.

Theorem: If A and B are sets and A ∪ B ⊆ A ∩ B, then
A = B.

Proof: Let A and B be any sets where A ∪ B ⊆ A ∩ B. We
will prove that A = B by showing A ⊆ B and B ⊆ A.

First, notice that by our lemma, since A ∪ B ⊆ A ∩ B, we 
know that A ⊆ B.

Next, since A ∪ B = B ∪ A and A ∩ B = B ∩ A, from
A ∪ B ⊆ A ∩ B we learn that B ∪ A ⊆ B ∩ A. Applying our 
lemma again in this case tells us that B ⊆ A.

Since both A ⊆ B and B ⊆ A, we conclude that A = B, 
which is what we needed to show. ■



  

What We've Covered

● What is a mathematical proof?
● An argument – mostly written in English – outlining a 

mathematical argument.
● What is a direct proof?

● It's a proof where you begin from some initial 
assumptions and reason your way to the conclusion.

● What are universal and existential statements?
● Universal statements make a claim about all objects of 

one type. Existential statements make claims about at 
least one object of some type.

● How do we write proofs about set theory?
● By calling back to definitions! Definitions are key.



  

Your Action Items

● Read “How to Succeed in CS103.”
● There’s a lot of valuable advice in there – take it to 

heart!
● Read “Guide to Proofs on Set Theory.”

● This picks up where we left off in today’s lecture.
● Read “Guide to ∈ and ⊆.”

● You’ll want to have a handle on how these 
concepts are related, and on how they differ.

● Finish and submit Problem Set 0.
● Don’t put this off until the last minute!



  

Next Time

● Indirect Proofs
● How do you prove something without actually proving 

it?
● Mathematical Implications

● What exactly does “if P, then Q” mean?
● Proof by Contrapositive

● A helpful technique for proving implications.
● Proof by Contradiction

● Proving something is true by showing it can't be false.



  

Appendix: Set Equality



  

Set Equality

● If A and B are sets, we say that A = B precisely 
when the following statement is true:

For any object x, x ∈ A if and only if x ∈ B.
● (This is called the axiom of extensionality.)
● In practice, this definition is tricky to work 

with.
● It's often easier to use the following result to 

show that two sets are equal:

For any sets A and B,
if A ⊆ B and B ⊆ A, then A = B.



  

Theorem: For any sets A and B, if A ⊆ B and B ⊆ A,
then A = B.

Proof: Let A and B be arbitrary sets where A ⊆ B
and B ⊆ A. We need to prove A = B. To do so, we
will prove for all x that x ∈ A if and only if x ∈ B.

First, we'll prove that if x ∈ A, then x ∈ B. To do 
so, take any x ∈ A. Since A ⊆ B and x ∈ A, we see 
that x ∈ B, as required.

Next, we'll prove that if x ∈ B, then x ∈ A. 
Consider an arbitrary x ∈ B. Since B ⊆ A and
x ∈ B, we see that x ∈ A, which is what we needed 
to show.

Since we've proven both directions of implication, 
we see that A = B. ■
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