
  

Mathematical Logic
Part Two



  

Recap from Last Time



  

Recap So Far

● A propositional variable is a variable that is 
either true or false.

● The propositional connectives are as follows:
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥



  

Take out a sheet of paper!



  

What's the truth table for the → connective?



  

What's the negation of p → q?



  

New Stuff!



  

First-Order Logic



  

What is First-Order Logic?

● First-order logic is a logical system for 
reasoning about properties of objects.

● Augments the logical connectives from 
propositional logic with
● predicates that describe properties of 

objects,
● functions that map objects to one another, 

and
● quantifiers that allow us to reason about 

multiple objects.



  

Some Examples



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

These blue terms are called 
constant symbols. Unlike 
propositional variables, they 

refer to objects, not 
propositions.

These blue terms are called 
constant symbols. Unlike 
propositional variables, they 

refer to objects, not 
propositions.



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

The red things that look 
like function calls are called 
predicates. Predicates take 
objects as arguments and 
evaluate to true or false.

The red things that look 
like function calls are called 
predicates. Predicates take 
objects as arguments and 
evaluate to true or false.



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

What remains are traditional propositional 
connectives. Because each predicate 
evaluates to true or false, we can 

connect the truth values of predicates 
using normal propositional connectives.

What remains are traditional propositional 
connectives. Because each predicate 
evaluates to true or false, we can 

connect the truth values of predicates 
using normal propositional connectives.



  

Reasoning about Objects

● To reason about objects, first-order logic uses 
predicates.

● Examples:

Cute(Quokka)    

ArgueIncessantly(Democrats, Republicans)  
● Applying a predicate to arguments produces a 

proposition, which is either true or false.
● Typically, when you’re working in FOL, you’ll 

have a list of predicates, what they stand for, and 
how many arguments they take. It’ll be given 
separately than the formulas you write.



  

First-Order Sentences

● Sentences in first-order logic can be 
constructed from predicates applied to objects:

Cute(a) → Dikdik(a) ∨ Kitty(a) ∨ Puppy(a)

Succeeds(You) ↔ Practices(You)

x < 8 → x < 137

The less-than sign is 
just another predicate. 
Binary predicates are 
sometimes written in 

infix notation this way.

The less-than sign is 
just another predicate. 
Binary predicates are 
sometimes written in 

infix notation this way.

Numbers are not “built 
in” to first-order 

logic. They’re constant 
symbols just like “You” 

and “a” above.

Numbers are not “built 
in” to first-order 

logic. They’re constant 
symbols just like “You” 

and “a” above.



  

Equality

● First-order logic is equipped with a special 
predicate = that says whether two objects are 
equal to one another.

● Equality is a part of first-order logic, just as → 
and ¬ are.

● Examples:

TomMarvoloRiddle = LordVoldemort

MorningStar = EveningStar
● Equality can only be applied to objects; to 

state that two propositions are equal, use ↔.



  

Let's see some more examples.



  

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))



  

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

These purple terms are 
functions. Functions take 

objects as input and 
produce objects as output.

These purple terms are 
functions. Functions take 

objects as input and 
produce objects as output.



  

Functions

● First-order logic allows functions that return 
objects associated with other objects.

● Examples:

ColorOf(Money)

MedianOf(x, y, z)

x + y
● As with predicates, functions can take in any 

number of arguments, but always return a single 
value.

● Functions evaluate to objects, not propositions.



  

Objects and Predicates

● When working in first-order logic, be 
careful to keep objects (actual things) and 
propositions (true or false) separate.

● You cannot apply connectives to objects:

        ⚠                 Venus → TheSun                  ⚠        
● You cannot apply functions to 

propositions:

 ⚠        StarOf(IsRed(Sun) ∧ IsGreen(Mars)) ⚠        
● Ever get confused? Just ask! 



  

The Type-Checking Table

… operate on ... … and produce

Connectives
(↔, ∧, etc.) …

Predicates
(=, etc.) …

Functions …

propositions a proposition

a propositionobjects

objects an object



  

One last (and major) change



  

∃ is the existential quantifier 
and says “for some choice of 
m, the following is true.”

∃ is the existential quantifier 
and says “for some choice of 
m, the following is true.”

Some muggle is intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))



  

The Existential Quantifier

● A statement of the form

∃x. some-formula

is true if, for some choice of x, the 
statement some-formula is true when that 
x is plugged into it.

● Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ LighterThan(x, me))

(∃w. Will(w)) → (∃x. Way(x))



  

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) 
is true for some 
choice of x, this 

statement 
evaluates to true.

Since Smiling(x) 
is true for some 
choice of x, this 

statement 
evaluates to true.



  

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) is 
not true for any 
choice of x, this 

statement evaluates 
to false.

Since Smiling(x) is 
not true for any 
choice of x, this 

statement evaluates 
to false.



 

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the 
statement true or 

false?

Is this part of the 
statement true or 

false?



  

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the 
statement true or 

false?

Is this part of the 
statement true or 

false?



  

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this overall 
statement true or 

false?

Is this overall 
statement true or 

false?



  ∃x. Smiling(x)

Fun with Edge Cases

Existentially-quantified 
statements are false in an empty 
world, since it’s not possible to 

choose an object!

Existentially-quantified 
statements are false in an empty 
world, since it’s not possible to 

choose an object!



  

Some Technical Details



  

Variables and Quantifiers

● Each quantifier has two parts:
● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to 
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃y. Loves(y, You))

The variable x 
just lives here.

The variable x 
just lives here.

The variable y 
just lives here.

The variable y 
just lives here.



  

Variables and Quantifiers

● Each quantifier has two parts:
● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to 
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃x. Loves(x, You))

The variable x 
just lives here.

The variable x 
just lives here.

A different variable, 
also named x, just 

lives here.

A different variable, 
also named x, just 

lives here.



  

Operator Precedence (Again)

● When writing out a formula in first-order logic, 
quantifiers have precedence just below ¬.

● The statement

∃x. P(x) ∧ R(x) ∧ Q(x)

is parsed like this:

(∃x. P(x))  ∧  (R(x) ∧ Q(x))
● This is syntactically invalid because the variable x is 

out of scope in the back half of the formula.

● To ensure that x is properly quantified, explicitly put 
parentheses around the region you want to quantify:

∃x. (P(x) ∧ R(x) ∧ Q(x))



  

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2))) 

 ∀ is the universal quantifier 
and says “for any choice of n, 

the following is true.”

 ∀ is the universal quantifier 
and says “for any choice of n, 

the following is true.”



  

The Universal Quantifier

● A statement of the form

∀x. some-formula

is true if, for every choice of x, the statement 
some-formula is true when x is plugged into it.

● Examples:

∀p. (Puppy(p) → Cute(p))

∀a. (EatsPlants(a) ∨ EatsAnimals(a))

Tallest(SultanKösen) →
∀x. (SultanKösen ≠ x → ShorterThan(x, SultanKösen))



  

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) 
is true for every 
choice of x, this 

statement 
evaluates to true.

Since Smiling(x) 
is true for every 
choice of x, this 

statement 
evaluates to true.



  

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) is 
false for this choice 

x, this statement 
evaluates to false.

Since Smiling(x) is 
false for this choice 

x, this statement 
evaluates to false.



  

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))



  

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the 
statement true or 

false?

Is this part of the 
statement true or 

false?



  

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the 
statement true or 

false?

Is this part of the 
statement true or 

false?



  

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this overall 
statement true or 

false in this 
scenario?

Is this overall 
statement true or 

false in this 
scenario?



  ∀x. Smiling(x)

Fun with Edge Cases

Universally-quantified 
statements are vacuously true 

in empty worlds.

Universally-quantified 
statements are vacuously true 

in empty worlds.



  

Time-Out for Announcements!



  



  



  

● The Brown Institute 
for Media Innovation 
is holding a 
showcase this Friday 
at 5PM at the Gates 
building.

● Interested in seeing 
the intersection of 
technology, 
journalism, and 
media? Come check 
it out!

● RSVP is requested. 
Use this link.

https://brown.columbia.edu/event/2018-brown-institute-showcase/


  

Checkpoints Graded

● The Problem Set One checkpoint 
problem has been graded. Feedback is 
now available in GradeScope.

● You need to look over our feedback 
as soon as possible.
● The purpose of the checkpoint is to help you 

see where to focus and how to improve.
● If you don’t review the feedback you 

received, you risk making the same mistakes 
in the future.



  

Your Questions



  

“Suggestions for combating impostor 
syndrome? Especially in CS?”

Yes! I’ll draw some pictures to illustrate these points:

1. Don’t confuse unions and intersections.
 

2. Don’t confuse talent for experience.
 

3. Don’t confuse relative and absolute performance.

Yes! I’ll draw some pictures to illustrate these points:

1. Don’t confuse unions and intersections.
 

2. Don’t confuse talent for experience.
 

3. Don’t confuse relative and absolute performance.



  

“How did you ask your first girlfriend out?”

Over AOL Instant Messenger. I 
then asked my parents if I 
could get a ride because I 
didn’t have my license yet.

Ah, the joys of being 15.

Over AOL Instant Messenger. I 
then asked my parents if I 
could get a ride because I 
didn’t have my license yet.

Ah, the joys of being 15.



  

Back to CS103!



  

Translating into First-Order Logic



  

Translating Into Logic

● First-order logic is an excellent tool for 
manipulating definitions and theorems to 
learn more about them.

● Need to take a negation? Translate your 
statement into FOL, negate it, then 
translate it back.

● Want to prove something by contrapositive? 
Translate your implication into FOL, take 
the contrapositive, then translate it back.



  

Translating Into Logic

● Translating statements into first-order 
logic is a lot more difficult than it looks.

● There are a lot of nuances that come up when 
translating into first-order logic.

● We'll cover examples of both good and bad 
translations into logic so that you can learn 
what to watch for.

● We'll also show lots of examples of 
translations so that you can see the process 
that goes into it.



  

Using the predicates

   - Puppy(p), which states that p is a puppy, and
   - Cute(x), which states that x is cute,

write a sentence in first-order logic that means “all puppies 
are cute.”



  

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work 
for any choice of 
x, including things 
that aren't puppies.

This should work 
for any choice of 
x, including things 
that aren't puppies.



  

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work 
for any choice of 
x, including things 
that aren't puppies.

This should work 
for any choice of 
x, including things 
that aren't puppies.



  

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

A statement of the form
 

∀x. something
 

is true only when 
something is true for 
every choice of x.

A statement of the form
 

∀x. something
 

is true only when 
something is true for 
every choice of x.



  

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This first-order statement 
is false even though the 
English statement is true. 
Therefore, it can't be a 

correct translation.

This first-order statement 
is false even though the 
English statement is true. 
Therefore, it can't be a 

correct translation.



  

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

The issue here is that this 
statement asserts that 
everything is a puppy. 
That's too strong of a 

claim to make.

The issue here is that this 
statement asserts that 
everything is a puppy. 
That's too strong of a 

claim to make.



  

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work 
for any choice of 
x, including things 
that aren't puppies.

This should work 
for any choice of 
x, including things 
that aren't puppies.



  

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work 
for any choice of 
x, including things 
that aren't puppies.

This should work 
for any choice of 
x, including things 
that aren't puppies.



  

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

A statement of the form
 

∀x. something
 

is true only when 
something is true for 
every choice of x.

A statement of the form
 

∀x. something
 

is true only when 
something is true for 
every choice of x.



  

“All P's are Q's”

translates as

∀x. (P(x) → Q(x))



  

Useful Intuition:

Universally-quantified statements are true 
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it 
must have property P but 
not have property Q.

If x is a counterexample, it 
must have property P but 
not have property Q.



  

Using the predicates

   - Blobfish(b), which states that b is a blobfish, and
   - Cute(x), which states that x is cute,

write a sentence in first-order logic that means “some 
blobfish is cute.”



  

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))



  

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))



  

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))



  

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

A statement of the form
 

∃x. something
 

is true only when 
something is true for

at least one choice of x.

A statement of the form
 

∃x. something
 

is true only when 
something is true for

at least one choice of x.



  

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

This first-order statement 
is true even though the 

English statement is false. 
Therefore, it can't be a 

correct translation.

This first-order statement 
is true even though the 

English statement is false. 
Therefore, it can't be a 

correct translation.



  

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

The issue here is that 
implications are true whenever 
the antecedent is false. This 
statement “accidentally” is true 
because of what happens when 

x isn't a blobfish.

The issue here is that 
implications are true whenever 
the antecedent is false. This 
statement “accidentally” is true 
because of what happens when 

x isn't a blobfish.



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))



  

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A statement of the form
 

∃x. something
 

is true only when 
something is true for

at least one choice of x.

A statement of the form
 

∃x. something
 

is true only when 
something is true for

at least one choice of x.



  

“Some P is a Q”

translates as

∃x. (P(x) ∧ Q(x))



  

Useful Intuition:

Existentially-quantified statements are 
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it must 
have property P on top of 

property Q.

If x is an example, it must 
have property P on top of 

property Q.



  

Good Pairings

● The ∀ quantifier usually is paired with →.

∀x. (P(x) → Q(x))
● The ∃ quantifier usually is paired with ∧.

∃x. (P(x) ∧ Q(x))
● In the case of ∀, the → connective prevents the 

statement from being false when speaking about some 
object you don't care about.

● In the case of ∃, the ∧ connective prevents the 
statement from being true when speaking about some 
object you don't care about.



  

Next Time

● First-Order Translations
● How do we translate from English into first-order logic?

● Quantifier Orderings
● How do you select the order of quantifiers in first-order 

logic formulas?
● Negating Formulas

● How do you mechanically determine the negation of a 
first-order formula?

● Expressing Uniqueness
● How do we say there’s just one object of a certain type?
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