

Mathematical Logic
Part Two

Recap from Last Time

Recap So Far

● A propositional variable is a variable that is
either true or false.

● The propositional connectives are as follows:
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥

Take out a sheet of paper!

What's the truth table for the → connective?

What's the negation of p → q?

New Stuff!

First-Order Logic

What is First-Order Logic?

● First-order logic is a logical system for
reasoning about properties of objects.

● Augments the logical connectives from
propositional logic with
● predicates that describe properties of

objects,
● functions that map objects to one another,

and
● quantifiers that allow us to reason about

multiple objects.

Some Examples

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

These blue terms are called
constant symbols. Unlike
propositional variables, they

refer to objects, not
propositions.

These blue terms are called
constant symbols. Unlike
propositional variables, they

refer to objects, not
propositions.

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

The red things that look
like function calls are called
predicates. Predicates take
objects as arguments and
evaluate to true or false.

The red things that look
like function calls are called
predicates. Predicates take
objects as arguments and
evaluate to true or false.

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

What remains are traditional propositional
connectives. Because each predicate
evaluates to true or false, we can

connect the truth values of predicates
using normal propositional connectives.

What remains are traditional propositional
connectives. Because each predicate
evaluates to true or false, we can

connect the truth values of predicates
using normal propositional connectives.

Reasoning about Objects

● To reason about objects, first-order logic uses
predicates.

● Examples:

Cute(Quokka)

ArgueIncessantly(Democrats, Republicans)
● Applying a predicate to arguments produces a

proposition, which is either true or false.
● Typically, when you’re working in FOL, you’ll

have a list of predicates, what they stand for, and
how many arguments they take. It’ll be given
separately than the formulas you write.

First-Order Sentences

● Sentences in first-order logic can be
constructed from predicates applied to objects:

Cute(a) → Dikdik(a) ∨ Kitty(a) ∨ Puppy(a)

Succeeds(You) ↔ Practices(You)

x < 8 → x < 137

The less-than sign is
just another predicate.
Binary predicates are
sometimes written in

infix notation this way.

The less-than sign is
just another predicate.
Binary predicates are
sometimes written in

infix notation this way.

Numbers are not “built
in” to first-order

logic. They’re constant
symbols just like “You”

and “a” above.

Numbers are not “built
in” to first-order

logic. They’re constant
symbols just like “You”

and “a” above.

Equality

● First-order logic is equipped with a special
predicate = that says whether two objects are
equal to one another.

● Equality is a part of first-order logic, just as →
and ¬ are.

● Examples:

TomMarvoloRiddle = LordVoldemort

MorningStar = EveningStar
● Equality can only be applied to objects; to

state that two propositions are equal, use ↔.

Let's see some more examples.

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

These purple terms are
functions. Functions take

objects as input and
produce objects as output.

These purple terms are
functions. Functions take

objects as input and
produce objects as output.

Functions

● First-order logic allows functions that return
objects associated with other objects.

● Examples:

ColorOf(Money)

MedianOf(x, y, z)

x + y
● As with predicates, functions can take in any

number of arguments, but always return a single
value.

● Functions evaluate to objects, not propositions.

Objects and Predicates

● When working in first-order logic, be
careful to keep objects (actual things) and
propositions (true or false) separate.

● You cannot apply connectives to objects:

 ⚠ Venus → TheSun ⚠
● You cannot apply functions to

propositions:

 ⚠ StarOf(IsRed(Sun) ∧ IsGreen(Mars)) ⚠
● Ever get confused? Just ask!

The Type-Checking Table

… operate on ... … and produce

Connectives
(↔, ∧, etc.) …

Predicates
(=, etc.) …

Functions …

propositions a proposition

a propositionobjects

objects an object

One last (and major) change

∃ is the existential quantifier
and says “for some choice of
m, the following is true.”

∃ is the existential quantifier
and says “for some choice of
m, the following is true.”

Some muggle is intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))

The Existential Quantifier

● A statement of the form

∃x. some-formula

is true if, for some choice of x, the
statement some-formula is true when that
x is plugged into it.

● Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ LighterThan(x, me))

(∃w. Will(w)) → (∃x. Way(x))

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x)
is true for some
choice of x, this

statement
evaluates to true.

Since Smiling(x)
is true for some
choice of x, this

statement
evaluates to true.

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this overall
statement true or

false?

Is this overall
statement true or

false?

 ∃x. Smiling(x)

Fun with Edge Cases

Existentially-quantified
statements are false in an empty
world, since it’s not possible to

choose an object!

Existentially-quantified
statements are false in an empty
world, since it’s not possible to

choose an object!

Some Technical Details

Variables and Quantifiers

● Each quantifier has two parts:
● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃y. Loves(y, You))

The variable x
just lives here.

The variable x
just lives here.

The variable y
just lives here.

The variable y
just lives here.

Variables and Quantifiers

● Each quantifier has two parts:
● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃x. Loves(x, You))

The variable x
just lives here.

The variable x
just lives here.

A different variable,
also named x, just

lives here.

A different variable,
also named x, just

lives here.

Operator Precedence (Again)

● When writing out a formula in first-order logic,
quantifiers have precedence just below ¬.

● The statement

∃x. P(x) ∧ R(x) ∧ Q(x)

is parsed like this:

(∃x. P(x)) ∧ (R(x) ∧ Q(x))
● This is syntactically invalid because the variable x is

out of scope in the back half of the formula.

● To ensure that x is properly quantified, explicitly put
parentheses around the region you want to quantify:

∃x. (P(x) ∧ R(x) ∧ Q(x))

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

 ∀ is the universal quantifier
and says “for any choice of n,

the following is true.”

 ∀ is the universal quantifier
and says “for any choice of n,

the following is true.”

The Universal Quantifier

● A statement of the form

∀x. some-formula

is true if, for every choice of x, the statement
some-formula is true when x is plugged into it.

● Examples:

∀p. (Puppy(p) → Cute(p))

∀a. (EatsPlants(a) ∨ EatsAnimals(a))

Tallest(SultanKösen) →
∀x. (SultanKösen ≠ x → ShorterThan(x, SultanKösen))

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x)
is true for every
choice of x, this

statement
evaluates to true.

Since Smiling(x)
is true for every
choice of x, this

statement
evaluates to true.

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) is
false for this choice

x, this statement
evaluates to false.

Since Smiling(x) is
false for this choice

x, this statement
evaluates to false.

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the
statement true or

false?

Is this part of the
statement true or

false?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the
statement true or

false?

Is this part of the
statement true or

false?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this overall
statement true or

false in this
scenario?

Is this overall
statement true or

false in this
scenario?

 ∀x. Smiling(x)

Fun with Edge Cases

Universally-quantified
statements are vacuously true

in empty worlds.

Universally-quantified
statements are vacuously true

in empty worlds.

Time-Out for Announcements!

● The Brown Institute
for Media Innovation
is holding a
showcase this Friday
at 5PM at the Gates
building.

● Interested in seeing
the intersection of
technology,
journalism, and
media? Come check
it out!

● RSVP is requested.
Use this link.

https://brown.columbia.edu/event/2018-brown-institute-showcase/

Checkpoints Graded

● The Problem Set One checkpoint
problem has been graded. Feedback is
now available in GradeScope.

● You need to look over our feedback
as soon as possible.
● The purpose of the checkpoint is to help you

see where to focus and how to improve.
● If you don’t review the feedback you

received, you risk making the same mistakes
in the future.

Your Questions

“Suggestions for combating impostor
syndrome? Especially in CS?”

Yes! I’ll draw some pictures to illustrate these points:

1. Don’t confuse unions and intersections.

2. Don’t confuse talent for experience.

3. Don’t confuse relative and absolute performance.

Yes! I’ll draw some pictures to illustrate these points:

1. Don’t confuse unions and intersections.

2. Don’t confuse talent for experience.

3. Don’t confuse relative and absolute performance.

“How did you ask your first girlfriend out?”

Over AOL Instant Messenger. I
then asked my parents if I
could get a ride because I
didn’t have my license yet.

Ah, the joys of being 15.

Over AOL Instant Messenger. I
then asked my parents if I
could get a ride because I
didn’t have my license yet.

Ah, the joys of being 15.

Back to CS103!

Translating into First-Order Logic

Translating Into Logic

● First-order logic is an excellent tool for
manipulating definitions and theorems to
learn more about them.

● Need to take a negation? Translate your
statement into FOL, negate it, then
translate it back.

● Want to prove something by contrapositive?
Translate your implication into FOL, take
the contrapositive, then translate it back.

Translating Into Logic

● Translating statements into first-order
logic is a lot more difficult than it looks.

● There are a lot of nuances that come up when
translating into first-order logic.

● We'll cover examples of both good and bad
translations into logic so that you can learn
what to watch for.

● We'll also show lots of examples of
translations so that you can see the process
that goes into it.

Using the predicates

 - Puppy(p), which states that p is a puppy, and
 - Cute(x), which states that x is cute,

write a sentence in first-order logic that means “all puppies
are cute.”

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

A statement of the form

∀x. something

is true only when
something is true for
every choice of x.

A statement of the form

∀x. something

is true only when
something is true for
every choice of x.

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This first-order statement
is false even though the
English statement is true.
Therefore, it can't be a

correct translation.

This first-order statement
is false even though the
English statement is true.
Therefore, it can't be a

correct translation.

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

The issue here is that this
statement asserts that
everything is a puppy.
That's too strong of a

claim to make.

The issue here is that this
statement asserts that
everything is a puppy.
That's too strong of a

claim to make.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

A statement of the form

∀x. something

is true only when
something is true for
every choice of x.

A statement of the form

∀x. something

is true only when
something is true for
every choice of x.

“All P's are Q's”

translates as

∀x. (P(x) → Q(x))

Useful Intuition:

Universally-quantified statements are true
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it
must have property P but
not have property Q.

If x is a counterexample, it
must have property P but
not have property Q.

Using the predicates

 - Blobfish(b), which states that b is a blobfish, and
 - Cute(x), which states that x is cute,

write a sentence in first-order logic that means “some
blobfish is cute.”

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

A statement of the form

∃x. something

is true only when
something is true for

at least one choice of x.

A statement of the form

∃x. something

is true only when
something is true for

at least one choice of x.

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

This first-order statement
is true even though the

English statement is false.
Therefore, it can't be a

correct translation.

This first-order statement
is true even though the

English statement is false.
Therefore, it can't be a

correct translation.

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

The issue here is that
implications are true whenever
the antecedent is false. This
statement “accidentally” is true
because of what happens when

x isn't a blobfish.

The issue here is that
implications are true whenever
the antecedent is false. This
statement “accidentally” is true
because of what happens when

x isn't a blobfish.

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A statement of the form

∃x. something

is true only when
something is true for

at least one choice of x.

A statement of the form

∃x. something

is true only when
something is true for

at least one choice of x.

“Some P is a Q”

translates as

∃x. (P(x) ∧ Q(x))

Useful Intuition:

Existentially-quantified statements are
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it must
have property P on top of

property Q.

If x is an example, it must
have property P on top of

property Q.

Good Pairings

● The ∀ quantifier usually is paired with →.

∀x. (P(x) → Q(x))
● The ∃ quantifier usually is paired with ∧.

∃x. (P(x) ∧ Q(x))
● In the case of ∀, the → connective prevents the

statement from being false when speaking about some
object you don't care about.

● In the case of ∃, the ∧ connective prevents the
statement from being true when speaking about some
object you don't care about.

Next Time

● First-Order Translations
● How do we translate from English into first-order logic?

● Quantifier Orderings
● How do you select the order of quantifiers in first-order

logic formulas?
● Negating Formulas

● How do you mechanically determine the negation of a
first-order formula?

● Expressing Uniqueness
● How do we say there’s just one object of a certain type?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

