

Binary Relations
Part One

Outline for Today

● Binary Relations
● Reasoning about connections between

objects.
● Equivalence Relations

● Reasoning about clusters.
● A Fundamental Theorem

● How do we know we have the “right”
definition for something?

Relationships

● In CS103, you've seen examples of relationships
● between sets:

A ⊆ B
● between numbers:

x < y x ≡ₖ y x ≤ y
● between people:

p loves q

● Since these relations focus on connections
between two objects, they are called binary
relations.
● The “binary” here means “pertaining to two things,”

not “made of zeros and ones.”

What exactly is a binary relation?

<

10 12

<

10 12

<

10 < 12

<

<

5 -2

<

5 -2

5 <� -2

≡₃

≡₃

7 10

7 10

≡₃

7 ≡₃ 10

≡₃

6 11

≡₃

6 11

6 ≡�₃ 11

R

a b

R

a b

aRb

R

a b

R

a b

aR̸b

R

Binary Relations

● A binary relation over a set A is a predicate
R that can be applied to ordered pairs of
elements drawn from A.

● If R is a binary relation over A and it holds for
the pair (a, b), we write aRb.

3 = 3 5 < 7 Ø ⊆ ℕ
● If R is a binary relation over A and it does not

hold for the pair (a, b), we write aR̸b.

4 ≠ 3 4 <= 3 ℕ ⊆= Ø

Properties of Relations

● Generally speaking, if R is a binary relation over
a set A, the order of the operands is significant.
● For example, 3 < 5, but 5 <= 3.
● In some relations order is irrelevant; more on that

later.
● Relations are always defined relative to some

underlying set.
● It's not meaningful to ask whether ☺ ⊆ 15, for

example, since ⊆ is defined over sets, not arbitrary
objects.

Visualizing Relations

● We can visualize a binary relation R over a set A by
drawing the elements of A and drawing an arrow
between an element a and an element b if aRb is true.

● Example: the relation a | b (meaning “a divides b”) over
the set {1, 2, 3, 4} looks like this:

1

2

4

3

Visualizing Relations

● We can visualize a binary relation R over a set A by
drawing the elements of A and drawing an arrow
between an element a and an element b if aRb is true.

● Example: the relation a ≠ b over the set {1, 2, 3, 4}
looks like this:

1

2

4

3

Visualizing Relations

● We can visualize a binary relation R over a set A by
drawing the elements of A and drawing an arrow
between an element a and an element b if aRb is true.

● Example: the relation a = b over the set {1, 2, 3, 4}
looks like this:

1

2

4

3

Visualizing Relations

● We can visualize a binary relation R over a set A by
drawing the elements of A and drawing an arrow
between an element a and an element b if aRb is true.

● Example: below is some relation over {1, 2, 3, 4} that's
a totally valid relation even though there doesn't
appear to be a simple unifying rule.

1

2

4

3

Capturing Structure

Capturing Structure

● Binary relations are an excellent way for
capturing certain structures that appear in
computer science.

● Today, we'll look at one of them
(partitions), and next time we'll see
another (prerequisites).

● Along the way, we'll explore how to write
proofs about definitions given in first-order
logic.

Partitions

Partitions

● A partition of a set is a way of splitting the set
into disjoint, nonempty subsets so that every
element belongs to exactly one subset.
● Two sets are disjoint if their intersection is the

empty set; formally, sets S and T are disjoint
if S ∩ T = Ø.

● Intuitively, a partition of a set breaks the set
apart into smaller pieces.

● There doesn't have to be any rhyme or reason to
what those pieces are, though often there is one.

Partitions and Clustering

● If you have a set of data, you can often
learn something from the data by finding
a “good” partition of that data and
inspecting the partitions.
● Usually, the term clustering is used in data

analysis rather than partitioning.
● Interested to learn more? Take CS161 or

CS246!

What's the connection between partitions
and binary relations?

a a

a a

a b

a b

a b

ab

a b

a b

a bc

b c

ab c

ca

ba cb ca

ba ab

aa

→

∧ →

→

→∧

aRa

aRb bRa

aRb bRc aRc

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

Reflexivity

● Some relations always hold from any element to
itself.

● Examples:
● x = x for any x.
● A ⊆ A for any set A.
● x ≡ₖ x for any x.

● Relations of this sort are called reflexive.
● Formally speaking, a binary relation R over a set A is

reflexive if the following first-order statement is true:

∀a ∈ A. aRa

(“Every element is related to itself.”)

Reflexivity Visualized

∀a ∈ A. aRa
(“Every element is related to itself.”)

∀a ∈ A. aRa
(“Every element is related to itself.”)

Let R be the
 relation drawn
 to the left. Is R

 reflexive?

Let R be the
 relation drawn
 to the left. Is R

 reflexive?

∀a ∈ A. aRa
(“Every element is related to itself.”)

∀a ∈ A. aRa
(“Every element is related to itself.”)

a

∀a ∈ A. aRa
(“Every element is related to itself.”)

a

∀a ∈ A. aRa
(“Every element is related to itself.”)

a

This means that R is
not reflexive, since
the first-order logic

statement given
below is not true.

This means that R is
not reflexive, since
the first-order logic

statement given
below is not true.

Is reflexive?Is reflexive?

∀a ∈ A. aRa
(“Every element is related to itself.”)

Is reflexive?Is reflexive?

∀a ∈ ??. a a

Is reflexive?Is reflexive?

∀a ∈ ??. a a

Reflexivity is a property
of relations, not

individual objects.

Reflexivity is a property
of relations, not

individual objects.

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

Symmetry

● In some relations, the relative order of the objects
doesn't matter.

● Examples:
● If x = y, then y = x.
● If x ≡ₖ y, then y ≡ₖ x.

● These relations are called symmetric.
● Formally: a binary relation R over a set A is called

symmetric if the following first-order statement is true
about R:

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

(“If a is related to b, then b is related to a.”)

Symmetry Visualized

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

b

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

b

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

Is This Relation Symmetric?

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

b

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

b

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

b

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

Transitivity

● Many relations can be chained together.
● Examples:

● If x = y and y = z, then x = z.
● If R ⊆ S and S ⊆ T, then R ⊆ T.
● If x ≡ₖ y and y ≡ₖ z, then x ≡ₖ z.

● These relations are called transitive.
● A binary relation R over a set A is called transitive if the

following first-order statement is true about R:

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

(“Whenever a is related to b and b is
related to c, we know a is related to c.)

Transitivity Visualized

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)

Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)

Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)

a

c

b

Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)

a

c

b

Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)

a

c

b

Equivalence Relations

● An equivalence relation is a relation
that is reflexive, symmetric and
transitive.

● Some examples:
● x = y
● x ≡ₖ y
● x has the same color as y
● x has the same shape as y.

Binary relations give us a common
language to describe common

structures.

Equivalence Relations

● Most modern programming languages include some
sort of hash table data structure.
● Java: HashMap
● C++: std::unordered_map
● Python: dict

● If you insert a key/value pair and then try to look up a
key, the implementation has to be able to tell whether
two keys are equal.

● Although each language has a different mechanism for
specifying this, many languages describe them in
similar ways...

Equivalence Relations

“The equals method implements an equivalence
relation on non-null object references:
● It is reflexive: for any non-null reference value x,
x.equals(x) should return true.

● It is symmetric: for any non-null reference values x and
y, x.equals(y) should return true if and only if
y.equals(x) returns true.

● It is transitive: for any non-null reference values x, y,
and z, if x.equals(y) returns true and y.equals(z) returns
true, then x.equals(z) should return true.”

Java 8 Documentation

Equivalence Relations

“The equals method implements an equivalence
relation on non-null object references:
● It is reflexive: for any non-null reference value x,
x.equals(x) should return true.

● It is symmetric: for any non-null reference values x and
y, x.equals(y) should return true if and only if
y.equals(x) returns true.

● It is transitive: for any non-null reference values x, y,
and z, if x.equals(y) returns true and y.equals(z) returns
true, then x.equals(z) should return true.”

Java 8 Documentation

Equivalence Relations

“Each unordered associative container is
parameterized by Key, by a function object type
Hash that meets the Hash requirements
(17.6.3.4) and acts as a hash function for
argument values of type Key, and by a binary
predicate Pred that induces an equivalence
relation on values of type Key. Additionally,
unordered_map and unordered_multimap associate
an arbitrary mapped type T with the Key.”

C++14 ISO Spec, §23.2.5/3

Equivalence Relations

“Each unordered associative container is
parameterized by Key, by a function object type
Hash that meets the Hash requirements
(17.6.3.4) and acts as a hash function for
argument values of type Key, and by a binary
predicate Pred that induces an equivalence
relation on values of type Key. Additionally,
unordered_map and unordered_multimap associate
an arbitrary mapped type T with the Key.”

C++14 ISO Spec, §23.2.5/3

Time-Out for Announcements!

Girls Teaching Girls to Code Exec Team
Applications are open now!

Want to inspire the next generation of women in tech?
Passionate about CS education and outreach?

Join the Executive Team of Girls Teaching Girls to Code!

Girls Teaching Girls to Code is a program for Stanford students to teach high school girls
from around the Bay Area to code. Students learn programming basics, build exciting

projects, and develop strong relationships with mentors in the field.

We are currently accepting applicants from all majors who are interested in building our
corporate relations, coordinating logistics for our events, creating and reviewing curricula,

or supporting outreach efforts in the community.

This year, we brought together over 200 high school girls and 60 Stanford mentors for a
day-long programming experience. Aside from our main event, we also hosted smaller
events throughout the year. We received overwhelmingly positive feedback, and we're

looking for team leads help us grow GTGTC even more!

Learn more about us at http://www.girlsteachinggirlstocode.org/, and apply at
https://bit.ly/2y3CkTb by Friday, October 12, 2018 at 11:59 pm!

https://bit.ly/2y3CkTb
http://www.girlsteachinggirlstocode.org/
https://bit.ly/2y3CkTb

Problem Set One Solutions

● We’ve just released solutions to Problem Set
One, both in hardcopy and online.

● You need to read over these solutions as
soon as possible.

● Why?
● Each question is there for a reason. We’ve described

what it is that we hoped you would have learned
when solving those problems.

● There are lots of different ways of solving these
problems. Comparing what you did against our
solutions, which are just one possible set of solutions,
can help introduce new techniques.

Problem Set Two

● The Problem Set Two checkpoint was
due today at 2:30PM.

● The remaining problems are due Friday
at 2:30PM.

● Have questions?
● Stop by office hours!
● Ask on Piazza!

Your Questions

“I’m considering an independent
contractor job. The contract is confusing- I
don’t want to get “screwed,” per se. Where

can I get legal advice as an undergrad?”

You can get free legal advice from the ASSU (check this link for more
details.)

I’d like to hear more about why you’re considering this job. If you
need the money and they’re offering to pay well, or if it’s for a
project you’re genuinely excited about, great!

If you’re trying to improve your coding skills, make sure that you’re
actually signing up for something where that will happen. You learn best
when you’re surrounded by other skilled people who know what they’re
doing. Is that the case here?

If you’re doing this to improve your resume – are you sure you need
to do that? You aren’t expected to have past job experience when
applying for internships and the like.

You can get free legal advice from the ASSU (check this link for more
details.)

I’d like to hear more about why you’re considering this job. If you
need the money and they’re offering to pay well, or if it’s for a
project you’re genuinely excited about, great!

If you’re trying to improve your coding skills, make sure that you’re
actually signing up for something where that will happen. You learn best
when you’re surrounded by other skilled people who know what they’re
doing. Is that the case here?

If you’re doing this to improve your resume – are you sure you need
to do that? You aren’t expected to have past job experience when
applying for internships and the like.

https://associatedstudents.stanford.edu/services/legal-counsel-office
https://associatedstudents.stanford.edu/services/legal-counsel-office

“When’s a good time and what’s the best
way to tell my PSet partner I like them?”

Think of this as akin to asking a coworker out on a date.

1. Keep the Categorical Imperative in mind and remember that many
people legitimately do not like being hit on in the workplace. As an
undergrad there is basically no separation between “home” and
”the workplace,” but working on problem sets together is way more
of “the workplace” than “home.”

2. Think of the position you are putting the other person in. Your ask
comes with a real risk of disrupting their work schedule. General
advice: give people face-saving, minimally-disruptive ways to say no.

3. The more important question is “do you have a reason to believe the
other person enjoys your company?” Because if the answer is no,
then the answer is “never,” since otherwise you’re weird and awkward.

Think of this as akin to asking a coworker out on a date.

1. Keep the Categorical Imperative in mind and remember that many
people legitimately do not like being hit on in the workplace. As an
undergrad there is basically no separation between “home” and
”the workplace,” but working on problem sets together is way more
of “the workplace” than “home.”

2. Think of the position you are putting the other person in. Your ask
comes with a real risk of disrupting their work schedule. General
advice: give people face-saving, minimally-disruptive ways to say no.

3. The more important question is “do you have a reason to believe the
other person enjoys your company?” Because if the answer is no,
then the answer is “never,” since otherwise you’re weird and awkward.

Back to CS103!

Equivalence Relation Proofs

● Let's suppose you've found a binary
relation R over a set A and want to prove
that it's an equivalence relation.

● How exactly would you go about doing
this?

An Example Relation

● Consider the binary relation ~ defined over the set ℤ:

a~b if a+b is even
● Some examples:

0~4 1~9 2~6 5~5
● Turns out, this is an equivalence relation! Let's see how to

prove it.

We can binary relations by giving a rule, like this:

a~b if some property of a and b holds

This is the general template for defining a relation.
Although we're using “if” rather than “iff” here, the two
above statements are definitionally equivalent. For a
variety of reasons, definitions are often introduced with
“if” rather than “iff.” Check the “Mathematical
Vocabulary” handout for details.

We can binary relations by giving a rule, like this:

a~b if some property of a and b holds

This is the general template for defining a relation.
Although we're using “if” rather than “iff” here, the two
above statements are definitionally equivalent. For a
variety of reasons, definitions are often introduced with
“if” rather than “iff.” Check the “Mathematical
Vocabulary” handout for details.

What properties must ~ have to be an
equivalence relation?

Reflexivity
Symmetry

Transitivity

Let's prove each property independently.

a~b if a+b is even

Lemma 1: The binary relation ~ is reflexive.

Proof: Consider an arbitrary a ∈ ℤ. We need to
 prove that a~a. From the definition of the ~
 relation, this means that we need to prove that
 a+a is even.

 To see this, notice that a+a = 2a, so the sum a+a
 can be written as 2k for some integer k (namely,
 a), so a+a is even. Therefore, a~a holds, as
 required. ■

a~b if a+b is even

Lemma 1: The binary relation ~ is reflexive.

Proof: Consider an arbitrary a ∈ ℤ. We need to
 prove that a~a. From the definition of the ~
 relation, this means that we need to prove that
 a+a is even.

 To see this, notice that a+a = 2a, so the sum a+a
 can be written as 2k for some integer k (namely,
 a), so a+a is even. Therefore, a~a holds, as
 required. ■

a~b if a+b is even

Lemma 1: The binary relation ~ is reflexive.

Proof: Consider an arbitrary a ∈ ℤ. We need to
 prove that a~a. From the definition of the ~
 relation, this means that we need to prove that
 a+a is even.

 To see this, notice that a+a = 2a, so the sum a+a
 can be written as 2k for some integer k (namely,
 a), so a+a is even. Therefore, a~a holds, as
 required. ■

What is the formal definition of reflexivity?

∀a ∈ ℤ. a ~ a

Therefore, we'll choose an arbitrary integer a, then
go prove that a ~ a.

What is the formal definition of reflexivity?

∀a ∈ ℤ. a ~ a

Therefore, we'll choose an arbitrary integer a, then
go prove that a ~ a.

a~b if a+b is even

Lemma 1: The binary relation ~ is reflexive.

Proof: Consider an arbitrary a ∈ ℤ. We need to
 prove that a~a. From the definition of the ~
 relation, this means that we need to prove that
 a+a is even.

 To see this, notice that a+a = 2a, so the sum a+a
 can be written as 2k for some integer k (namely,
 a), so a+a is even. Therefore, a~a holds, as
 required. ■

What is the formal definition of reflexivity?

∀a ∈ ℤ. a ~ a

Therefore, we'll choose an arbitrary integer a, then
go prove that a ~ a.

What is the formal definition of reflexivity?

∀a ∈ ℤ. a ~ a

Therefore, we'll choose an arbitrary integer a, then
go prove that a ~ a.

a~b if a+b is even

Lemma 1: The binary relation ~ is reflexive.

Proof: Consider an arbitrary a ∈ ℤ. We need to
 prove that a~a. From the definition of the ~
 relation, this means that we need to prove that
 a+a is even.

 To see this, notice that a+a = 2a, so the sum a+a
 can be written as 2k for some integer k (namely,
 a), so a+a is even. Therefore, a~a holds, as
 required. ■

What is the formal definition of reflexivity?

∀a ∈ ℤ. a ~ a

Therefore, we'll choose an arbitrary integer a, then
go prove that a ~ a.

What is the formal definition of reflexivity?

∀a ∈ ℤ. a ~ a

Therefore, we'll choose an arbitrary integer a, then
go prove that a ~ a.

a~b if a+b is even

Lemma 1: The binary relation ~ is reflexive.

Proof: Consider an arbitrary a ∈ ℤ. We need to
 prove that a~a. From the definition of the ~
 relation, this means that we need to prove that
 a+a is even.

 To see this, notice that a+a = 2a, so the sum a+a
 can be written as 2k for some integer k (namely,
 a), so a+a is even. Therefore, a~a holds, as
 required. ■

What is the formal definition of reflexivity?

∀a ∈ ℤ. a ~ a

Therefore, we'll choose an arbitrary integer a, then
go prove that a ~ a.

What is the formal definition of reflexivity?

∀a ∈ ℤ. a ~ a

Therefore, we'll choose an arbitrary integer a, then
go prove that a ~ a.

a~b if a+b is even

Lemma 1: The binary relation ~ is reflexive.

Proof: Consider an arbitrary a ∈ ℤ. We need to
 prove that a~a. From the definition of the ~
 relation, this means that we need to prove that
 a+a is even.

 To see this, notice that a+a = 2a, so the sum a+a
 can be written as 2k for some integer k (namely,
 a), so a+a is even. Therefore, a~a holds, as
 required. ■

What is the formal definition of reflexivity?

∀a ∈ ℤ. a ~ a

Therefore, we'll choose an arbitrary integer a, then
go prove that a ~ a.

What is the formal definition of reflexivity?

∀a ∈ ℤ. a ~ a

Therefore, we'll choose an arbitrary integer a, then
go prove that a ~ a.

a~b if a+b is even

Lemma 1: The binary relation ~ is reflexive.

Proof: Consider an arbitrary a ∈ ℤ. We need to
 prove that a~a. From the definition of the ~
 relation, this means that we need to prove that
 a+a is even.

 To see this, notice that a+a = 2a, so the sum a+a
 can be written as 2k for some integer k (namely,
 a), so a+a is even. Therefore, a~a holds, as
 required. ■

a~b if a+b is even

Lemma 1: The binary relation ~ is reflexive.

Proof: Consider an arbitrary a ∈ ℤ. We need to
 prove that a~a. From the definition of the ~
 relation, this means that we need to prove that
 a+a is even.

 To see this, notice that a+a = 2a, so the sum a+a
 can be written as 2k for some integer k (namely,
 a), so a+a is even. Therefore, a~a holds, as
 required. ■

a~b if a+b is even

Lemma 1: The binary relation ~ is reflexive.

Proof: Consider an arbitrary a ∈ ℤ. We need to
 prove that a~a. From the definition of the ~
 relation, this means that we need to prove that
 a+a is even.

 To see this, notice that a+a = 2a, so the sum a+a
 can be written as 2k for some integer k (namely,
 a), so a+a is even. Therefore, a~a holds, as
 required. ■

a~b if a+b is even

Lemma 1: The binary relation ~ is reflexive.

Proof: Consider an arbitrary a ∈ ℤ. We need to
 prove that a~a. From the definition of the ~
 relation, this means that we need to prove that
 a+a is even.

 To see this, notice that a+a = 2a, so the sum a+a
 can be written as 2k for some integer k (namely,
 a), so a+a is even. Therefore, a~a holds, as
 required. ■

a~b if a+b is even

Lemma 1: The binary relation ~ is reflexive.

Proof: Consider an arbitrary a ∈ ℤ. We need to
 prove that a~a. From the definition of the ~
 relation, this means that we need to prove that
 a+a is even.

 To see this, notice that a+a = 2a, so the sum a+a
 can be written as 2k for some integer k (namely,
 a), so a+a is even. Therefore, a~a holds, as
 required. ■

a~b if a+b is even

Lemma 2: The binary relation ~ is symmetric.

Proof: Consider any integers a and b where a~b.
We need to show that b~a.

 Since a~b, we know that a+b is even. Because
a+b = b+a, this means that b+a is even. Since
b+a is even, we know that b~a, as required. ■

a~b if a+b is even

Lemma 2: The binary relation ~ is symmetric.

Proof: Consider any integers a and b where a~b.
We need to show that b~a.

 Since a~b, we know that a+b is even. Because
a+b = b+a, this means that b+a is even. Since
b+a is even, we know that b~a, as required. ■

a~b if a+b is even

Lemma 2: The binary relation ~ is symmetric.

Proof: Consider any integers a and b where a~b.
We need to show that b~a.

 Since a~b, we know that a+b is even. Because
a+b = b+a, this means that b+a is even. Since
b+a is even, we know that b~a, as required. ■

What is the formal definition of symmetry?

∀a ∈ ℤ. ∀b ∈ ℤ. (a ~ b → b ~ a)

Therefore, we'll choose arbitrary integers a and
b where a ~ b, then prove that b ~ a.

What is the formal definition of symmetry?

∀a ∈ ℤ. ∀b ∈ ℤ. (a ~ b → b ~ a)

Therefore, we'll choose arbitrary integers a and
b where a ~ b, then prove that b ~ a.

a~b if a+b is even

Lemma 2: The binary relation ~ is symmetric.

Proof: Consider any integers a and b where a~b.
We need to show that b~a.

 Since a~b, we know that a+b is even. Because
a+b = b+a, this means that b+a is even. Since
b+a is even, we know that b~a, as required. ■

What is the formal definition of symmetry?

∀a ∈ ℤ. ∀b ∈ ℤ. (a ~ b → b ~ a)

Therefore, we'll choose arbitrary integers a and
b where a ~ b, then prove that b ~ a.

What is the formal definition of symmetry?

∀a ∈ ℤ. ∀b ∈ ℤ. (a ~ b → b ~ a)

Therefore, we'll choose arbitrary integers a and
b where a ~ b, then prove that b ~ a.

a~b if a+b is even

Lemma 2: The binary relation ~ is symmetric.

Proof: Consider any integers a and b where a~b.
We need to show that b~a.

 Since a~b, we know that a+b is even. Because
a+b = b+a, this means that b+a is even. Since
b+a is even, we know that b~a, as required. ■

What is the formal definition of symmetry?

∀a ∈ ℤ. ∀b ∈ ℤ. (a ~ b → b ~ a)

Therefore, we'll choose arbitrary integers a and
b where a ~ b, then prove that b ~ a.

What is the formal definition of symmetry?

∀a ∈ ℤ. ∀b ∈ ℤ. (a ~ b → b ~ a)

Therefore, we'll choose arbitrary integers a and
b where a ~ b, then prove that b ~ a.

a~b if a+b is even

Lemma 2: The binary relation ~ is symmetric.

Proof: Consider any integers a and b where a~b.
We need to show that b~a.

 Since a~b, we know that a+b is even. Because
a+b = b+a, this means that b+a is even. Since
b+a is even, we know that b~a, as required. ■

What is the formal definition of symmetry?

∀a ∈ ℤ. ∀b ∈ ℤ. (a ~ b → b ~ a)

Therefore, we'll choose arbitrary integers a and
b where a ~ b, then prove that b ~ a.

What is the formal definition of symmetry?

∀a ∈ ℤ. ∀b ∈ ℤ. (a ~ b → b ~ a)

Therefore, we'll choose arbitrary integers a and
b where a ~ b, then prove that b ~ a.

a~b if a+b is even

Lemma 2: The binary relation ~ is symmetric.

Proof: Consider any integers a and b where a~b.
We need to show that b~a.

 Since a~b, we know that a+b is even. Because
a+b = b+a, this means that b+a is even. Since
b+a is even, we know that b~a, as required. ■

What is the formal definition of symmetry?

∀a ∈ ℤ. ∀b ∈ ℤ. (a ~ b → b ~ a)

Therefore, we'll choose arbitrary integers a and
b where a ~ b, then prove that b ~ a.

What is the formal definition of symmetry?

∀a ∈ ℤ. ∀b ∈ ℤ. (a ~ b → b ~ a)

Therefore, we'll choose arbitrary integers a and
b where a ~ b, then prove that b ~ a.

a~b if a+b is even

Lemma 2: The binary relation ~ is symmetric.

Proof: Consider any integers a and b where a~b.
We need to show that b~a.

 Since a~b, we know that a+b is even. Because
a+b = b+a, this means that b+a is even. Since
b+a is even, we know that b~a, as required. ■

a~b if a+b is even

Lemma 2: The binary relation ~ is symmetric.

Proof: Consider any integers a and b where a~b.
We need to show that b~a.

 Since a~b, we know that a+b is even. Because
a+b = b+a, this means that b+a is even. Since
b+a is even, we know that b~a, as required. ■

a~b if a+b is even

Lemma 2: The binary relation ~ is symmetric.

Proof: Consider any integers a and b where a~b.
We need to show that b~a.

 Since a~b, we know that a+b is even. Because
a+b = b+a, this means that b+a is even. Since
b+a is even, we know that b~a, as required. ■

a~b if a+b is even

Lemma 2: The binary relation ~ is symmetric.

Proof: Consider any integers a and b where a~b.
We need to show that b~a.

 Since a~b, we know that a+b is even. Because
a+b = b+a, this means that b+a is even. Since
b+a is even, we know that b~a, as required. ■

a~b if a+b is even

Lemma 2: The binary relation ~ is symmetric.

Proof: Consider any integers a and b where a~b.
We need to show that b~a.

 Since a~b, we know that a+b is even. Because
a+b = b+a, this means that b+a is even. Since
b+a is even, we know that b~a, as required. ■

a~b if a+b is even

Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where a~b and
b~c. We need to prove that a~c, meaning that we need to
show that a+c is even.

Since a~b and b~c, we know that a~b and b~c are even.
This means there are integers k and m where a+b = 2k
and b+c = 2m. Notice that

(a+b) + (b+c) = 2k + 2m.

Rearranging, we see that

a+c + 2b = 2k + 2m,

so

a+c = 2k + 2m – 2b = 2(k+m–b).

So there is an integer r, namely k+m–b, such that
a+c = 2r. Thus a+c is even, so a~c, as required. ■

a~b if a+b is even

Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where a~b and
b~c. We need to prove that a~c, meaning that we need to
show that a+c is even.

Since a~b and b~c, we know that a~b and b~c are even.
This means there are integers k and m where a+b = 2k
and b+c = 2m. Notice that

(a+b) + (b+c) = 2k + 2m.

Rearranging, we see that

a+c + 2b = 2k + 2m,

so

a+c = 2k + 2m – 2b = 2(k+m–b).

So there is an integer r, namely k+m–b, such that
a+c = 2r. Thus a+c is even, so a~c, as required. ■

a~b if a+b is even

Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where a~b and
b~c. We need to prove that a~c, meaning that we need to
show that a+c is even.

Since a~b and b~c, we know that a~b and b~c are even.
This means there are integers k and m where a+b = 2k
and b+c = 2m. Notice that

(a+b) + (b+c) = 2k + 2m.

Rearranging, we see that

a+c + 2b = 2k + 2m,

so

a+c = 2k + 2m – 2b = 2(k+m–b).

So there is an integer r, namely k+m–b, such that
a+c = 2r. Thus a+c is even, so a~c, as required. ■

What is the formal definition of transitivity?

∀a ∈ ℤ. ∀b ∈ ℤ. ∀c ∈ ℤ. (a ~ b ∧ b ~ c → a ~ c)

Therefore, we'll choose arbitrary integers a, b, and c
where a ~ b and b ~ c, then prove that a ~ c.

What is the formal definition of transitivity?

∀a ∈ ℤ. ∀b ∈ ℤ. ∀c ∈ ℤ. (a ~ b ∧ b ~ c → a ~ c)

Therefore, we'll choose arbitrary integers a, b, and c
where a ~ b and b ~ c, then prove that a ~ c.

a~b if a+b is even

Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where a~b and
b~c. We need to prove that a~c, meaning that we need to
show that a+c is even.

Since a~b and b~c, we know that a~b and b~c are even.
This means there are integers k and m where a+b = 2k
and b+c = 2m. Notice that

(a+b) + (b+c) = 2k + 2m.

Rearranging, we see that

a+c + 2b = 2k + 2m,

so

a+c = 2k + 2m – 2b = 2(k+m–b).

So there is an integer r, namely k+m–b, such that
a+c = 2r. Thus a+c is even, so a~c, as required. ■

What is the formal definition of transitivity?

∀a ∈ ℤ. ∀b ∈ ℤ. ∀c ∈ ℤ. (a ~ b ∧ b ~ c → a ~ c)

Therefore, we'll choose arbitrary integers a, b, and c
where a ~ b and b ~ c, then prove that a ~ c.

What is the formal definition of transitivity?

∀a ∈ ℤ. ∀b ∈ ℤ. ∀c ∈ ℤ. (a ~ b ∧ b ~ c → a ~ c)

Therefore, we'll choose arbitrary integers a, b, and c
where a ~ b and b ~ c, then prove that a ~ c.

a~b if a+b is even

Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where a~b and
b~c. We need to prove that a~c, meaning that we need to
show that a+c is even.

Since a~b and b~c, we know that a~b and b~c are even.
This means there are integers k and m where a+b = 2k
and b+c = 2m. Notice that

(a+b) + (b+c) = 2k + 2m.

Rearranging, we see that

a+c + 2b = 2k + 2m,

so

a+c = 2k + 2m – 2b = 2(k+m–b).

So there is an integer r, namely k+m–b, such that
a+c = 2r. Thus a+c is even, so a~c, as required. ■

What is the formal definition of transitivity?

∀a ∈ ℤ. ∀b ∈ ℤ. ∀c ∈ ℤ. (a ~ b ∧ b ~ c → a ~ c)

Therefore, we'll choose arbitrary integers a, b, and c
where a ~ b and b ~ c, then prove that a ~ c.

What is the formal definition of transitivity?

∀a ∈ ℤ. ∀b ∈ ℤ. ∀c ∈ ℤ. (a ~ b ∧ b ~ c → a ~ c)

Therefore, we'll choose arbitrary integers a, b, and c
where a ~ b and b ~ c, then prove that a ~ c.

a~b if a+b is even

Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where a~b and
b~c. We need to prove that a~c, meaning that we need to
show that a+c is even.

Since a~b and b~c, we know that a~b and b~c are even.
This means there are integers k and m where a+b = 2k
and b+c = 2m. Notice that

(a+b) + (b+c) = 2k + 2m.

Rearranging, we see that

a+c + 2b = 2k + 2m,

so

a+c = 2k + 2m – 2b = 2(k+m–b).

So there is an integer r, namely k+m–b, such that
a+c = 2r. Thus a+c is even, so a~c, as required. ■

a~b if a+b is even

Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where a~b and
b~c. We need to prove that a~c, meaning that we need to
show that a+c is even.

Since a~b and b~c, we know that a~b and b~c are even.
This means there are integers k and m where a+b = 2k
and b+c = 2m. Notice that

(a+b) + (b+c) = 2k + 2m.

Rearranging, we see that

a+c + 2b = 2k + 2m,

so

a+c = 2k + 2m – 2b = 2(k+m–b).

So there is an integer r, namely k+m–b, such that
a+c = 2r. Thus a+c is even, so a~c, as required. ■

a~b if a+b is even

Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where a~b and
b~c. We need to prove that a~c, meaning that we need to
show that a+c is even.

Since a~b and b~c, we know that a+b and b+c are even.
This means there are integers k and m where a+b = 2k
and b+c = 2m. Notice that

(a+b) + (b+c) = 2k + 2m.

Rearranging, we see that

a+c + 2b = 2k + 2m,

so

a+c = 2k + 2m – 2b = 2(k+m–b).

So there is an integer r, namely k+m–b, such that
a+c = 2r. Thus a+c is even, so a~c, as required. ■

a~b if a+b is even

Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where a~b and
b~c. We need to prove that a~c, meaning that we need to
show that a+c is even.

Since a~b and b~c, we know that a+b and b+c are even.
This means there are integers k and m where a+b = 2k
and b+c = 2m. Notice that

(a+b) + (b+c) = 2k + 2m.

Rearranging, we see that

a+c + 2b = 2k + 2m,

so

a+c = 2k + 2m – 2b = 2(k+m–b).

So there is an integer r, namely k+m–b, such that
a+c = 2r. Thus a+c is even, so a~c, as required. ■

a~b if a+b is even

Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where a~b and
b~c. We need to prove that a~c, meaning that we need to
show that a+c is even.

Since a~b and b~c, we know that a+b and b+c are even.
This means there are integers k and m where a+b = 2k
and b+c = 2m. Notice that

(a+b) + (b+c) = 2k + 2m.

Rearranging, we see that

a+c + 2b = 2k + 2m,

so

a+c = 2k + 2m – 2b = 2(k+m–b).

So there is an integer r, namely k+m–b, such that
a+c = 2r. Thus a+c is even, so a~c, as required. ■

a~b if a+b is even

Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where a~b and
b~c. We need to prove that a~c, meaning that we need to
show that a+c is even.

Since a~b and b~c, we know that a+b and b+c are even.
This means there are integers k and m where a+b = 2k
and b+c = 2m. Notice that

(a+b) + (b+c) = 2k + 2m.

Rearranging, we see that

a+c + 2b = 2k + 2m,

so

a+c = 2k + 2m – 2b = 2(k+m–b).

So there is an integer r, namely k+m–b, such that
a+c = 2r. Thus a+c is even, so a~c, as required. ■

a~b if a+b is even

Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where a~b and
b~c. We need to prove that a~c, meaning that we need to
show that a+c is even.

Since a~b and b~c, we know that a+b and b+c are even.
This means there are integers k and m where a+b = 2k
and b+c = 2m. Notice that

(a+b) + (b+c) = 2k + 2m.

Rearranging, we see that

a+c + 2b = 2k + 2m,

so

a+c = 2k + 2m – 2b = 2(k+m–b).

So there is an integer r, namely k+m–b, such that
a+c = 2r. Thus a+c is even, so a~c, as required. ■

a~b if a+b is even

Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where a~b and
b~c. We need to prove that a~c, meaning that we need to
show that a+c is even.

Since a~b and b~c, we know that a+b and b+c are even.
This means there are integers k and m where a+b = 2k
and b+c = 2m. Notice that

(a+b) + (b+c) = 2k + 2m.

Rearranging, we see that

a+c + 2b = 2k + 2m,

so

a+c = 2k + 2m – 2b = 2(k+m–b).

So there is an integer r, namely k+m–b, such that
a+c = 2r. Thus a+c is even, so a~c, as required. ■

a~b if a+b is even

Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where a~b and
b~c. We need to prove that a~c, meaning that we need to
show that a+c is even.

Since a~b and b~c, we know that a+b and b+c are even.
This means there are integers k and m where a+b = 2k
and b+c = 2m. Notice that

(a+b) + (b+c) = 2k + 2m.

Rearranging, we see that

a+c + 2b = 2k + 2m,

so

a+c = 2k + 2m – 2b = 2(k+m–b).

So there is an integer r, namely k+m–b, such that
a+c = 2r. Thus a+c is even, so a~c, as required. ■

An Observation

a~b if a+b is even

Lemma 1: The binary relation ~ is reflexive.

Proof: Consider an arbitrary a ∈ ℤ. We need to
 prove that a~a. From the definition of the ~
 relation, this means that we need to prove that
 a+a is even.

 To see this, notice that a+a = 2a, so the sum a+a
 can be written as 2k for some integer k (namely,
 a), so a+a is even. Therefore, a~a holds, as
 required. ■

The formal definition of reflexivity
is given in first-order logic, but
this proof does not contain any

first-order logic symbols!

The formal definition of reflexivity
is given in first-order logic, but
this proof does not contain any

first-order logic symbols!

a~b if a+b is even

Lemma 2: The binary relation ~ is symmetric.

Proof: Consider any integers a and b where a~b.
We need to show that b~a.

 Since a~b, we know that a+b is even. Because
a+b = b+a, this means that b+a is even. Since
b+a is even, we know that b~a, as required. ■

The formal definition of symmetry
is given in first-order logic, but
this proof does not contain any

first-order logic symbols!

The formal definition of symmetry
is given in first-order logic, but
this proof does not contain any

first-order logic symbols!

a~b if a+b is even

Lemma 3: The binary relation ~ is transitive.

Proof: Consider arbitrary integers a, b and c where a~b and
b~c. We need to prove that a~c, meaning that we need to
show that a+c is even.

Since a~b and b~c, we know that a+b and b+c are even.
This means there are integers k and m where a+b = 2k
and b+c = 2m. Notice that

(a+b) + (b+c) = 2k + 2m.

Rearranging, we see that

a+c + 2b = 2k + 2m,

so

a+c = 2k + 2m – 2b = 2(k+m–b).

So there is an integer r, namely k+m–b, such that
a+c = 2r. Thus a+c is even, so a~c, as required. ■

The formal definition of transitivity
is given in first-order logic, but
this proof does not contain any

first-order logic symbols!

The formal definition of transitivity
is given in first-order logic, but
this proof does not contain any

first-order logic symbols!

First-Order Logic and Proofs

● First-order logic is an excellent tool for giving
formal definitions to key terms.

● While first-order logic guides the structure of
proofs, it is exceedingly rare to see first-order
logic in written proofs.

● Follow the example of these proofs:
● Use the FOL definitions to determine what to assume

and what to prove.
● Write the proof in plain English using the conventions

we set up in the first week of the class.
● Please, please, please, please, please

internalize the contents of this slide!

Next Time

● A Fundamental Theorem
● Why are equivalence relations so useful?

● Proofs on Relations
● Proving properties of abstract objects.

● Strict Orders
● Representing rankings and requirements.

● Hasse Diagrams
● How to draw strict orders.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166

