
  

Binary Relations
Part One



  

Outline for Today

● Binary Relations
● Reasoning about connections between 

objects.
● Equivalence Relations

● Reasoning about clusters.
● A Fundamental Theorem

● How do we know we have the “right” 
definition for something?



  

Relationships

● In CS103, you've seen examples of relationships
● between sets:

A ⊆ B
● between numbers:

x < y         x ≡ₖ y         x ≤ y
● between people:

p loves q

● Since these relations focus on connections 
between two objects, they are called binary 
relations.
● The “binary” here means “pertaining to two things,” 

not “made of zeros and ones.”



  

What exactly is a binary relation?
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Binary Relations

● A binary relation over a set A is a predicate 
R that can be applied to ordered pairs of 
elements drawn from A.

● If R is a binary relation over A and it holds for 
the pair (a, b), we write aRb.

3 = 3                5 < 7                Ø ⊆ ℕ
● If R is a binary relation over A and it does not 

hold for the pair (a, b), we write aR̸b.

4 ≠ 3                4 <= 3                ℕ ⊆= Ø



  

Properties of Relations

● Generally speaking, if R is a binary relation over 
a set A, the order of the operands is significant.
● For example, 3 < 5, but 5 <= 3.
● In some relations order is irrelevant; more on that 

later.
● Relations are always defined relative to some 

underlying set.
● It's not meaningful to ask whether ☺ ⊆ 15, for 

example, since ⊆ is defined over sets, not arbitrary 
objects.



  

Visualizing Relations

● We can visualize a binary relation R over a set A by 
drawing the elements of A and drawing an arrow 
between an element a and an element b if aRb is true.

● Example: the relation a | b (meaning “a divides b”) over 
the set {1, 2, 3, 4} looks like this:

1

2

4

3



  

Visualizing Relations

● We can visualize a binary relation R over a set A by 
drawing the elements of A and drawing an arrow 
between an element a and an element b if aRb is true.

● Example: the relation a ≠ b over the set {1, 2, 3, 4} 
looks like this:
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Visualizing Relations

● We can visualize a binary relation R over a set A by 
drawing the elements of A and drawing an arrow 
between an element a and an element b if aRb is true.

● Example: the relation a = b over the set {1, 2, 3, 4} 
looks like this:

1
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Visualizing Relations

● We can visualize a binary relation R over a set A by 
drawing the elements of A and drawing an arrow 
between an element a and an element b if aRb is true.

● Example: below is some relation over {1, 2, 3, 4} that's 
a totally valid relation even though there doesn't 
appear to be a simple unifying rule.

1

2

4

3



  

Capturing Structure



  

Capturing Structure

● Binary relations are an excellent way for 
capturing certain structures that appear in 
computer science.

● Today, we'll look at one of them 
(partitions), and next time we'll see 
another (prerequisites).

● Along the way, we'll explore how to write 
proofs about definitions given in first-order 
logic.



  

Partitions



  



  



  



  



  



  



  



  



  



  



  

Partitions

● A partition of a set is a way of splitting the set 
into disjoint, nonempty subsets so that every 
element belongs to exactly one subset.
● Two sets are disjoint if their intersection is the 

empty set; formally, sets S and T are disjoint 
if S ∩ T = Ø.

● Intuitively, a partition of a set breaks the set 
apart into smaller pieces.

● There doesn't have to be any rhyme or reason to 
what those pieces are, though often there is one.



  

Partitions and Clustering

● If you have a set of data, you can often 
learn something from the data by finding 
a “good” partition of that data and 
inspecting the partitions.
● Usually, the term clustering is used in data 

analysis rather than partitioning.
● Interested to learn more? Take CS161 or 

CS246!



  

What's the connection between partitions 
and binary relations?
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Reflexivity

● Some relations always hold from any element to 
itself.

● Examples:
● x = x for any x.
● A ⊆ A for any set A.
● x ≡ₖ x for any x.

● Relations of this sort are called reflexive.
● Formally speaking, a binary relation R over a set A is 

reflexive if the following first-order statement is true:

∀a ∈ A. aRa   

(“Every element is related to itself.”)   



  

Reflexivity Visualized

∀a ∈ A. aRa
(“Every element is related to itself.”)



  

∀a ∈ A. aRa
(“Every element is related to itself.”)

Let R be the
 relation drawn
 to the left. Is R

 reflexive?

Let R be the
 relation drawn
 to the left. Is R

 reflexive?



  

∀a ∈ A. aRa
(“Every element is related to itself.”)



  

∀a ∈ A. aRa
(“Every element is related to itself.”)
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∀a ∈ A. aRa
(“Every element is related to itself.”)

a



  

∀a ∈ A. aRa
(“Every element is related to itself.”)

a

This means that R is 
not reflexive, since 
the first-order logic 

statement given 
below is not true.

This means that R is 
not reflexive, since 
the first-order logic 

statement given 
below is not true.



  

Is           reflexive?Is           reflexive?

∀a ∈ A. aRa
(“Every element is related to itself.”)



  

Is           reflexive?Is           reflexive?

∀a ∈ ??. a      a



  

Is           reflexive?Is           reflexive?

∀a ∈ ??. a      a

Reflexivity is a property 
of relations, not 

individual objects.

Reflexivity is a property 
of relations, not 

individual objects.
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Symmetry

● In some relations, the relative order of the objects 
doesn't matter.

● Examples:
● If x = y, then y = x.
● If x ≡ₖ y, then y ≡ₖ x.

● These relations are called symmetric.
● Formally: a binary relation R over a set A is called 

symmetric if the following first-order statement is true 
about R:

∀a ∈ A. ∀b ∈ A. (aRb → bRa)  

(“If a is related to b, then b is related to a.”)



  

Symmetry Visualized

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)



  

Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)
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Transitivity

● Many relations can be chained together.
● Examples:

● If x = y and y = z, then x = z.
● If R ⊆ S and S ⊆ T, then R ⊆ T.
● If x ≡ₖ y and y ≡ₖ z, then x ≡ₖ z.

● These relations are called transitive.
● A binary relation R over a set A is called transitive if the 

following first-order statement is true about R:

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

(“Whenever a is related to b and b is
related to c, we know a is related to c.)



  

Transitivity Visualized

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)



  

Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)



  

Is This Relation Transitive?
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Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)
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Equivalence Relations

● An equivalence relation is a relation 
that is reflexive, symmetric and 
transitive.

● Some examples:
● x = y
● x ≡ₖ y
● x has the same color as y
● x has the same shape as y.



  

Binary relations give us a common 
language to describe common 

structures.



  

Equivalence Relations

● Most modern programming languages include some 
sort of hash table data structure.
● Java: HashMap
● C++: std::unordered_map
● Python: dict

● If you insert a key/value pair and then try to look up a 
key, the implementation has to be able to tell whether 
two keys are equal.

● Although each language has a different mechanism for 
specifying this, many languages describe them in 
similar ways...



  

Equivalence Relations

“The equals method implements an equivalence 
relation on non-null object references:
● It is reflexive: for any non-null reference value x, 
x.equals(x) should return true.

● It is symmetric: for any non-null reference values x and 
y, x.equals(y) should return true if and only if 
y.equals(x) returns true.

● It is transitive: for any non-null reference values x, y, 
and z, if x.equals(y) returns true and y.equals(z) returns 
true, then x.equals(z) should return true.”

Java 8 Documentation



  

Equivalence Relations

“The equals method implements an equivalence 
relation on non-null object references:
● It is reflexive: for any non-null reference value x, 
x.equals(x) should return true.

● It is symmetric: for any non-null reference values x and 
y, x.equals(y) should return true if and only if 
y.equals(x) returns true.

● It is transitive: for any non-null reference values x, y, 
and z, if x.equals(y) returns true and y.equals(z) returns 
true, then x.equals(z) should return true.”

Java 8 Documentation



  

Equivalence Relations

“Each unordered associative container is 
parameterized by Key, by a function object type 
Hash that meets the Hash requirements 
(17.6.3.4) and acts as a hash function for 
argument values of type Key, and by a binary 
predicate Pred that induces an equivalence 
relation on values of type Key. Additionally, 
unordered_map and unordered_multimap associate 
an arbitrary mapped type T with the Key.”

C++14 ISO Spec, §23.2.5/3



  

Equivalence Relations

“Each unordered associative container is 
parameterized by Key, by a function object type 
Hash that meets the Hash requirements 
(17.6.3.4) and acts as a hash function for 
argument values of type Key, and by a binary 
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C++14 ISO Spec, §23.2.5/3



  

Time-Out for Announcements!



  

Girls Teaching Girls to Code Exec Team
Applications are open now!

Want to inspire the next generation of women in tech?
Passionate about CS education and outreach?

Join the Executive Team of Girls Teaching Girls to Code!

Girls Teaching Girls to Code is a program for Stanford students to teach high school girls 
from around the Bay Area to code. Students learn programming basics, build exciting 

projects, and develop strong relationships with mentors in the field.

We are currently accepting applicants from all majors who are interested in building our 
corporate relations, coordinating logistics for our events, creating and reviewing curricula, 

or supporting outreach efforts in the community.

This year, we brought together over 200 high school girls and 60 Stanford mentors for a 
day-long programming experience. Aside from our main event, we also hosted smaller 
events throughout the year. We received overwhelmingly positive feedback, and we're 

looking for team leads help us grow GTGTC even more!

Learn more about us at http://www.girlsteachinggirlstocode.org/, and apply at 
https://bit.ly/2y3CkTb by Friday, October 12, 2018 at 11:59 pm!

https://bit.ly/2y3CkTb
http://www.girlsteachinggirlstocode.org/
https://bit.ly/2y3CkTb


  

Problem Set One Solutions

● We’ve just released solutions to Problem Set 
One, both in hardcopy and online.

● You need to read over these solutions as 
soon as possible.

● Why?
● Each question is there for a reason. We’ve described 

what it is that we hoped you would have learned 
when solving those problems.

● There are lots of different ways of solving these 
problems. Comparing what you did against our 
solutions, which are just one possible set of solutions, 
can help introduce new techniques.



  

Problem Set Two

● The Problem Set Two checkpoint was 
due today at 2:30PM.

● The remaining problems are due Friday 
at 2:30PM.

● Have questions?
● Stop by office hours!
● Ask on Piazza!



  

Your Questions



  

“I’m considering an independent 
contractor job. The contract is confusing- I 
don’t want to get “screwed,” per se. Where 

can I get legal advice as an undergrad?”

You can get free legal advice from the ASSU (check this link for more 
details.)
 

I’d like to hear more about why you’re considering this job. If you 
need the money and they’re offering to pay well, or if it’s for a 
project you’re genuinely excited about, great!
 

If you’re trying to improve your coding skills, make sure that you’re 
actually signing up for something where that will happen. You learn best 
when you’re surrounded by other skilled people who know what they’re 
doing. Is that the case here?
 

If you’re doing this to improve your resume – are you sure you need 
to do that? You aren’t expected to have past job experience when 
applying for internships and the like.

You can get free legal advice from the ASSU (check this link for more 
details.)
 

I’d like to hear more about why you’re considering this job. If you 
need the money and they’re offering to pay well, or if it’s for a 
project you’re genuinely excited about, great!
 

If you’re trying to improve your coding skills, make sure that you’re 
actually signing up for something where that will happen. You learn best 
when you’re surrounded by other skilled people who know what they’re 
doing. Is that the case here?
 

If you’re doing this to improve your resume – are you sure you need 
to do that? You aren’t expected to have past job experience when 
applying for internships and the like.

https://associatedstudents.stanford.edu/services/legal-counsel-office
https://associatedstudents.stanford.edu/services/legal-counsel-office


  

“When’s a good time and what’s the best 
way to tell my PSet partner I like them?”

Think of this as akin to asking a coworker out on a date.
 

1. Keep the Categorical Imperative in mind and remember that many
people legitimately do not like being hit on in the workplace. As an
undergrad there is basically no separation between “home” and
”the workplace,” but working on problem sets together is way more
of “the workplace” than “home.”

 

2. Think of the position you are putting the other person in. Your ask
comes with a real risk of disrupting their work schedule. General
advice: give people face-saving, minimally-disruptive ways to say no.

 

3. The more important question is “do you have a reason to believe the
other person enjoys your company?” Because if the answer is no,
then the answer is “never,” since otherwise you’re weird and awkward.

Think of this as akin to asking a coworker out on a date.
 

1. Keep the Categorical Imperative in mind and remember that many
people legitimately do not like being hit on in the workplace. As an
undergrad there is basically no separation between “home” and
”the workplace,” but working on problem sets together is way more
of “the workplace” than “home.”

 

2. Think of the position you are putting the other person in. Your ask
comes with a real risk of disrupting their work schedule. General
advice: give people face-saving, minimally-disruptive ways to say no.

 

3. The more important question is “do you have a reason to believe the
other person enjoys your company?” Because if the answer is no,
then the answer is “never,” since otherwise you’re weird and awkward.



  

Back to CS103!



  

Equivalence Relation Proofs

● Let's suppose you've found a binary 
relation R over a set A and want to prove 
that it's an equivalence relation.

● How exactly would you go about doing 
this?



  

An Example Relation

● Consider the binary relation ~ defined over the set ℤ:

a~b    if    a+b is even
● Some examples:

0~4       1~9       2~6       5~5
● Turns out, this is an equivalence relation! Let's see how to 

prove it.

We can binary relations by giving a rule, like this:
 

a~b      if      some property of a and b holds
 

This is the general template for defining a relation. 
Although we're using “if” rather than “iff” here, the two 
above statements are definitionally equivalent. For a 
variety of reasons, definitions are often introduced with 
“if” rather than “iff.” Check the “Mathematical 
Vocabulary” handout for details.

We can binary relations by giving a rule, like this:
 

a~b      if      some property of a and b holds
 

This is the general template for defining a relation. 
Although we're using “if” rather than “iff” here, the two 
above statements are definitionally equivalent. For a 
variety of reasons, definitions are often introduced with 
“if” rather than “iff.” Check the “Mathematical 
Vocabulary” handout for details.



  

What properties must ~ have to be an 
equivalence relation?

Reflexivity
Symmetry

Transitivity

Let's prove each property independently.



  

a~b   if   a+b is even

Lemma 1: The binary relation ~ is reflexive.

Proof: Consider an arbitrary a ∈ ℤ. We need to
 prove that a~a. From the definition of the ~
 relation, this means that we need to prove that
 a+a is even.

 To see this, notice that a+a = 2a, so the sum a+a
 can be written as 2k for some integer k (namely,
 a), so a+a is even. Therefore, a~a holds, as
 required. ■
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So there is an integer r, namely k+m–b, such that
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First-Order Logic and Proofs

● First-order logic is an excellent tool for giving 
formal definitions to key terms.

● While first-order logic guides the structure of 
proofs, it is exceedingly rare to see first-order 
logic in written proofs.

● Follow the example of these proofs:
● Use the FOL definitions to determine what to assume 

and what to prove.
● Write the proof in plain English using the conventions 

we set up in the first week of the class.
● Please, please, please, please, please 

internalize the contents of this slide!



  

Next Time

● A Fundamental Theorem
● Why are equivalence relations so useful?

● Proofs on Relations
● Proving properties of abstract objects.

● Strict Orders
● Representing rankings and requirements.

● Hasse Diagrams
● How to draw strict orders.
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