

Graph Theory
Part One

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg

Chemical Bonds

http://4.bp.blogspot.com/-xCtBJ8lKHqA/Tjm0BONWBRI/AAAAAAAAAK4/-mHrbAUOHHg/s1600/
Ethanol2.gif

http://www.toothpastefordinner.com/

http://www.prospectmagazine.co.uk/wp-content/uploads/2009/09/163_taylor2.jpg

What's in Common

● Each of these structures consists of
● a collection of objects and
● links between those objects.

● Goal: find a general framework for
describing these objects and their
properties.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes (or
vertices) connected by edges (or arcs)

Some graphs are directed.

CAT SAT RAT

RANMAN

MAT

CAN

Some graphs are undirected.

Going forward, we're primarily going to
focus on undirected graphs.

The term “graph” generally refers to
undirected graphs with a finite number of

nodes, unless specified otherwise.

Formalizing Graphs

● How might we define a graph
mathematically?

● We need to specify
● what the nodes in the graph are, and
● which edges are in the graph.

● The nodes can be pretty much anything.
● What about the edges?

Formalizing Graphs

● An unordered pair is a set {a, b} of two elements
a ≠ b. (Remember that sets are unordered).
● {0, 1} = {1, 0}

● An undirected graph is an ordered pair G = (V, E),
where
● V is a set of nodes, which can be anything, and
● E is a set of edges, which are unordered pairs of nodes

drawn from V.
● A directed graph is an ordered pair G = (V, E),

where
● V is a set of nodes, which can be anything, and
● E is a set of edges, which are ordered pairs of nodes

drawn from V.

● An unordered pair is a set {a, b} of two elements a ≠ b.
● An undirected graph is an ordered pair G = (V, E), where

● V is a set of nodes, which can be anything, and
● E is a set of edges, which are unordered pairs of nodes drawn from V.

● An unordered pair is a set {a, b} of two elements a ≠ b.
● An undirected graph is an ordered pair G = (V, E), where

● V is a set of nodes, which can be anything, and
● E is a set of edges, which are unordered pairs of nodes drawn from V.

How many of these drawings are of valid undirected graphs?How many of these drawings are of valid undirected graphs?

A

C

B

D

A

C

B

D

A

C

B

D

A

C

B

D

ABBBC

Self-Loops

● An edge from a node to itself is called a self-loop.
● In undirected graphs, self-loops are generally not

allowed.
● Can you see how this follows from the definition?

● In directed graphs, self-loops are generally
allowed unless specified otherwise.

✓×

Standard Graph Terminology

CAT SAT RAT

RANMAN

MAT

CAN

Two nodes are called adjacent if there is an edge
between them.

Using our Formalisms

● Let G = (V, E) be a graph.
● Intuitively, two nodes are adjacent if

they're linked by an edge.
● Formally speaking, we say that two

nodes u, v ∈ V are adjacent if {u, v} ∈ E.

 SD Nog

Port

SLC

LA

But

Mon

LV

Bar Flag

Phoe

SF Sac

Sea

From

To
A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the path v₁, …, vₙ
is n – 1.

The length of the path v₁, …, vₙ
is n – 1.

SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, SeaSF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea

(This path has
length 10, but
visits 11 cities.)

(This path has
length 10, but
visits 11 cities.)

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the path v₁, …, vₙ
is n – 1.

The length of the path v₁, …, vₙ
is n – 1.

Flag

SF

SD Nog

Phoe

Sac

Mon

LV

Bar

LA

Port

Sea But A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the path v₁, …, vₙ
is n – 1.

The length of the path v₁, …, vₙ
is n – 1.

SLC

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, SacSac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac

(This cycle has
length nine and

visits nine
different cities.)

(This cycle has
length nine and

visits nine
different cities.)

From/To

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A simple path in a graph is
path that does not repeat any
nodes or edges.

A simple path in a graph is
path that does not repeat any
nodes or edges.

The length of the path v₁, …, vₙ
is n – 1.

The length of the path v₁, …, vₙ
is n – 1.

Port

Sea But

SLC

Mon

LV

SD Nog

SacSF

PhoeLA

FlagBar

SF, Sac, LA, Phoe, Flag, Bar, LASF, Sac, LA, Phoe, Flag, Bar, LA

(A path, not a
simple path.)

(A path, not a
simple path.)

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A simple path in a graph is
path that does not repeat any
nodes or edges.

A simple path in a graph is
path that does not repeat any
nodes or edges.

The length of the path v₁, …, vₙ
is n – 1.

The length of the path v₁, …, vₙ
is n – 1.

Port

Sea But

SLC

Mon

LV

SD Nog

SacSF

PhoeLA

FlagBar

SF, Sac, LA, Phoe, Flag, Bar, LASF, Sac, LA, Phoe, Flag, Bar, LA

(This path has
length six.)

(This path has
length six.)

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A simple path in a graph is
path that does not repeat any
nodes or edges.

A simple path in a graph is
path that does not repeat any
nodes or edges.

The length of the path v₁, …, vₙ
is n – 1.

The length of the path v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A simple cycle in a graph is
cycle that does not repeat any
nodes or edges except the first/
last node.

A simple cycle in a graph is
cycle that does not repeat any
nodes or edges except the first/
last node.Sac, SLC, Port, Sac, SLC, Port, SacSac, SLC, Port, Sac, SLC, Port, Sac

(A cycle, not a
simple cycle.)

(A cycle, not a
simple cycle.)

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A cycle in a graph is a path
from a node back to itself. (By
convention, a cycle cannot
have length zero.)

A simple path in a graph is
path that does not repeat any
nodes or edges.

A simple path in a graph is
path that does not repeat any
nodes or edges.

The length of the path v₁, …, vₙ
is n – 1.

The length of the path v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A simple cycle in a graph is
cycle that does not repeat any
nodes or edges except the first/
last node.

A simple cycle in a graph is
cycle that does not repeat any
nodes or edges except the first/
last node.Sac, SLC, Port, Sac, SLC, Port, SacSac, SLC, Port, Sac, SLC, Port, Sac

(This cycle has
length 6.)

(This cycle has
length 6.)

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port
From

To

Two nodes in a graph are
called connected if there is a
path between them.

Two nodes in a graph are
called connected if there is a
path between them.

(These nodes are
not connected. No
Grand Canyon for

you.)

(These nodes are
not connected. No
Grand Canyon for

you.)

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

Two nodes in a graph are
called connected if there is a
path between them.

Two nodes in a graph are
called connected if there is a
path between them.

A graph G as a whole is called
connected if all pairs of nodes
in G are connected.

A graph G as a whole is called
connected if all pairs of nodes
in G are connected.

(This graph is
not connected.)

(This graph is
not connected.)

Time-Out for Announcements!

Apply to Section Lead!

● Interested in section leading for the CS106
courses? Apply online using this link:

https://cs198.stanford.edu/cs198/Apply.aspx
● Already completed CS106B/X or CS107? Be

sure to apply by tomorrow evening.
● This is an incredible program – many SLs

cite the program as the highlight of their
time here at Stanford.

https://cs198.stanford.edu/cs198/Apply.aspx

Midterm Exam Logistics

● Our first midterm exam is next Monday, October 22nd, from
7:00PM – 10:00PM. Locations are divvied up by last (family)
name:
● A – L: Go to Bishop Auditorium.
● M – Z: Go to Cubberley Auditorium.

● You’re responsible for Lectures 00 – 05 and topics covered in
PS0 – PS2. Later lectures (relations forward) and problem
sets (PS3 onward) won’t be tested here.

● The exam is closed-book, closed-computer, and limited-note.
You can bring a double-sided, 8.5” × 11” sheet of notes with
you to the exam, decorated however you’d like.

● Students with OAE accommodations: you should have heard
back from us with an alternate exam time. If you didn’t hear
back – or that alternate time doesn’t work for you – please
contact us as soon as possible.

Practice Midterm Exam

● We will be holding a practice midterm exam
tonight in 320-105 from 7PM – 10PM.

● You should go to this exam unless you
have a hard conflict. It’s the most
realistic practice you can get.

● Can’t make it? No worries! We’ll post the
exam and solutions up on the course
website.

More Practice

● Want more practice? We’ve posted online
● Extra Practice Problems 1;
● three practice midterms, with solutions; and
● the CS103A materials for the past few

weeks.
● We’ll also post the fourth and final

practice midterm (the one we’re giving
out tonight).

Problem Sets

● PS3 checkpoints have been graded and returned.
Please take some time to review them.

● Great question to ponder: Why isn’t this relation
transitive?

● You should hear back with feedback on PS2 later

this evening.

x y

z

Your Questions

“How will the math we learn in this class
make us stronger computer scientists/be

applicable in the real world beyond
research?”

Math gives you an incredible set of
tools for describing and reasoning

about systems in a way that makes them
easier to understand and, well, better!

Allow me relate a few stories!

Math gives you an incredible set of
tools for describing and reasoning

about systems in a way that makes them
easier to understand and, well, better!

Allow me relate a few stories!

“You motivate us to keep trying, but you
seem to have had a strong background

coming to Stanford. Can you share one of
your challenging moments at Stanford?”

I actually learned how to write proofs and to do math by
taking CS103. I hadn’t done anything like this before
coming here, and it was a ton of work! And I felt

totally outclassed by my classmates. But I put in a lot of
effort, made tons of careless mistakes, learned all sorts
of ways to mess up a proof, and eventually ended up

getting a decent handle on things.

I actually learned how to write proofs and to do math by
taking CS103. I hadn’t done anything like this before
coming here, and it was a ton of work! And I felt

totally outclassed by my classmates. But I put in a lot of
effort, made tons of careless mistakes, learned all sorts
of ways to mess up a proof, and eventually ended up

getting a decent handle on things.

Back to CS103!

Connected Components

★

Connected Components

● Let G = (V, E) be a graph. For each v ∈ V, the
connected component containing v is the set

[v] = { x ∈ V | v is connected to x }
● Intuitively, a connected component is a “piece”

of a graph in the sense we just talked about.
● Question: How do we know that this

particular definition of a “piece” of a graph is a
good one?

● Goal: Prove that any graph can be broken
apart into different connected components.

We’re trying to reason about some way of
partitioning the nodes in a graph into

different groups.

What structure have we studied that
captures the idea of a partition?

Connectivity

● Claim: For any graph G, the “is
connected to” relation is an equivalence
relation.
● Is it reflexive?
● Is it symmetric?
● Is it transitive?

Connectivity

Claim: For any graph G, the “is
connected to” relation is an equivalence
relation.
● Is it reflexive?

Is it symmetric?

Is it transitive?

∀v ∈ V. Conn(v, v)∀v ∈ V. Conn(v, v)

vA path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Connectivity

Claim: For any graph G, the “is
connected to” relation is an equivalence
relation.

Is it reflexive?
● Is it symmetric?

Is it transitive?

∀x ∈ V. ∀y ∈ V. (Conn(x, y) → Conn(y, x))∀x ∈ V. ∀y ∈ V. (Conn(x, y) → Conn(y, x))

yx

Connectivity

Claim: For any graph G, the “is
connected to” relation is an equivalence
relation.

Is it reflexive?

Is it symmetric?
● Is it transitive?

∀x ∈ V. ∀y ∈ V. ∀z ∈ V. (Conn(x, y) ∧ Conn(y, z) → Conn(x, z))∀x ∈ V. ∀y ∈ V. ∀z ∈ V. (Conn(x, y) ∧ Conn(y, z) → Conn(x, z))

x

y

z

Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then
the singleton path v is a path from v to itself. Therefore, v is
connected to itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V
where x is connected to y. We need to show that y is connected
to x. Since x is connected to y, there is some path x, v₁, …, vₙ, y
from x to y. Then y, vₙ, …, v₁, x is a path from y back to x, so y is
connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be
arbitrary nodes where x is connected to y and y is connected to
z. We will prove that x is connected to z. Since x is connected to
y, there is a path x, u₁, …, uₙ, y from x to y. Since y is connected
to z, there is a path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected
to z, as required. ■

Putting Things Together

● Earlier, we defined the connected component of
a node v to be

[v] = { x ∈ V | v is connected to x }
● Connectivity is an equivalence relation! So

what’s the equivalence class of a node v with
respect to connectivity?

[v]conn = { x ∈ V | v is connected to x }

● Connected components are equivalence
classes of the connectivity relation!

Theorem: If G = (V, E) is a graph, then every node in G
belongs to exactly one connected component of G.

Proof: Let G = (V, E) be an arbitrary graph and let v ∈ V be
any node in G. The connected components of G are just
the equivalence classes of the connectivity relation in G.
The Fundamental Theorem of Equivalence Relations
guarantees that v belongs to exactly one equivalence
class of the connectivity relation. Therefore, v belongs to
exactly one connected component in G. ■

Planar Graphs

A graph is called a planar graph if there is
some way to draw it in a 2D plane without

any of the edges crossing.

21

4 3

A graph is called a planar graph if there is
some way to draw it in a 2D plane without

any of the edges crossing.

2

1

4 3

A graph is called a planar graph if there is
some way to draw it in a 2D plane without

any of the edges crossing.

This graph is called the utility
graph. There is no way to draw

it in the plane without edges
crossing. Check out this video

for an explanation!

This graph is called the utility
graph. There is no way to draw

it in the plane without edges
crossing. Check out this video

for an explanation!

https://youtu.be/VvCytJvd4H0
https://youtu.be/VvCytJvd4H0

A fun game by a former CS103er:
http://www.nkhem.com/planarity-knot/

http://www.nkhem.com/planarity-knot/

● Intuitively, a k-vertex-coloring of a graph G = (V, E) is a
way to color each node in V one of k different colors such
that no two adjacent nodes in V are the same color.

● A k-vertex-coloring of a graph G = (V, E) is a function

f : V → {1, 2, …, k}

such that

∀u ∈ V. ∀v ∈ V. ({u, v} ∈ E → f(u) ≠ f(v))

A graph G is called k-colorable if a k-coloring exists of G.

The smallest k for which G is k-colorable is its chromatic
number.

The chromatic number of a graph G is denoted χ(G), from the
Greek χρώμα, meaning “color.”

Graph Coloring

1

3

2

4 3

1

● Intuitively, a k-vertex-coloring of a graph G = (V, E) is a
way to color each node in V one of k different colors such
that no two adjacent nodes in V are the same color.

● A k-vertex-coloring of a graph G = (V, E) is a function

f : V → {1, 2, …, k}

such that

∀u ∈ V. ∀v ∈ V. ({u, v} ∈ E → f(u) ≠ f(v))

A graph G is called k-colorable if a k-coloring exists of G.

The smallest k for which G is k-colorable is its chromatic
number.

The chromatic number of a graph G is denoted χ(G), from the
Greek χρώμα, meaning “color.”

Graph Coloring

Although this is the formal definition of a
k-vertex-coloring, you rarely see it used in
proofs. It's more common to just talk about

assigning colors to nodes. However, this
definition is super useful if you want to write
programs to reason about graph colorings!

Although this is the formal definition of a
k-vertex-coloring, you rarely see it used in
proofs. It's more common to just talk about

assigning colors to nodes. However, this
definition is super useful if you want to write
programs to reason about graph colorings!

● Intuitively, a k-vertex-coloring of a graph G = (V, E) is a
way to color each node in V one of k different colors such
that no two adjacent nodes in V are the same color.

● A k-vertex-coloring of a graph G = (V, E) is a function

f : V → {1, 2, …, k}

such that

∀u ∈ V. ∀v ∈ V. ({u, v} ∈ E → f(u) ≠ f(v))
● A graph G is k-colorable if a k-vertex coloring of G exists.
● The smallest k for which G is k-colorable is its chromatic

number.
● The chromatic number of a graph G is denoted χ(G), from the

Greek χρώμα, meaning “color.”

Graph Coloring

Graph Coloring

Graph Coloring

Theorem (Four-Color Theorem): Every
planar graph is 4-colorable.

● 1850s: Four-Color Conjecture posed.

● 1879: Kempe proves the Four-Color Theorem.

● 1890: Heawood finds a flaw in Kempe's proof.

● 1976: Appel and Haken design a computer program that
proves the Four-Color Theorem. The program checked 1,936
specific cases that are “minimal counterexamples;” any
counterexample to the theorem must contain one of the
1,936 specific cases.

● 1980s: Doubts rise about the validity of the proof due to
errors in the software.

● 1989: Appel and Haken revise their proof and show it is
indeed correct. They publish a book including a 400-page
appendix of all the cases to check.

● 1996: Roberts, Sanders, Seymour, and Thomas reduce the
number of cases to check down to 633.

● 2005: Werner and Gonthier repeat the proof using an
established automatic theorem prover (Coq), improving
confidence in the truth of the theorem.

Philosophical Question: Is a theorem
true if no human has ever read the proof?

A Fantastic Video on a Cool Theorem:
https://youtu.be/-9OUyo8NFZg

https://youtu.be/-9OUyo8NFZg

Next Time

● The Pigeonhole Principle
● A simple, powerful, versatile theorem.

● Graph Theory Party Tricks
● Applying math to graphs of people!

