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Recap from Last Time



  

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes (or 
vertices) connected by edges (or arcs)
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Adjacency and Connectivity

● Two nodes in a graph are called 
adjacent if there's an edge between 
them.

● Two nodes in a graph are called 
connected if there's a path between 
them.
● A path is a series of one or more nodes 

where consecutive nodes are adjacent.



  

k-Vertex-Colorings

● If G = (V, E) is a graph, a k-vertex-coloring of G is a way 
of assigning colors to the nodes of G, using at most k 
colors, so that no two nodes of the same color are adjacent.

● The chromatic number of G, denoted χ(G), is the 
minimum number of colors needed in any k-coloring of G.

● Today, we’re going to see several results involving coloring 
parts of graphs. They don’t necessarily involve
k-vertex-colorings of graphs, so feel free to ask for 
clarifications if you need them!



  

New Stuff!



  

The Pigeonhole Principle



  

The Pigeonhole Principle

● Theorem (The Pigeonhole Principle): 
If m objects are distributed into n bins 
and m > n, then at least one bin will 
contain at least two objects.
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The Pigeonhole Principle

● Theorem (The Pigeonhole Principle): 
If m objects are distributed into n bins 
and m > n, then at least one bin will 
contain at least two objects.



  

m = 4, n = 3

Thanks to Amy Liu for this awesome drawing!



  

Some Simple Applications
● Any group of 367 people must have a pair of 

people that share a birthday.
● 366 possible birthdays (pigeonholes)
● 367 people (pigeons)

● Two people in San Francisco have the exact 
same number of hairs on their head.
● Maximum number of hairs ever found on a 

human head is no greater than 500,000.
● There are over 800,000 people in San Francisco.



  

Theorem (The Pigeonhole Principle): If m 
objects are distributed into n bins and m > n, then at 

least one bin will contain at least two objects.

Theorem (The Pigeonhole Principle): If m 
objects are distributed into n bins and m > n, then at 

least one bin will contain at least two objects.

Let A and B be finite sets (sets whose cardinalities are natural
numbers) and assume |A| > |B|. How many of the following

statements are true?

(1) If f : A → B, then f is injective.
(2) If f : A → B, then f is not injective.
(3) If f : A → B, then f is surjective.
(4) If f : A → B, then f is not surjective.



  

Proving the Pigeonhole Principle



  

Theorem: If m objects are distributed into n bins and m > n,
then there must be some bin that contains at least two objects.

Proof: Suppose for the sake of contradiction that, for some m and
n where m > n, there is a way to distribute m objects into n
bins such that each bin contains at most one object.

Number the bins 1, 2, 3, …, n and let xᵢ denote the number of 
objects in bin i. There are m objects in total, so we know that

  m = x₁ + x₂ + … + xₙ.

Since each bin has at most one object in it, we know xᵢ ≤ 1 for 
each i. This means that

  m = x₁ + x₂ + … + xₙ
≤ 1  +  1 + … + 1   (n times)
= n.

This means that m ≤ n, contradicting that m > n. We’ve 
reached a contradiction, so our assumption must have been 
wrong. Therefore, if m objects are distributed into n bins with 
m > n, some bin must contain at least two objects. ■



  

Pigeonhole Principle Party Tricks



  



  



  



  

Degrees

● The degree of a node v in a graph is the 
number of nodes that v is adjacent to.

 

● Theorem: Every graph with at least two 
nodes has at least two nodes with the same 
degree.
● Equivalently: at any party with at least two 

people, there are at least two people with the 
same number of friends at the party.
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Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 1: Let G be a graph with n ≥ 2 nodes. There are n
possible choices for the degrees of nodes in G, namely,
0, 1, 2, …, and n – 1.

We claim that G cannot simultaneously have a node u of 
degree 0 and a node v of degree n – 1: if there were such 
nodes, then node u would be adjacent to no other nodes 
and node v would be adjacent to all other nodes, 
including u. (Note that u and v must be different nodes, 
since v has degree at least 1 and u has degree 0.)

We therefore see that the possible options for degrees of 
nodes in G are either drawn from 0, 1, …, n – 2 or from
1, 2, …, n – 1. In either case, there are n nodes and n – 1 
possible degrees, so by the pigeonhole principle two 
nodes in G must have the same degree. ■
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Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 2: Assume for the sake of contradiction that there
is a graph G with n ≥ 2 nodes where no two nodes
have the same degree. There are n possible choices
for the degrees of nodes in G, namely 0, 1, 2, …, n – 1,
so this means that G must have exactly one node of
each degree. However, this means that G has a node
of degree 0 and a node of degree n – 1. (These can't
be the same node, since n ≥ 2.) This first node is
adjacent to no other nodes, but this second node is
adjacent to every other node, which is impossible.

We have reached a contradiction, so our assumption 
must have been wrong. Thus if G is a graph with at 
least two nodes, G must have at least two nodes of the 
same degree. ■



  

The Generalized Pigeonhole Principle
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A More General Version
● The generalized pigeonhole principle says 

that if you distribute m objects into n bins, then
● some bin will have at least ⌈m/ₙ⌉ objects in it, and
● some bin will have at most ⌊m/ₙ⌋ objects in it.

⌈m/ₙ⌉ means “m/ₙ, rounded up.”
⌊m/ₙ⌋ means “m/ₙ, rounded down.”

⌈m/ₙ⌉ means “m/ₙ, rounded up.”
⌊m/ₙ⌋ means “m/ₙ, rounded down.”

  m = 11
   n = 5

⌈m / n⌉ = 3
⌊m / n⌋ = 2
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m = 8, n = 3

Thanks to Amy Liu for this awesome drawing!



  

Theorem: If m objects are distributed into n > 0 bins, then some
bin will contain at least ⌈m/ₙ⌉ objects.

Proof: We will prove that if m objects are distributed into n bins, then
some bin contains at least m/ₙ objects. Since the number of objects in
each bin is an integer, this will prove that some bin must contain at
least ⌈m/ₙ⌉ objects.

To do this, we proceed by contradiction. Suppose that, for some m 
and n, there is a way to distribute m objects into n bins such that 
each bin contains fewer than m/ₙ objects.

Number the bins 1, 2, 3, …, n and let xᵢ denote the number of objects 
in bin i. Since there are m objects in total, we know that

  m = x₁  +  x₂  + … + xₙ.

Since each bin contains fewer than m/ₙ objects, we see that
xᵢ < m/ₙ for each i. Therefore, we have that

  m = x₁  +  x₂  + … + xₙ
< m/ₙ + m/ₙ  + … + m/ₙ  (n times)
= m.

But this means that m < m, which is impossible. We have reached a 
contradiction, so our initial assumption must have been wrong. 
Therefore, if m objects are distributed into n bins, some bin must 
contain at least ⌈m/ₙ⌉ objects. ■



  

An Application: Friends and Strangers



  

Friends and Strangers

● Suppose you have a party of six people. 
Each pair of people are either friends 
(they know each other) or strangers (they 
do not).

● Theorem: Any such party must have a 
group of three mutual friends (three 
people who all know one another) or three 
mutual strangers (three people, none of 
whom know any of the others).



  



  



  



  



  



  



  

This graph is called 
a 6-clique, by the 

way.
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Friends and Strangers Restated

● From a graph-theoretic perspective, the 
Theorem on Friends and Strangers can 
be restated as follows:

Theorem: Any 6-clique whose edges are 
colored red and blue contains a red 
triangle or a blue triangle (or both).

● How can we prove this?



  



  



  



  



  



  



  

Observation 1: If 
we pick any node in 
the graph, that node 

will have at least 
⌈5/2⌉ = 3 edges of 

the same color 
incident to it.
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Theorem: Consider a 6-clique in which every edge is colored
either red or blue. Then there must be a triangle of red
edges, a triangle of blue edges, or both.

Proof: Color the edges of the 6-clique either red or blue
arbitrarily. Let x be any node in the 6-clique. It is incident
to five edges and there are two possible colors for those
edges. Therefore, by the generalized pigeonhole principle,
at least ⌈⁵/₂⌉ = 3 of those edges must be the same color.
Call that color c₁ and let the other color be c₂.

Let r, s, and t be three of the nodes adjacent to node x 
along an edge of color c₁. If any of the edges {r, s}, {r, t}, 
or {s, t} are of color c₁, then one of those edges plus the 
two edges connecting back to node x form a triangle of 
color c₁. Otherwise, all three of those edges are of color 
c₂, and they form a triangle of color c₂. Overall, this gives 
a red triangle or a blue triangle, as required. ■



  

Ramsey Theory

● The proof we did is a special case of a broader 
result.

● Theorem (Ramsey’s Theorem): For any natural 
number n, there is a smallest natural number 
R(n) such that if the edges of an R(n)-clique are 
colored red or blue, the resulting graph will 
contain either a red n-clique or a blue n-clique.
● Our proof was that R(3) ≤ 6.

● A more philosophical take on this theorem: true 
disorder is impossible at a large scale, since no 
matter how you organize things, you’re 
guaranteed to find some interesting substructure.



  

Time-Out for Announcements!
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Midterm Exam Logistics

● Our first midterm exam is next Monday, October 
22nd, from 7:00PM – 10:00PM. Locations are 
divvied up by last (family) name:
● A – L: Go to Bishop Auditorium.
● M – Z: Go to Cubberley Auditorium.

● You’re responsible for Lectures 00 – 05 and topics 
covered in PS0 – PS2. Later lectures (relations 
forward) and problem sets (PS3 onward) won’t be 
tested here.

● The exam is closed-book, closed-computer, and 
limited-note. You can bring a double-sided, 
8.5” × 11” sheet of notes with you to the exam, 
decorated however you’d like.



  

More Practice

● Want more practice? We’ve posted online
● Extra Practice Problems 1;
● four practice midterms, with solutions; and
● the CS103A materials for the past few 

weeks.
● Please feel free to ask questions on 

Piazza over the weekend – we’re happy 
to help out!



  

Problem Sets

● Problem Set Three was due today at 
2:30PM.
● You can use late days to extend that to 

Sunday at 2:30PM if you’d like.
● Problem Set Four goes out today.

● There is no checkpoint. The remaining 
problems are due on Friday at 2:30PM.

● Play around with the finite, the infinite, and 
everything in between!



  

Your Questions



  

“I genuinely like CS, but I’ve struggled 
with/not enjoyed all the CS courses I’ve 

taken. Can CS really be for me even though 
I struggle with it every quarter?”

It’s perfectly normal to struggle with this material – it’s 
legitimately tricky! We’re asking a lot from you, but 

that’s because we know that you can do it.
 

I’d like to dig deeper as to what it is about CS that you 
like and why that isn’t matching your experiences with 
classes here. There are lots of reasons to enjoy this 

material and lots of ways classes can be un-fun. How to 
interpret those signals will depend on what the underlying 
issue is. Feel free to come talk to me in office hours!
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Back to CS103!



  

A Little Math Puzzle



  

  “In a group of n > 0 people …
 

    · 90% of those people enjoyed Get Out,
  · 80% of those people enjoyed Lady Bird,
  · 70% of those people enjoyed Arrival, and
  · 60% of those people enjoyed Zootopia.

 

  No one enjoyed all four movies. How many people 
  enjoyed at least one of Get Out and Arrival?”

  “In a group of n > 0 people …
 

    · 90% of those people enjoyed Get Out,
  · 80% of those people enjoyed Lady Bird,
  · 70% of those people enjoyed Arrival, and
  · 60% of those people enjoyed Zootopia.

 

  No one enjoyed all four movies. How many people 
  enjoyed at least one of Get Out and Arrival?”

(Adapted from here.)

https://math.stackexchange.com/questions/2874859/drinking-habits-riddle-the-village-is-90807060-300-saturat


  

Other Pigeonhole-Type Results



  

If m objects are distributed into n 
boxes, then [condition] holds.
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Theorem: If m objects are distributed into 
n bins, then there is a bin containing more 
than ᵐ/ₙ objects if and only if there is a bin 

containing fewer than ᵐ/ₙ objects.



  

Lemma: If m objects are distributed into n bins and there are no bins
containing more than ᵐ/ₙ objects, then there are no bins containing
fewer than ᵐ/ₙ objects.
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    <  ᵐ/ₙ + x₂ + x₃ + … + xₙ

 ≤  ᵐ/ₙ + ᵐ/ₙ + ᵐ/ₙ + … + ᵐ/ₙ.

This third step follows because each remaining bin has at most ᵐ/ₙ 
objects. Grouping the n copies of the ᵐ/ₙ term here tells us that

          m <  ᵐ/ₙ + ᵐ/ₙ + ᵐ/ₙ + … + ᵐ/ₙ

        =  m.

But this means m < m, which is impossible. We’ve reached a 
contradiction, so our assumption was wrong, so if m objects are 
distributed into n bins and no bin has more than ᵐ/ₙ objects, no bin has 
fewer than ᵐ/ₙ objects either. ■
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Theorem: In the scenario described here, all n people enjoyed at least
one of Get Out and Arrival.

Proof: Suppose there is a group of n people meeting these criteria. We 
can model this problem by representing each person as a bin and
each time a person enjoys a movie as a ball. The number of balls is

.9n + .8n + .7n + .6n = 3n,

and since there are n people, there are n bins. Since no person liked 
all four movies, no bin contains more than 3 = ³ⁿ/ₙ balls, so by our 
earlier theorem we see that no bin contains fewer than three balls. 
Therefore, each bin contains exactly three balls.

Now suppose for the sake of contradiction that someone didn’t enjoy 
Get Out and didn’t enjoy Arrival. This means they could enjoy at most 
two of the four movies, contradicting that each person enjoys exactly 
three.

We’ve reached a
contradiction, so our
assumption was
wrong and each
person enjoyed at
least one of Get Out
and Arrival. ■
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Going Further

● The pigeonhole principle can be used to prove a ton of 
amazing theorems. Here’s a sampler:
● There is always a way to fairly split rent among multiple people, 

even if different people want different rooms. (Sperner’s lemma)
● You and a friend can climb any mountain from two different 

starting points so that the two of you maintain the same altitude 
at each point in time. (Mountain-climbing theorem)

● If you model coffee in a cup as a collection of infinitely many 
points and then stir the coffee, some point is always where it 
initially started. (Brower’s fixed-point theorem)

● A complex process that doesn’t parallelize well must contain a 
large serial subprocess. (Mirksy’s theorem)

● Any positive integer n has a nonzero multiple that can be written 
purely using the digits 1 and 0. (Doesn’t have a name, but still 
cool!)



  

Next Time

● No class on Monday – you have a 
midterm!

● Then, when we get back:
● Mathematical Induction

– Reasoning about stepwise processes!
● Applications of Induction

– To numbers!
– To anticounterfeiting!
– To puzzles!
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