

Finite Automata
Part One

Computability Theory

What problems can we solve with a computer?

What problems can we solve with a computer?

What kind of
computer?

Computers are Messy

http://www.intel.com/design/intarch/prodbref/272713.htm

Computers are Messy

http://www.dharmanitech.com/

Computers are Messy

http://techon.nikkeibp.co.jp/article/HONSHI/20090119/164259/

Computers are Messy

http://en.wikipedia.org/wiki/File:Eniac.jpg

Computers are Messy

That messiness makes it hard to rigorously
say what we intuitively know to be true:

that, on some fundamental level, different
brands of computers or programming

languages are more or less equivalent in
what they are capable of doing.

C vs C++
 vs Java
 vs Python

We need a simpler way of
discussing computing machines.

An automaton (plural: automata) is a
mathematical model of a computing device.

Computers are Messy

http://www.intel.com/design/intarch/prodbref/272713.htm

Automata are Clean

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

Computers are Messy

http://www.dharmanitech.com/

Automata are Clean

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

Computers are Messy

http://techon.nikkeibp.co.jp/article/HONSHI/20090119/164259/

Automata are Clean

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

Computers are Messy

http://en.wikipedia.org/wiki/File:Eniac.jpg

Automata are Clean

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

Why Build Models?

● Mathematical simplicity.
● It is significantly easier to manipulate our

abstract models of computers than it is to
manipulate actual computers.

● Intellectual robustness.
● If we pick our models correctly, we can make

broad, sweeping claims about huge classes of
real computers by arguing that they're just
special cases of our more general models.

Why Build Models?

● The models of computation we will explore in
this class correspond to different conceptions of
what a computer could do.

● Finite automata (next two weeks) are an
abstraction of computers with finite resource
constraints.
● Provide upper bounds for the computing machines

that we can actually build.
● Turing machines (later) are an abstraction of

computers with unbounded resources.
● Provide upper bounds for what we could ever hope to

accomplish.

What problems can we solve with a computer?

What problems can we solve with a computer?

What is a
“problem?”

Problems with Problems

● Before we can talk about what problems
we can solve, we need a formal definition
of a “problem.”

● We want a definition that
● corresponds to the problems we want to solve,
● captures a large class of problems, and
● is mathematically simple to reason about.

● No one definition has all three properties.

Formal Language Theory

Strings

● An alphabet is a finite, nonempty set of symbols
called characters.

● Typically, we use the symbol Σ to refer to an alphabet.

● A string over an alphabet Σ is a finite sequence of
characters drawn from Σ.

● Example: Let Σ = {a, b}. Here are some strings over Σ:

a aabaaabbabaaabaaaabbb abbababba

● The empty string has no characters and is denoted ε.

● Calling attention to an earlier point: since all strings
are finite sequences of characters from Σ, you cannot
have a string of infinite length.

Languages

● A formal language is a set of strings.
● We say that L is a language over Σ if it is a

set of strings over Σ.
● Example: The language of palindromes over

Σ = {a, b, c} is the set
● {ε, a, b, c, aa, bb, cc, aaa, aba, aca, bab, … }

● The set of all strings composed from letters in
Σ is denoted Σ*.

● Formally, we say that L is a language over Σ if
L ⊆ Σ*.

The Cast of Characters

● Languages are sets of strings.
● Strings are finite sequences of characters.
● Characters are individual symbols.
● Alphabets are sets of characters.

Languages

Strings

are sets of

Characters
are finite sequences of

Alphabets

are nonempty, finite sets of

The Model

● Fundamental Question: For what languages L
can you design an automaton that takes as input a
string, then determines whether the string is in L?

● The answer depends on the choice of L, the choice
of automaton, and the definition of “determines.”

● In answering this question, we’ll go through a
whirlwind tour of models of computation and see
how this seemingly abstract question has very real
and powerful consequences.

To Summarize

● An automaton is an idealized
mathematical computing machine.

● A language is a set of strings, a string
is a (finite) sequence of characters, and a
character is an element of an alphabet.

● Goal: Figure out in which cases we can
build automata for particular languages.

What problems can we solve with a computer?

Finite Automata

It’s time for another round of

Mathematicalisthenics!

We will distribute one packet to each row.

When the packet comes to you, follow the
directions to help it on its Magical Journey.

If you are holding a packet an the top sheet
has a giant star on it, please raise your

hand.

★

What’s going on here?

A finite automaton is a simple type of
mathematical machine for determining

whether a string is contained within some
language.

Each finite automaton consists of a set
of states connected by transitions.

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

Each circle
represents a state
of the automaton.

Each circle
represents a state
of the automaton.

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

One special state is
designated as the

start state.

One special state is
designated as the

start state.

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 0

The automaton is
run on an input

string and answers
“yes” or “no.”

The automaton is
run on an input

string and answers
“yes” or “no.”

0 1 0 1 1 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 0

The automaton can
be in one state at a
time. It begins in
the start state.

The automaton can
be in one state at a
time. It begins in
the start state.

0 1 0 1 1 0

q1

q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

The automaton now
begins processing
characters in the

order in which they
appear.

The automaton now
begins processing
characters in the

order in which they
appear.

q1

q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

Each arrow in this
diagram represents a

transition. The
automaton always

follows the transition
corresponding to the
current symbol being

read.

Each arrow in this
diagram represents a

transition. The
automaton always

follows the transition
corresponding to the
current symbol being

read.

q1

q3

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 0

After transitioning,
the automaton

considers the next
symbol in the

input.

After transitioning,
the automaton

considers the next
symbol in the

input.

0 1 0 1 1 0

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

q1

q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

0 1 0 1 1 00 1 0 1 1 0

q1

q3

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

0 1 0 1 1 00 1 0 1 1 0

q1

q3

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

0 1 0 1 1 00 1 0 1 1 0

q1

q3

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

0 1 0 1 1 00 1 0 1 1 0

Now that the
automaton has

looked at all this
input, it can decide
whether to say “yes”

or “no.”

Now that the
automaton has

looked at all this
input, it can decide
whether to say “yes”

or “no.”

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

0 1 0 1 1 0

Now that the
automaton has

looked at all this
input, it can decide
whether to say “yes”

or “no.”

Now that the
automaton has

looked at all this
input, it can decide
whether to say “yes”

or “no.”

The double circle
indicates that this

state is an
accepting state,
so the automaton
outputs “yes.”

The double circle
indicates that this

state is an
accepting state,
so the automaton
outputs “yes.”

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

0 1 0 1 1 0

Now that the
automaton has

looked at all this
input, it can decide
whether to say “yes”

or “no.”

Now that the
automaton has

looked at all this
input, it can decide
whether to say “yes”

or “no.”

The double circle
indicates that this

state is an
accepting state,
so the automaton
outputs “yes.”

The double circle
indicates that this

state is an
accepting state,
so the automaton
outputs “yes.”

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

0 1 0 1 1 0

Now that the
automaton has

looked at all this
input, it can decide
whether to say “yes”

or “no.”

Now that the
automaton has

looked at all this
input, it can decide
whether to say “yes”

or “no.”

The double circle
indicates that this

state is an
accepting state,
so the automaton
outputs “yes.”

The double circle
indicates that this

state is an
accepting state,
so the automaton
outputs “yes.”

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q1

q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q1

q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q1

q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q1

q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

1 0 1 0 0 0

q1

q3

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

1 0 1 0 0 0

q1

q3

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

1 0 1 0 0 0

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

1 0 1 0 0 0

q1

q3

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

q1

q3 q2

1

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

0

1 1

0

start

q2

1 0 1 0 0 0

This state is not
an accepting state
(it’s a rejecting
state), so the
automaton says

“no.”

This state is not
an accepting state
(it’s a rejecting
state), so the
automaton says

“no.”

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

This state is not
an accepting state
(it’s a rejecting
state), so the
automaton says

“no.”

This state is not
an accepting state
(it’s a rejecting
state), so the
automaton says

“no.”

q1

q3 q2

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

This state is not
an accepting state
(it’s a rejecting
state), so the
automaton says

“no.”

This state is not
an accepting state
(it’s a rejecting
state), so the
automaton says

“no.” q3

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

q1

q3 q2

A Simple Finite Automaton

q0 q1

q3

0

 1

0

1

0

1 1

0

start

q2

1 1 0 1 1 1 0 0

Try it yourself!
Does this automaton
accept or reject

this string?

Try it yourself!
Does this automaton
accept or reject

this string?

The Story So Far

● A finite automaton is a collection of states joined
by transitions.

● Some state is designated as the start state.

● Some number of states are designated as
accepting states.

● The automaton processes a string by beginning in
the start state and following the indicated
transitions.

● If the automaton ends in an accepting state, it
accepts the input.

● Otherwise, the automaton rejects the input.

Time-Out For Announcements!

Midterm Graded

● We’ve finished grading the midterm exam
and emailed out grades yesterday.

● We’ll be handing back exams right after
lecture today.
● SCPD students – we’ll send the exams back to

the SCPD office later today.
● Please read the solutions handout. It

contains statistics, common mistakes, and
advice for going forward.

How to Improve

● If you aren’t happy with your exam score
and aren’t sure what to do next, check out
Handout #30, “How to Improve in CS103,”
which is up on the course website.

● There is plenty of time available to sharpen
your skills this quarter. You can do this.
We’ve seen people turn things around after
the first midterm. It’s absolutely doable.

More Practice

● If you’re looking for more practice, check
out Extra Practice Problems 2, which
is now up on the course website.

● It’s a collection of 21 problems about
discrete structures, focusing on the
topics from PS3, PS4, and PS5.

● Solutions are also available.

Problem Sets

● Problem Set Four solutions are now available
online and in hardcopy.

● We’ll aim to get PS4 graded and returned
before PS5 comes due, but because of midterm
grading it’ll be a bit later than usual.

● Problem Set Five is due this Friday at 2:30PM.
● As always, ask questions if you have them! Office

hours and Piazza are great places to start.

Your Questions

“For former CS103 students who have
gone on to achieve wild success, what

traits did they exhibit when they were in
your class?”

They knew how to
ask good

questions when
they were stuck.

They knew how to
ask good

questions when
they were stuck.

“Your most embarrassing moment ever?”

The two or three times I
showed up with inappropriate
footwear. Why does everyone

point this out?

The two or three times I
showed up with inappropriate
footwear. Why does everyone

point this out?

Back to CS103!

Just Passing Through

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

Just Passing Through

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

1 1 0 1

q0

q1

Just Passing Through

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

1 1 0 1

q4
q3

q1

Just Passing Through

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

1 1 0 1

q4
q3

q1

Just Passing Through

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

1 1 0 1

q4
q3

q0

Just Passing Through

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

1 1 0 1

q4
q3

q0

Just Passing Through

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

1 1 0 1

q4
q3q3

q0

q1

Just Passing Through

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

1 1 0 1

q4
q3

q0

q1

Just Passing Through

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

1 1 0 1

q4
q3

q0

q1

Just Passing Through

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

1 1 0 1

q4
q3

q0

q1

Just Passing Through

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

1 1 0 1

q4
q3

q0

Just Passing Through

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

1 1 0 1

q4
q3

q0

Just Passing Through

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

1 1 0 1

q4
q3

q0

Just Passing Through

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

1 1 0 1

q4
q3

q0

A finite automaton does not accept as
soon as it enters an accepting state.

A finite automaton accepts if it ends in
an accepting state.

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

No matter where we
start in the automaton,
after seeing two 1's, we

end up in accepting
state q3.

No matter where we
start in the automaton,
after seeing two 1's, we

end up in accepting
state q3.

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

No matter where we
start in the automaton,
after seeing two 0's,
we end up in accepting

state q4.

No matter where we
start in the automaton,
after seeing two 0's,
we end up in accepting

state q4.

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

What Does This Accept?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

This automaton
accepts a string in

{0, 1}* iff the string
ends in 00 or 11.

This automaton
accepts a string in

{0, 1}* iff the string
ends in 00 or 11.

The language of an automaton is the
set of strings that it accepts.

If D is an automaton that processes
characters from the alphabet Σ, then ℒ(D)

is formally defined as

ℒ(D) = { w ∈ Σ* | D accepts w }

A Small Problem

q0

q1

 0

start

q2 1

0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

Another Small Problem

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

Another Small Problem

q0

q2

0, 1start

0 0 0

q1

 0

 0, 1

0, 1

Another Small Problem

q0

q2

0, 1start

0 0 0

q1

 0

 0, 1

0, 1

Another Small Problem

q0

q2

0, 1start

0 0 0

q1

 0

 0, 1

0, 1

Another Small Problem

q0

q2

0, 1start

0 0 0

q1

 0

 0, 1

0, 1

Another Small Problem

q0

q2

0, 1start

0 0 0

q1

 0

 0, 1

0, 1

Another Small Problem

q0

q2

0, 1start

0 0 0

q1

 0

 0, 1

0, 1

Another Small Problem

q0

q2

0, 1start

0 0 0

q1

 0

 0, 1

0, 1

The Need for Formalism

● In order to reason about the limits of
what finite automata can and cannot do,
we need to formally specify their behavior
in all cases.

● All of the following need to be defined or
disallowed:
● What happens if there is no transition out of

a state on some input?
● What happens if there are multiple

transitions out of a state on some input?

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton
that we will see in this course.

DFAs

● A DFA is defined relative to some
alphabet Σ.

● For each state in the DFA, there must be
exactly one transition defined for each
symbol in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.

Is this a DFA over {0, 1}?

Is this a DFA over {0, 1}?

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

Is this a DFA over {0, 1}?

Is this a DFA over {0, 1}?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

Is this a DFA over {0, 1}?

Is this a DFA over {0, 1}?

q0

q1

 0

start

q2 1

0

Is this a DFA over {0, 1}?

q0

q1

 0

start

q2 1

0

Is this a DFA over {0, 1}?

Is this a DFA over {0, 1}?

q0 q1
0, 1start

q3

 0, 10, 1

q2
0, 1

Is this a DFA over {0, 1}?

Is this a DFA over {0, 1}?

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

Is this a DFA over {0, 1}?

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

Is this a DFA?

Is this a DFA?

Is this a DFA?

Drinking Family of Aardvarks

Designing DFAs

● At each point in its execution, the DFA
can only remember what state it is in.

● DFA Design Tip: Build each state to
correspond to some piece of information
you need to remember.
● Each state acts as a “memento” of what

you're supposed to do next.
● Only finitely many different states means

only finitely many different things the
machine can remember.

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start

a

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1

b

a

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1

b

a a

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1 q2

b b

a a

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1 q2

b b

a a a

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1 q2

b b

a a a

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1 q2

b b

a a a

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1 q2

b b

a a a

b

Each state remembers
the remainder of the
number of bs seen so
far modulo three.

Each state remembers
the remainder of the
number of bs seen so
far modulo three.

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1

a

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1

a

b

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

 a, b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

 a, b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

 Σ

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

 Σ

More Elaborate DFAs
L = { w ∈ {a, *, /}* | w represents a C-style comment }

Let’s have the a symbol be a placeholder for “some character that
isn’t a star or slash.”

Try designing a DFA for comments! Here’s some test cases to help
you check your work:

Let’s have the a symbol be a placeholder for “some character that
isn’t a star or slash.”

Try designing a DFA for comments! Here’s some test cases to help
you check your work:

Accepted:

/*a*/
/**/
/***/

/*aaa*aaa*/
/*a/a*/

Rejected:

/**
/**/a/*aa*/
aaa/**/aa

/*/
/**a/
//aaaa

More Elaborate DFAs
L = { w ∈ {a, *, /}* | w represents a C-style comment }

q1

start
q2

* q3

*

q4
/q0

/

q5

 a, / *
a

a, *

/, a

Σ

Σ

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219

