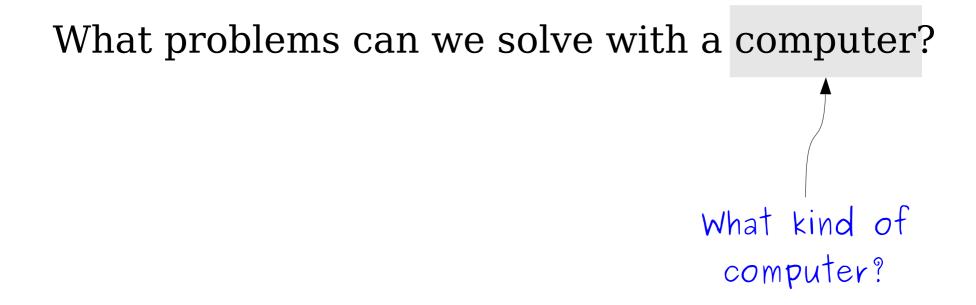
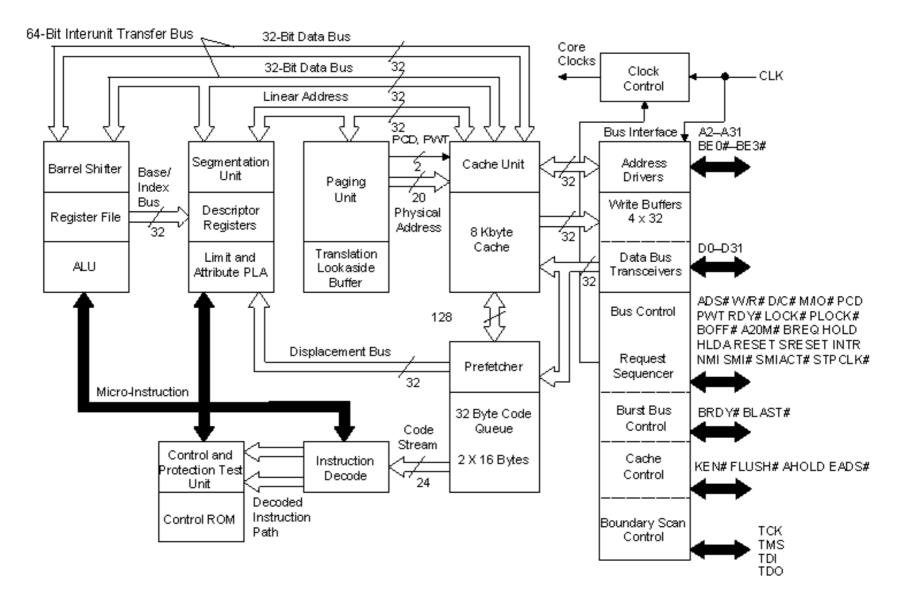
Finite Automata Part One

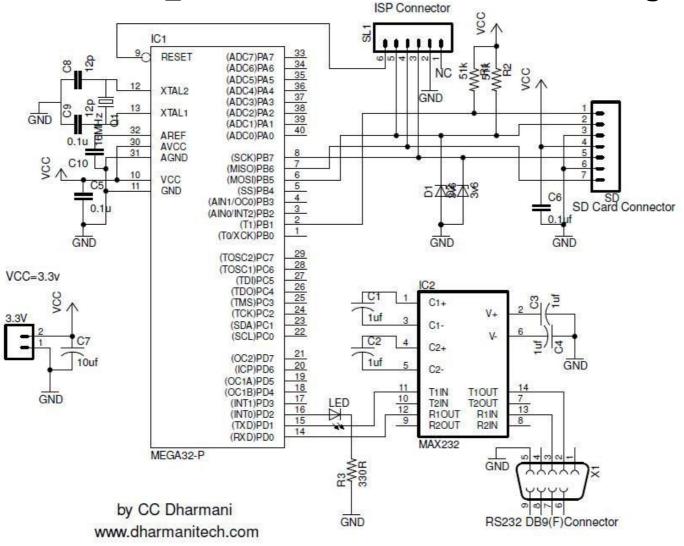
Computability Theory

What problems can we solve with a computer?





http://www.intel.com/design/intarch/prodbref/272713.htm



microSD/SD Card interface with ATmega32 ver_2.3

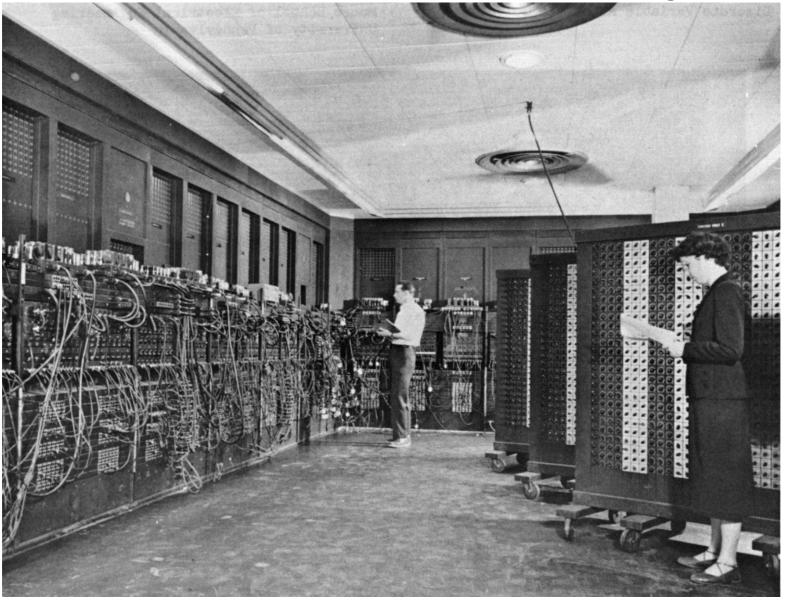
http://www.dharmanitech.com/



SP: streaming processor

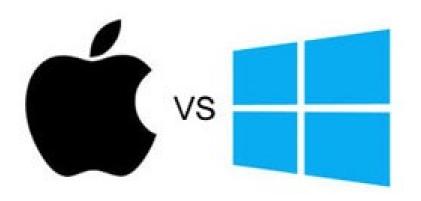
Fig 2 Covering Everything from PCs to Supercomputers NVIDIA's CUDA architecture boasts high scalability. The quantity of processor units (SM) can be varied as needed to flexibly provide performance from PC to supercomputer levels. Tesla 10, with 240 SPs, also has double-precision operation units (SM) added.

http://techon.nikkeibp.co.jp/article/HONSHI/20090119/164259/



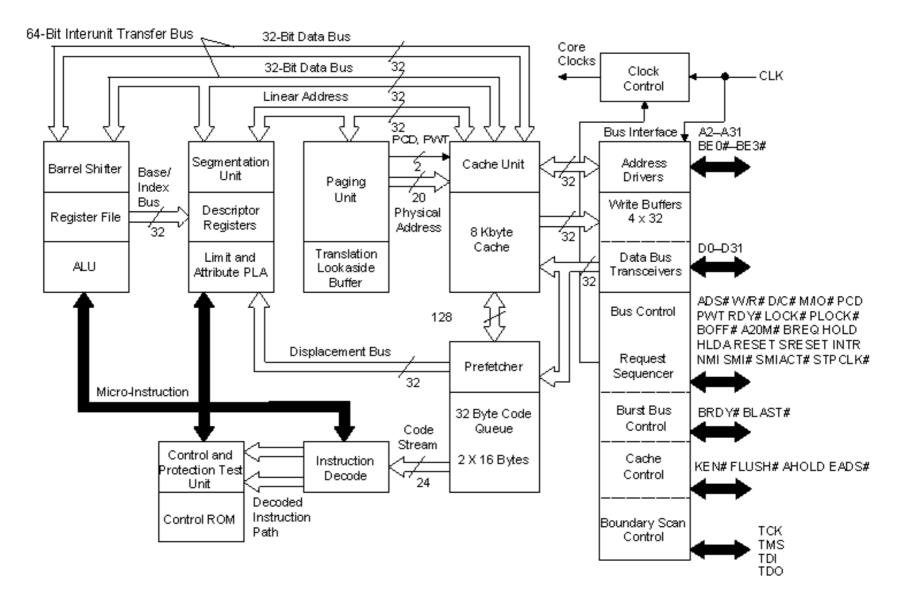
http://en.wikipedia.org/wiki/File:Eniac.jpg

That messiness makes it hard to *rigorously* say what we *intuitively* know to be true: that, on some fundamental level, different brands of computers or programming languages are more or less equivalent in what they are capable of doing.



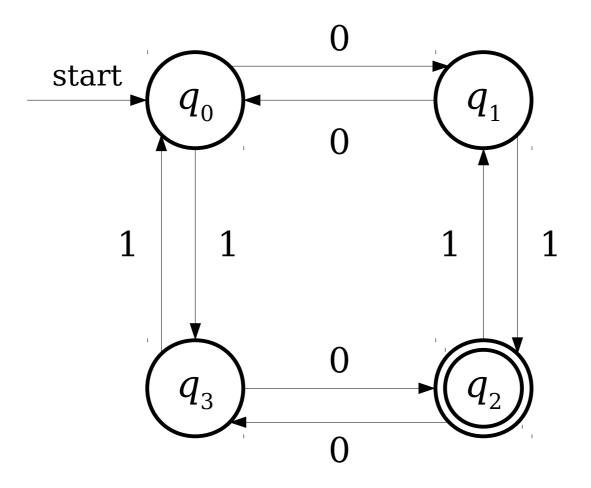
C vs C++ vs Java vs Python We need a simpler way of discussing computing machines.

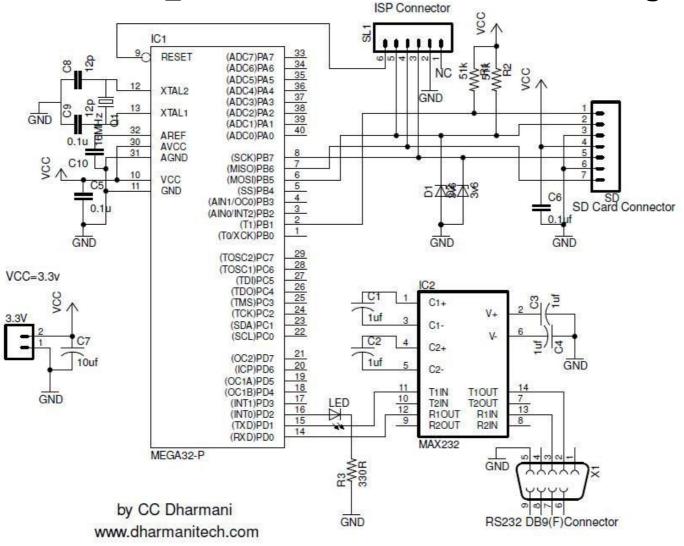
An *automaton* (plural: *automata*) is a mathematical model of a computing device.



http://www.intel.com/design/intarch/prodbref/272713.htm

Automata are Clean

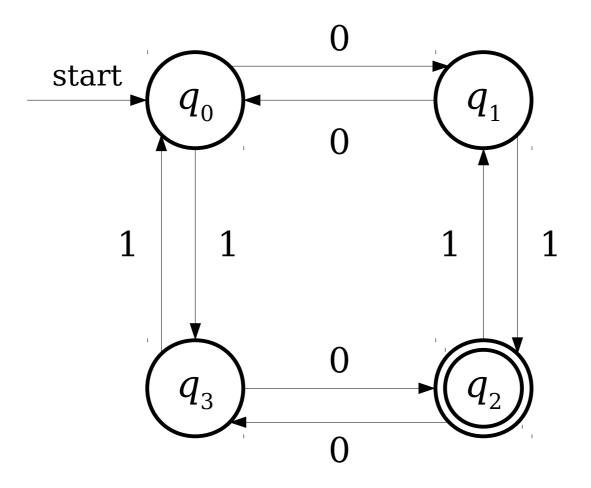




microSD/SD Card interface with ATmega32 ver_2.3

http://www.dharmanitech.com/

Automata are Clean



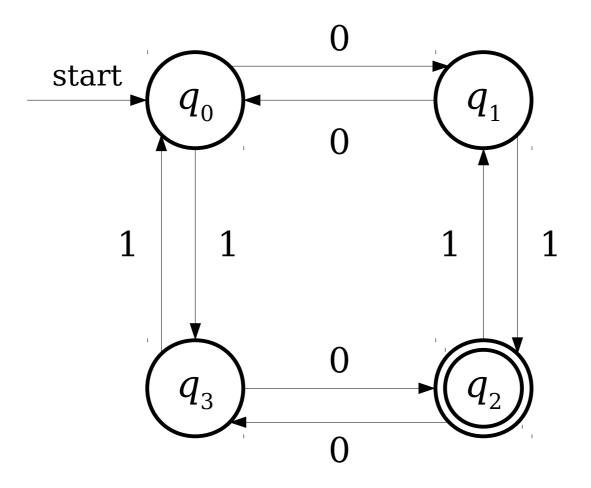


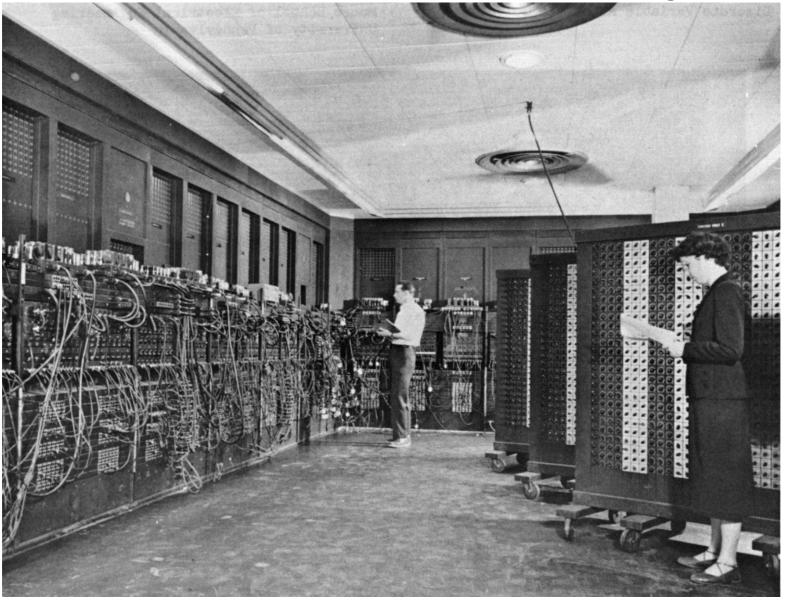
SP: streaming processor

Fig 2 Covering Everything from PCs to Supercomputers NVIDIA's CUDA architecture boasts high scalability. The quantity of processor units (SM) can be varied as needed to flexibly provide performance from PC to supercomputer levels. Tesla 10, with 240 SPs, also has double-precision operation units (SM) added.

http://techon.nikkeibp.co.jp/article/HONSHI/20090119/164259/

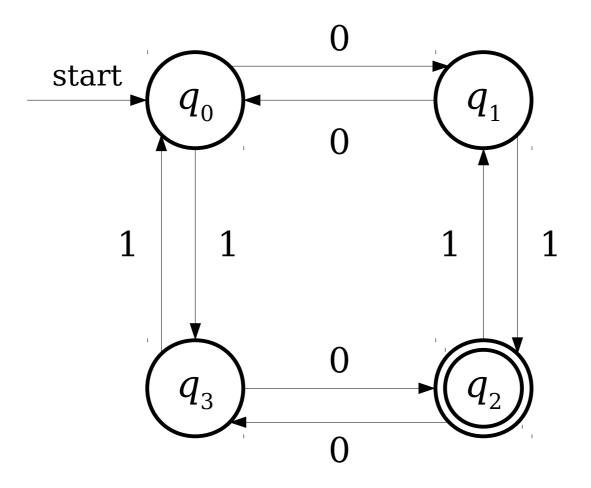
Automata are Clean





http://en.wikipedia.org/wiki/File:Eniac.jpg

Automata are Clean



Why Build Models?

- Mathematical simplicity.
 - It is significantly easier to manipulate our abstract models of computers than it is to manipulate actual computers.
- Intellectual robustness.
 - If we pick our models correctly, we can make broad, sweeping claims about huge classes of real computers by arguing that they're just special cases of our more general models.

Why Build Models?

- The models of computation we will explore in this class correspond to different conceptions of what a computer could do.
- **Finite automata** (next two weeks) are an abstraction of computers with finite resource constraints.
 - Provide upper bounds for the computing machines that we can actually build.
- *Turing machines* (later) are an abstraction of computers with unbounded resources.
 - Provide upper bounds for what we could ever hope to accomplish.

What problems can we solve with a computer?

What is a "problem?" can we solve with a computer?

Problems with Problems

- Before we can talk about what problems we can solve, we need a formal definition of a "problem."
- We want a definition that
 - corresponds to the problems we want to solve,
 - captures a large class of problems, and
 - is mathematically simple to reason about.
- No one definition has all three properties.

Formal Language Theory

Strings

- An *alphabet* is a finite, nonempty set of symbols called *characters*.
 - Typically, we use the symbol Σ to refer to an alphabet.
- A string over an alphabet Σ is a finite sequence of characters drawn from Σ .
- Example: Let $\Sigma = \{a, b\}$. Here are some strings over Σ :

a aabaaabbabaaabaaaabbb abbabbab

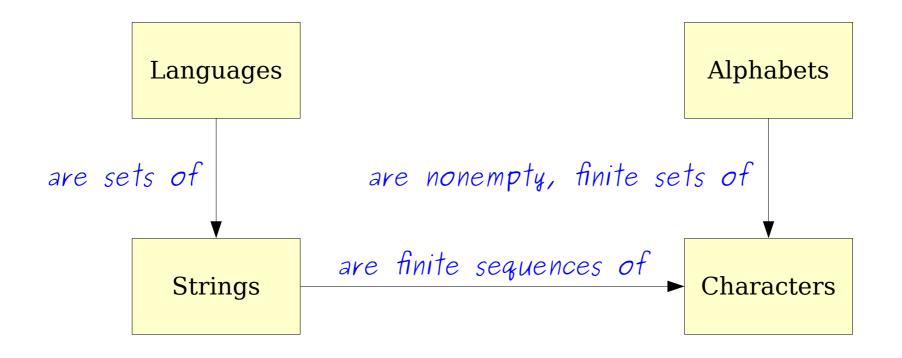
- The *empty string* has no characters and is denoted ε .
- Calling attention to an earlier point: since all strings are finite sequences of characters from Σ , you cannot have a string of infinite length.

Languages

- A *formal language* is a set of strings.
- We say that *L* is a *language over* Σ if it is a set of strings over Σ .
- Example: The language of palindromes over $\Sigma = \{a, b, c\}$ is the set
 - { ϵ , **a**, **b**, **c**, **aa**, **bb**, **cc**, **aaa**, **aba**, **aca**, **bab**, ... }
- The set of all strings composed from letters in Σ is denoted $\Sigma^{*}.$
- Formally, we say that L is a language over Σ if $L \subseteq \Sigma^*$.

The Cast of Characters

- *Languages* are sets of strings.
- **Strings** are finite sequences of characters.
- *Characters* are individual symbols.
- *Alphabets* are sets of characters.



The Model

- **Fundamental Question:** For what languages L can you design an automaton that takes as input a string, then determines whether the string is in L?
- The answer depends on the choice of *L*, the choice of automaton, and the definition of "determines."
- In answering this question, we'll go through a whirlwind tour of models of computation and see how this seemingly abstract question has very real and powerful consequences.

To Summarize

- An *automaton* is an idealized mathematical computing machine.
- A *language* is a set of strings, a *string* is a (finite) sequence of characters, and a *character* is an element of an *alphabet*.
- *Goal:* Figure out in which cases we can build automata for particular languages.

What problems can we solve with a computer?

Finite Automata

It's time for another round of

Mathematicalisthenics!

We will distribute one packet to each row.

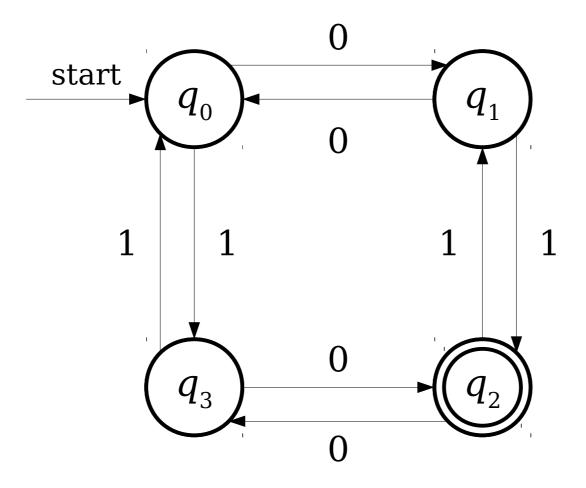
When the packet comes to you, follow the directions to help it on its Magical Journey.

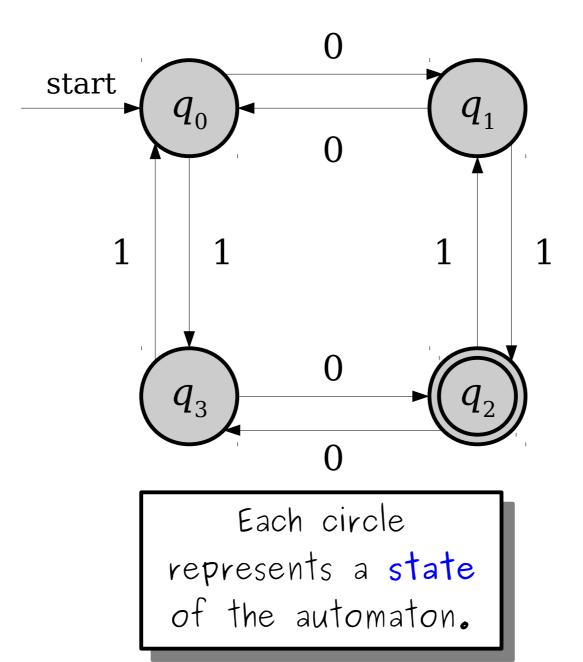
If you are holding a packet an the top sheet has a giant star on it, please raise your hand.

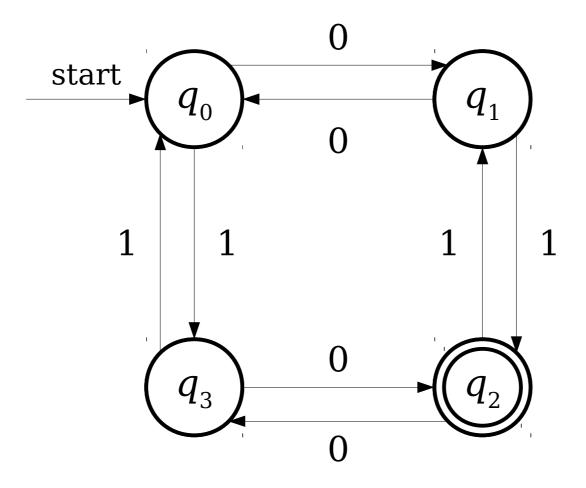
What's going on here?

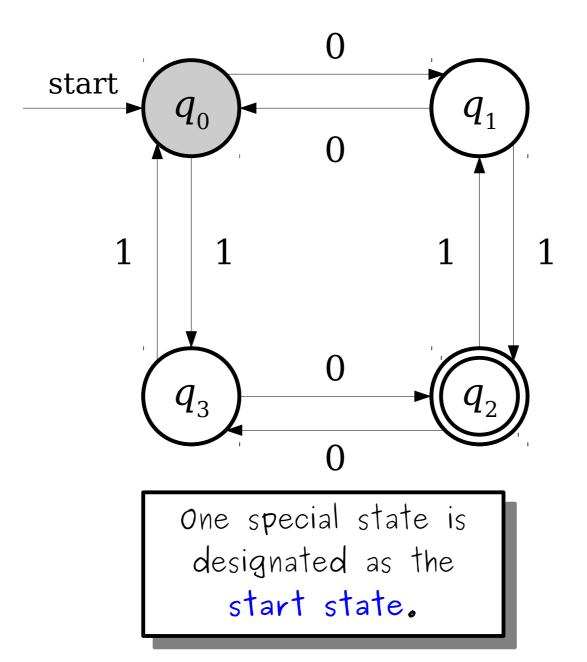
A *finite automaton* is a simple type of mathematical machine for determining whether a string is contained within some language.

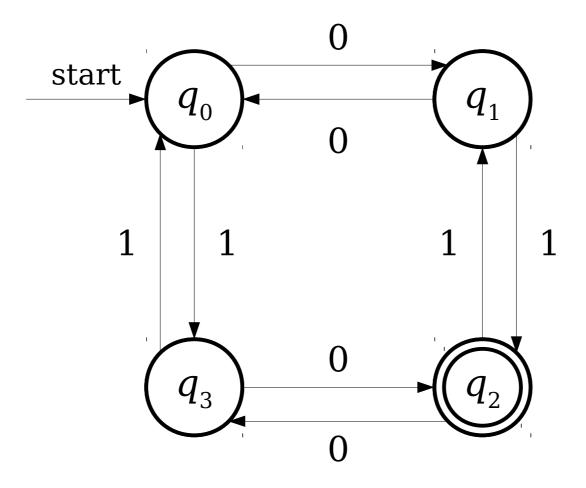
Each finite automaton consists of a set of *states* connected by *transitions*.

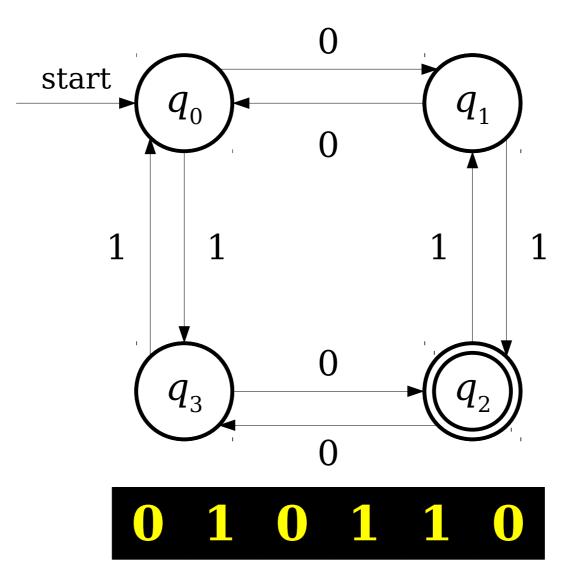


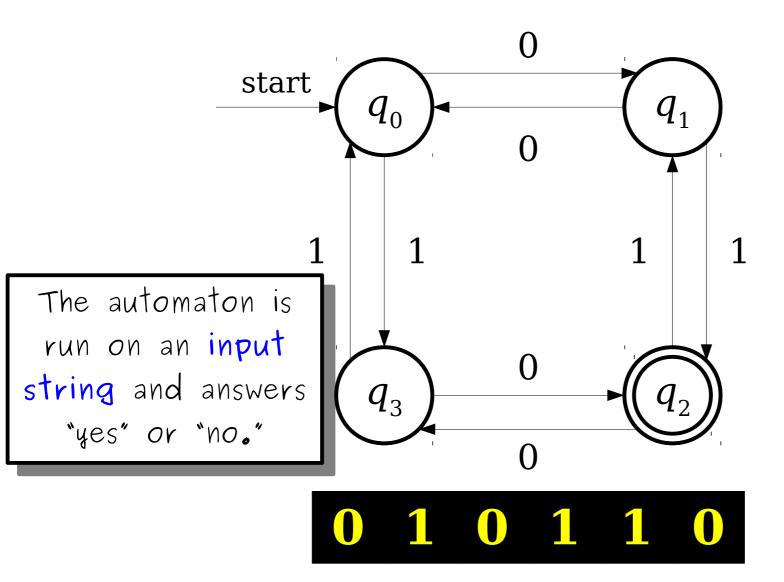


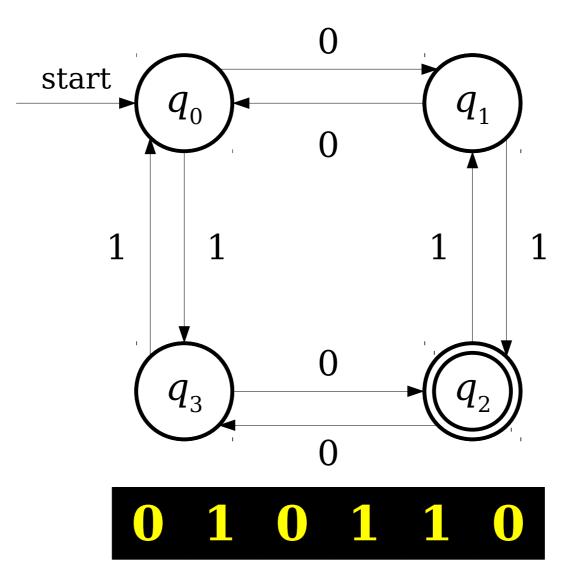


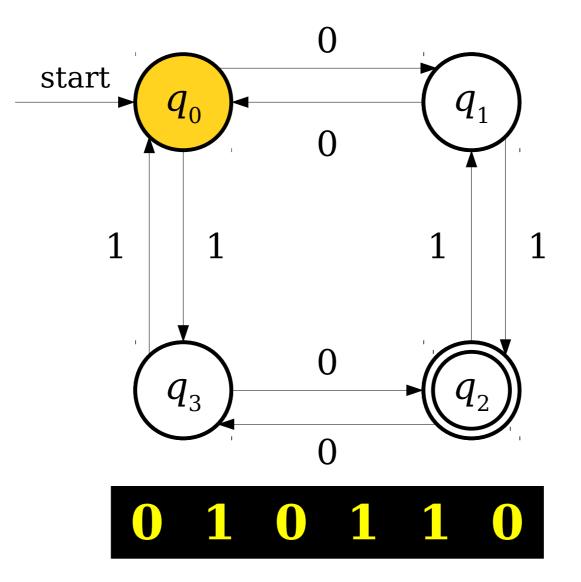


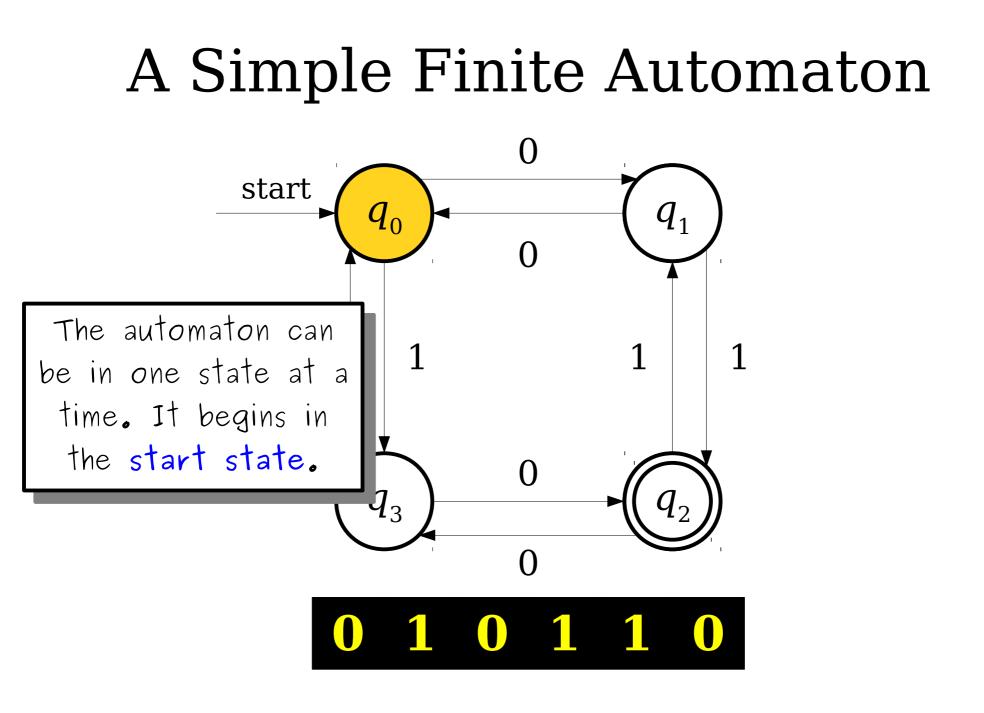


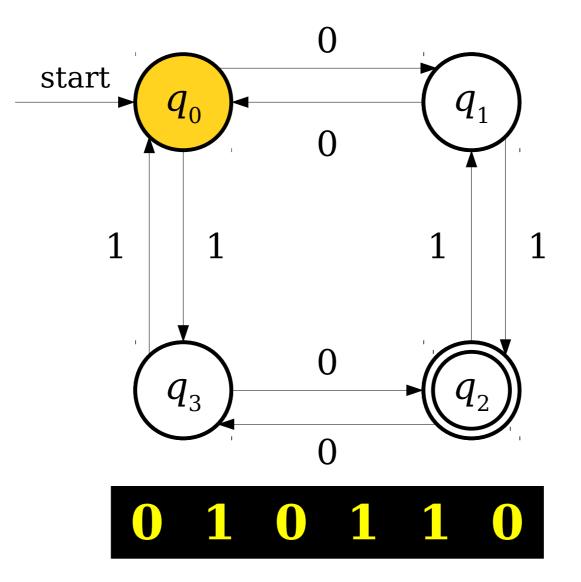


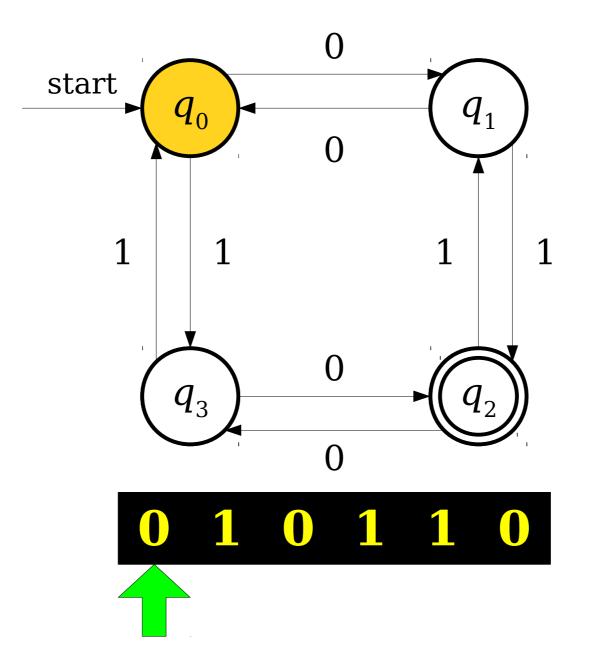


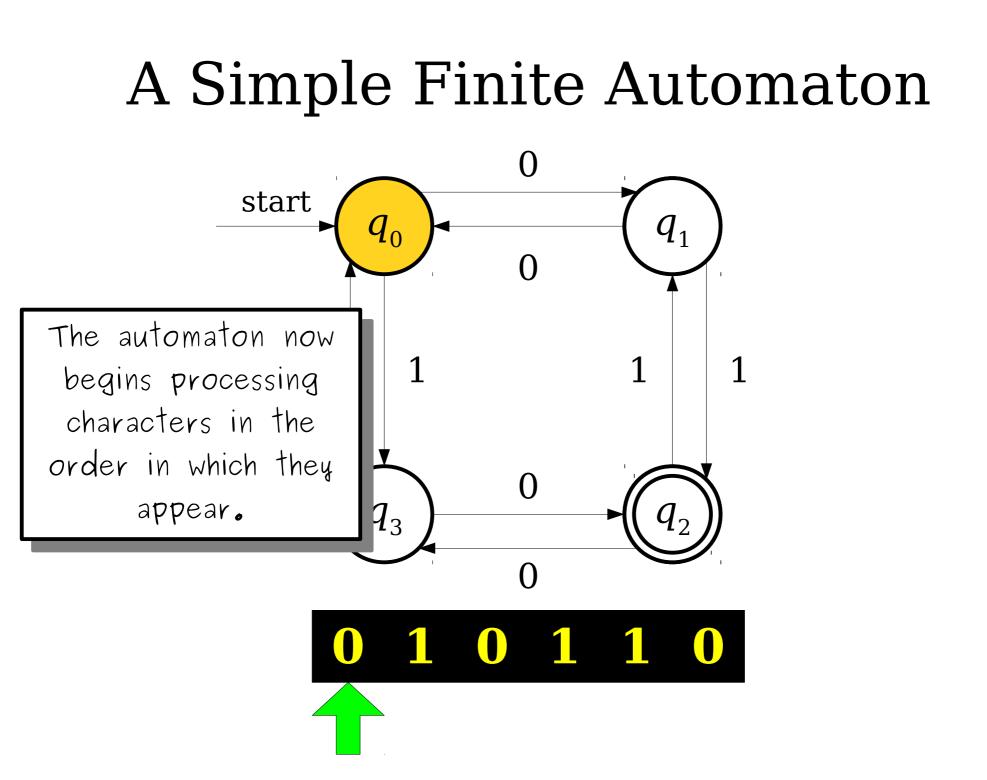


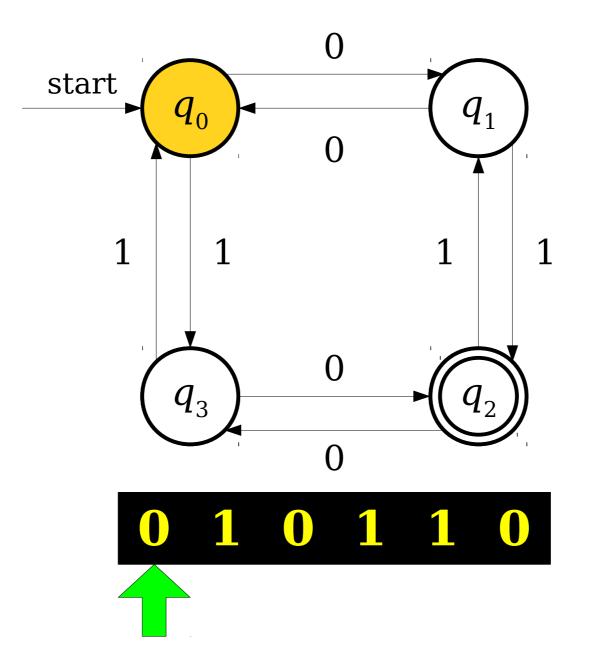


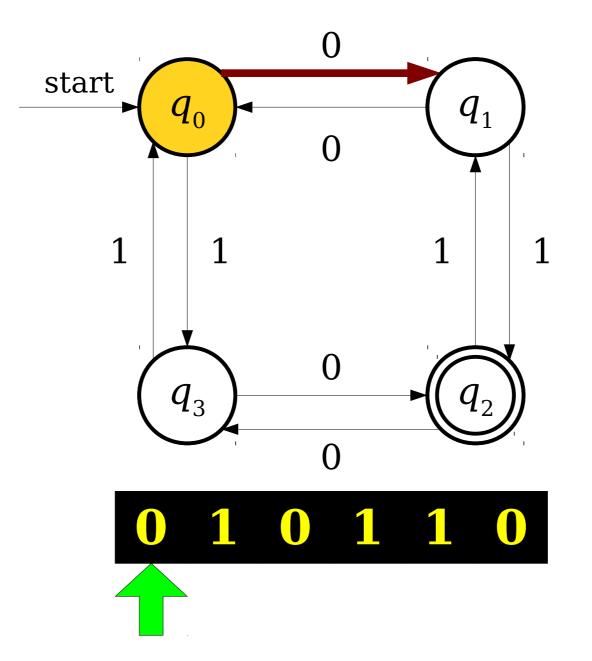


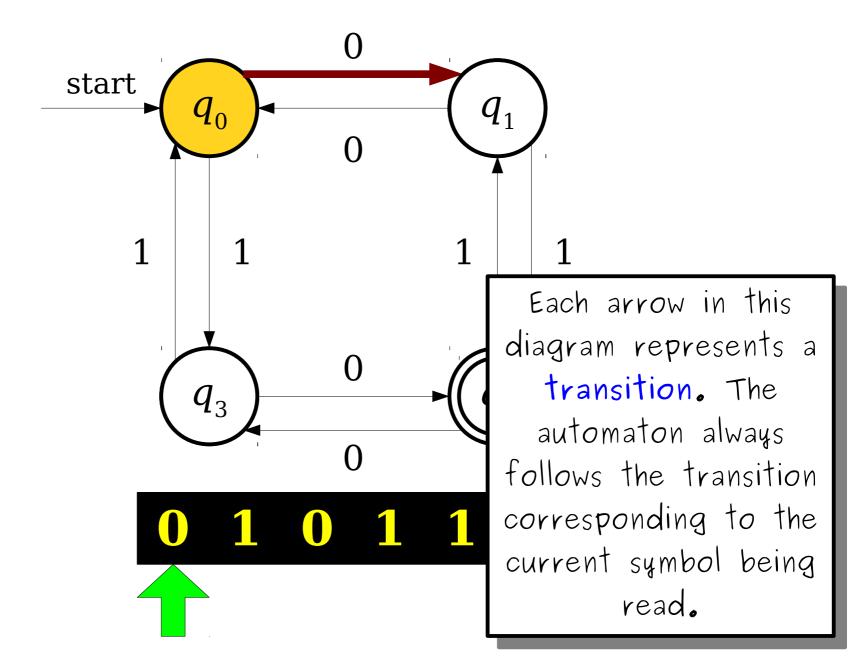


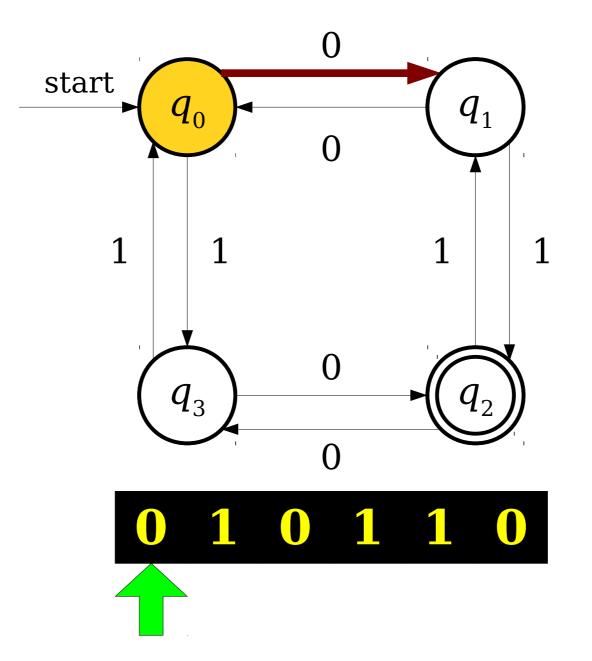


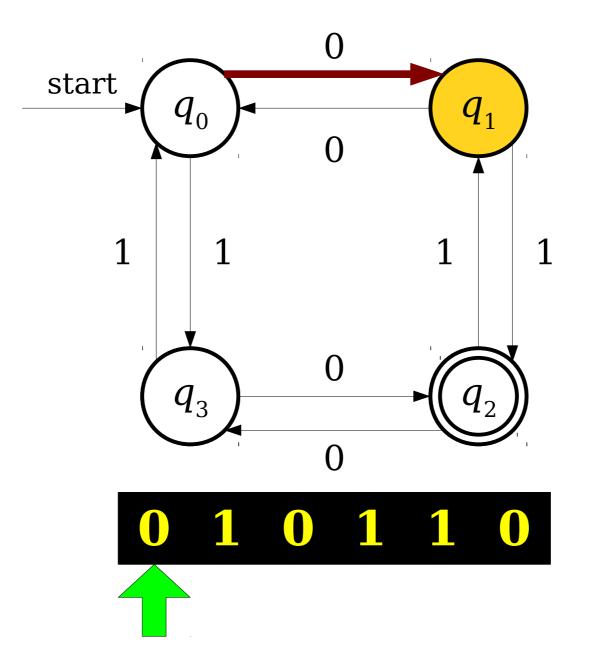


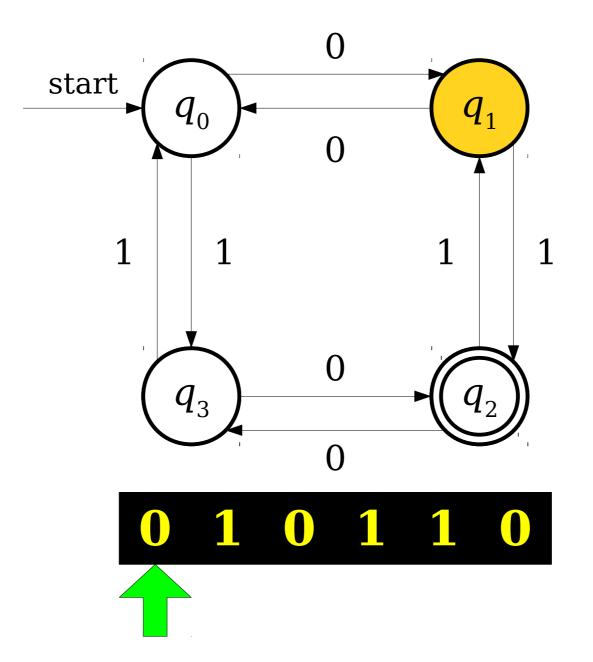


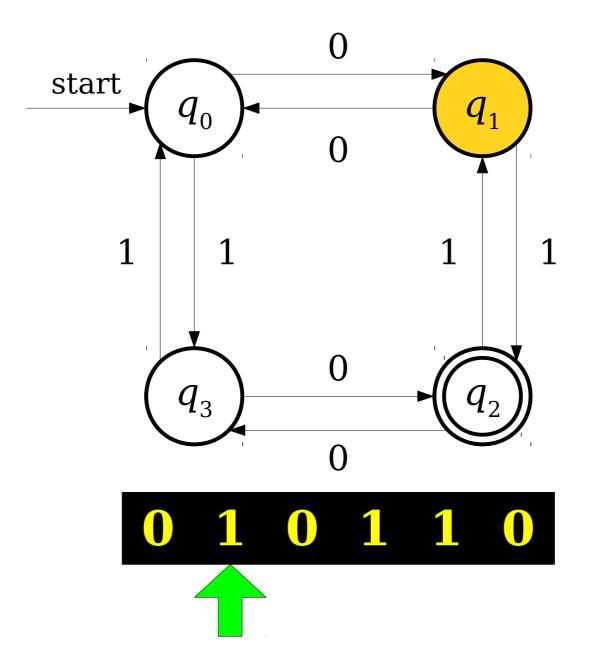


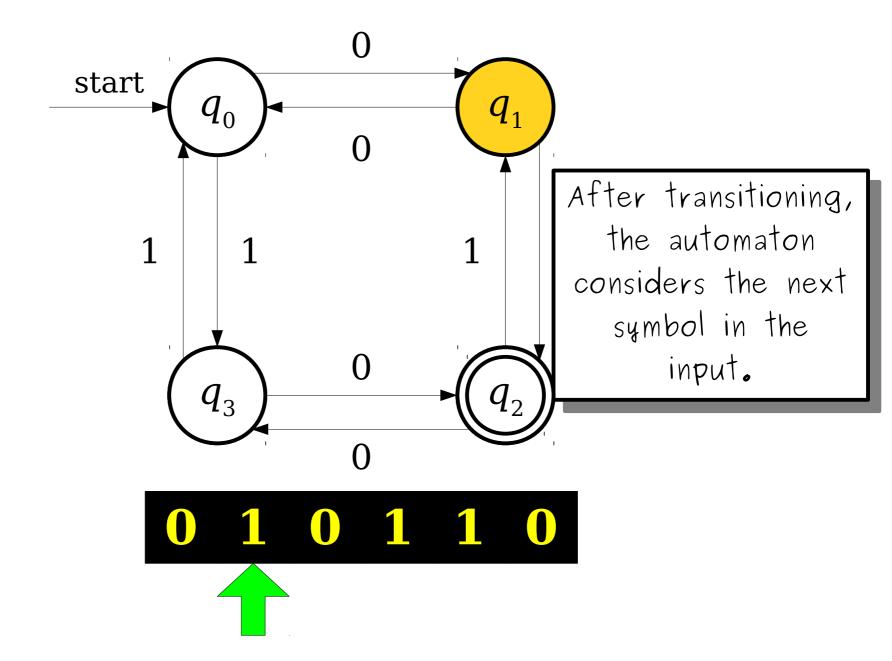


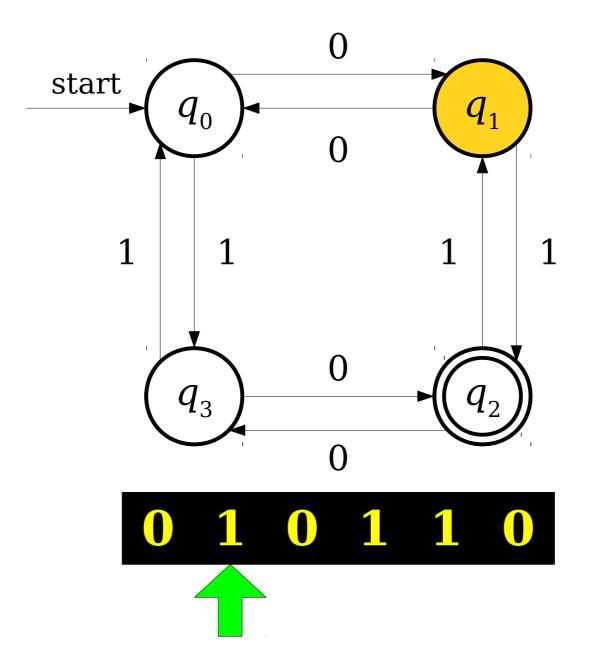


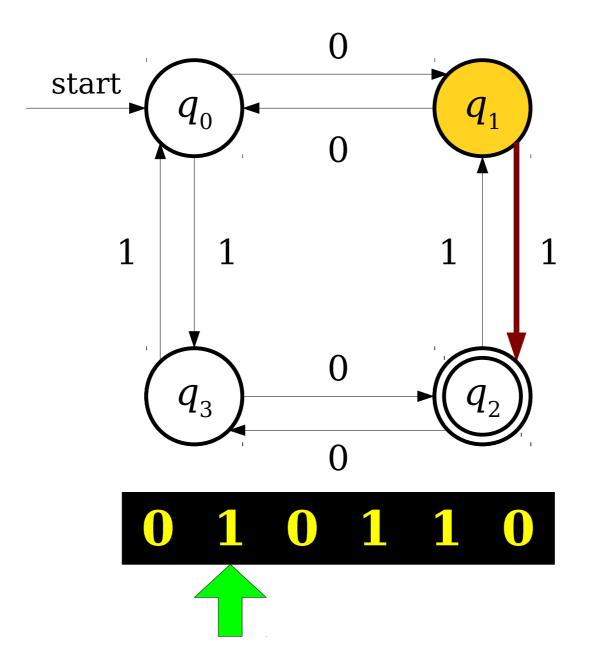


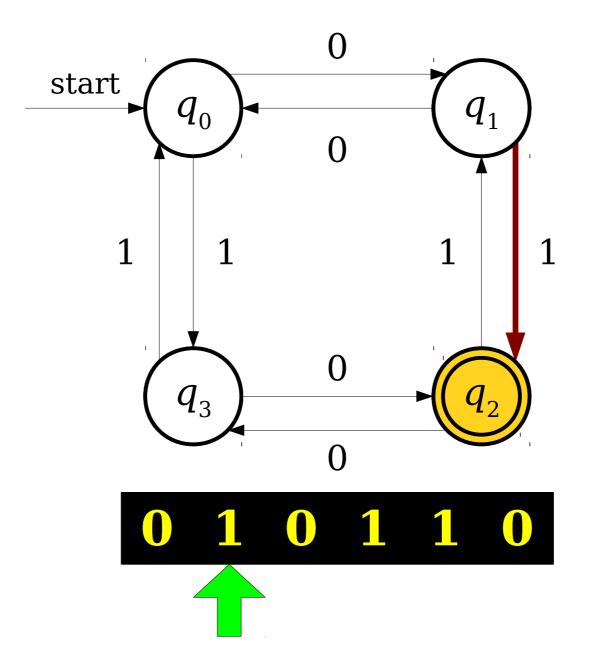


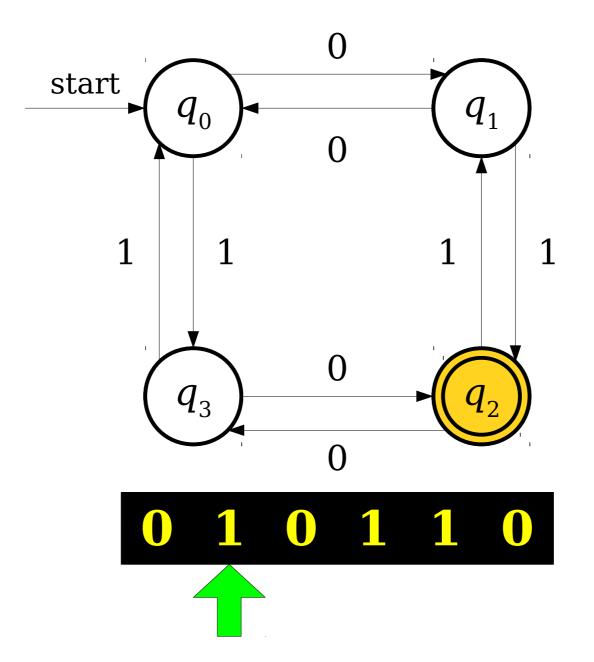


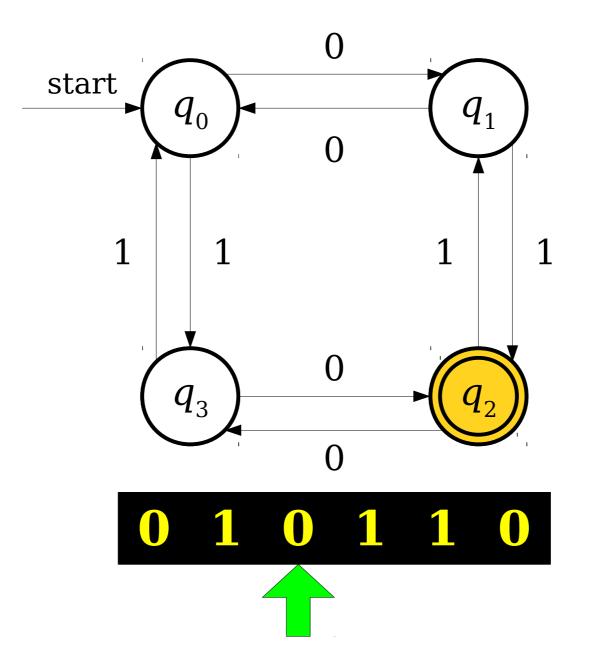


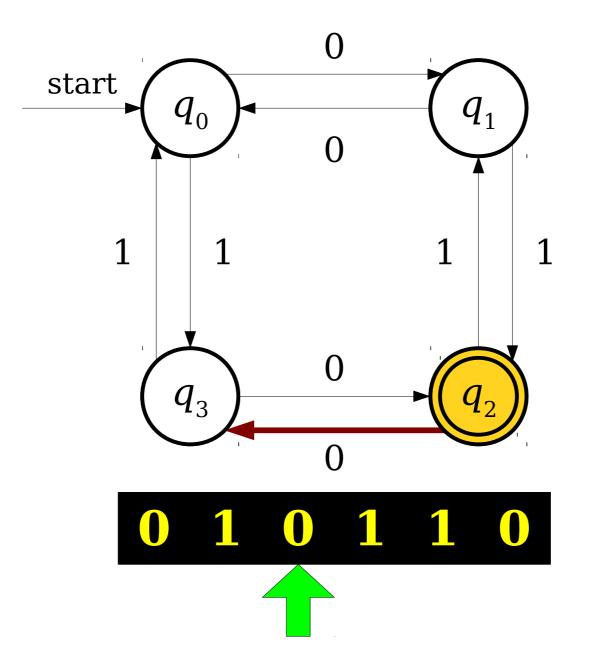


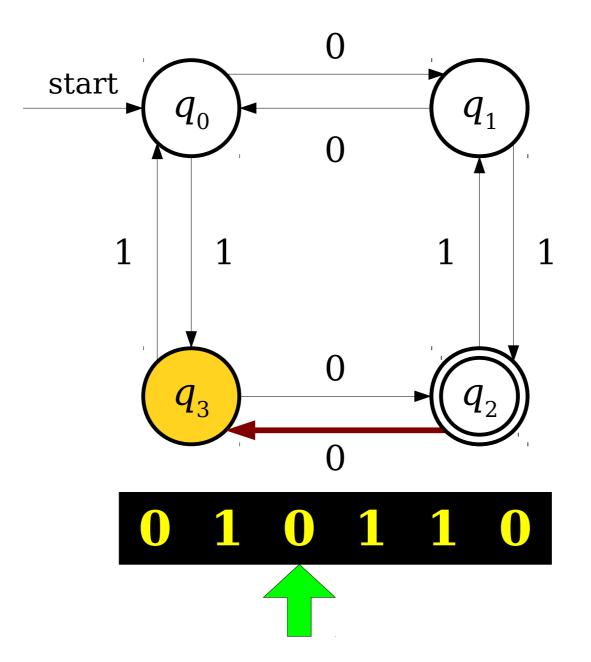


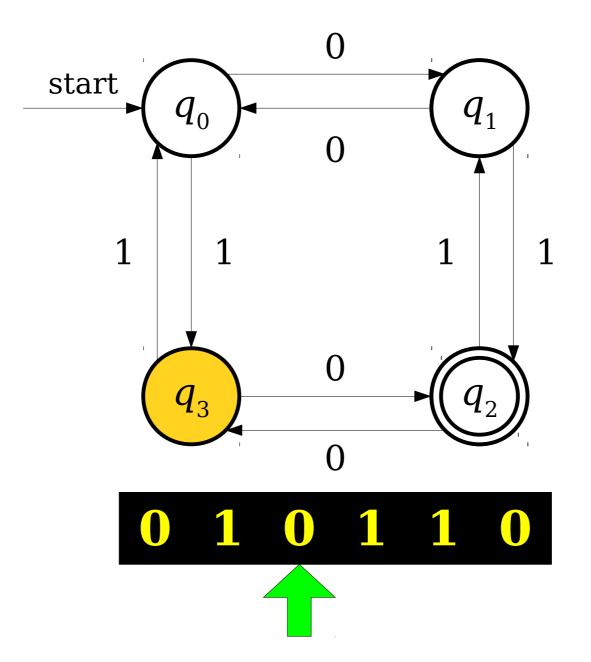


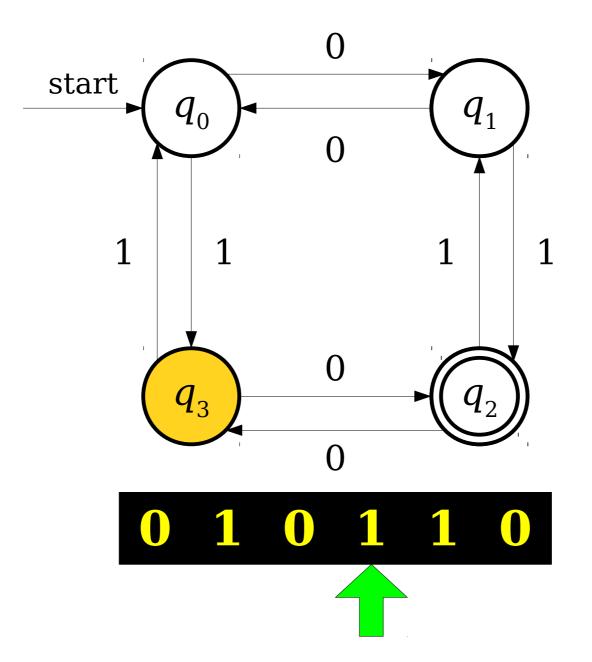


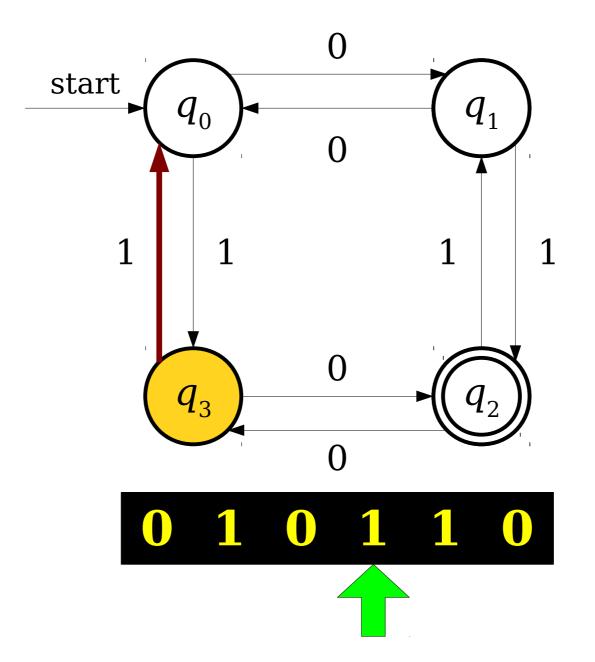


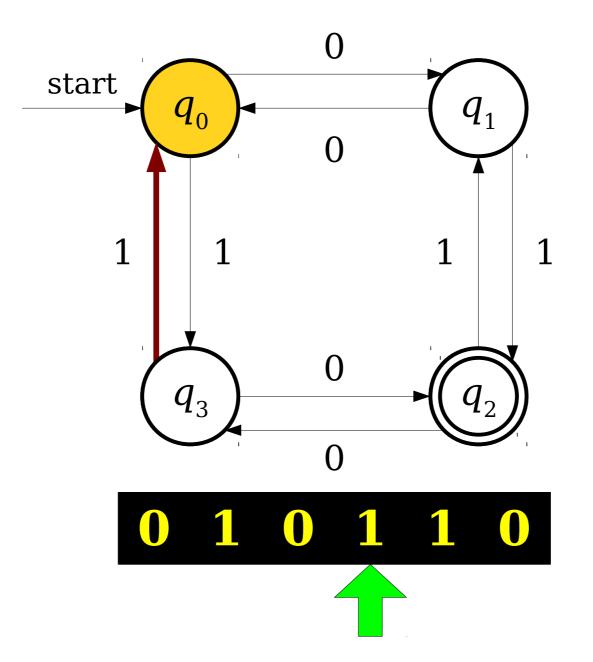


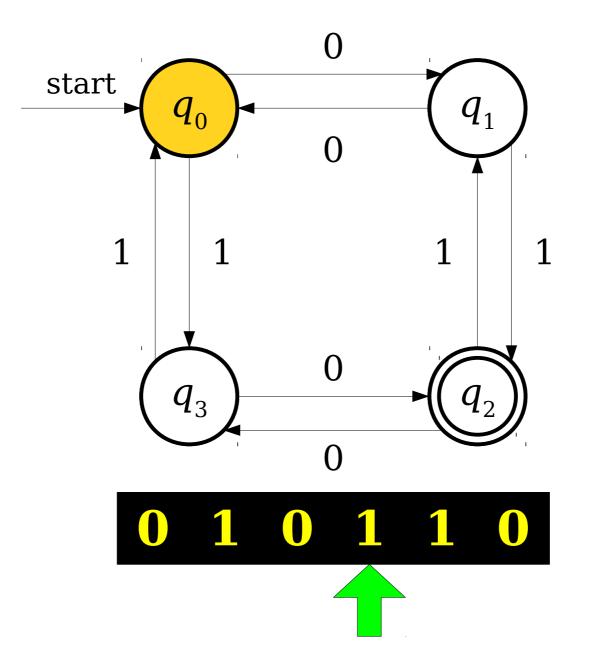


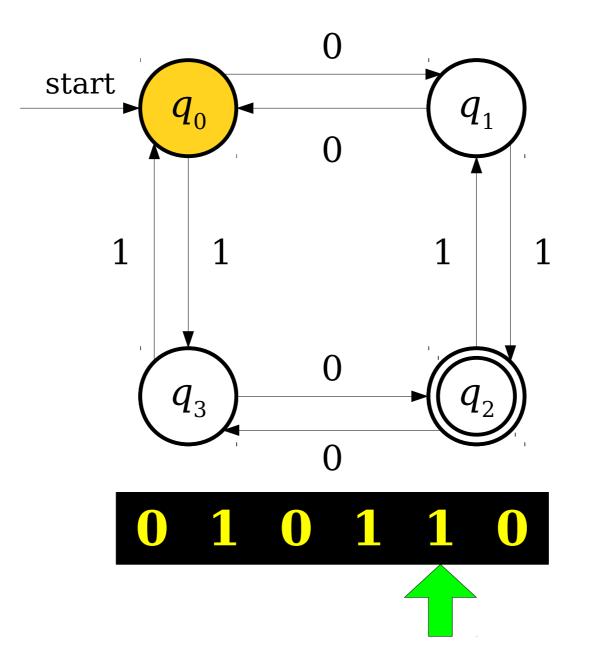


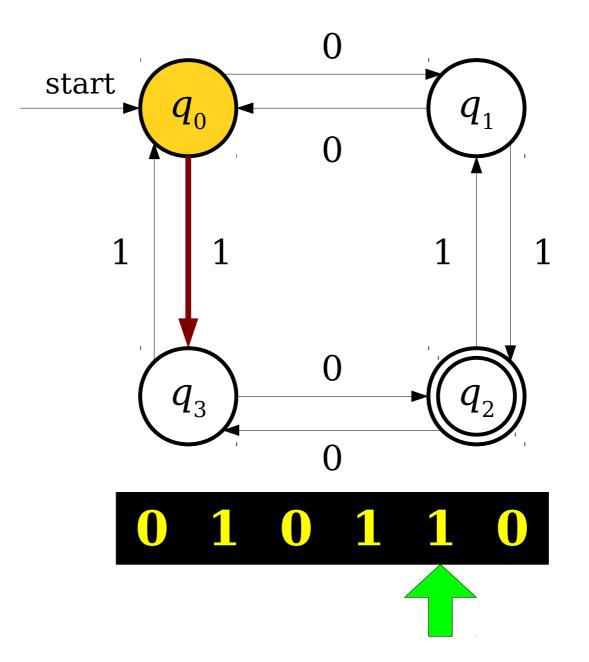


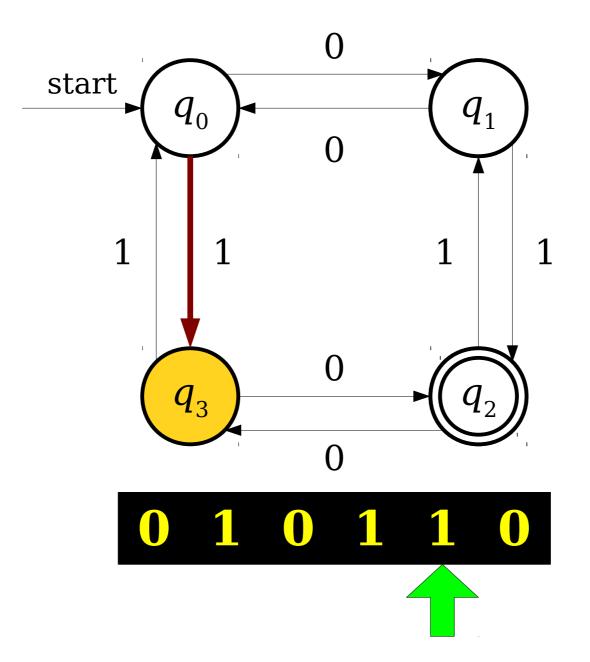


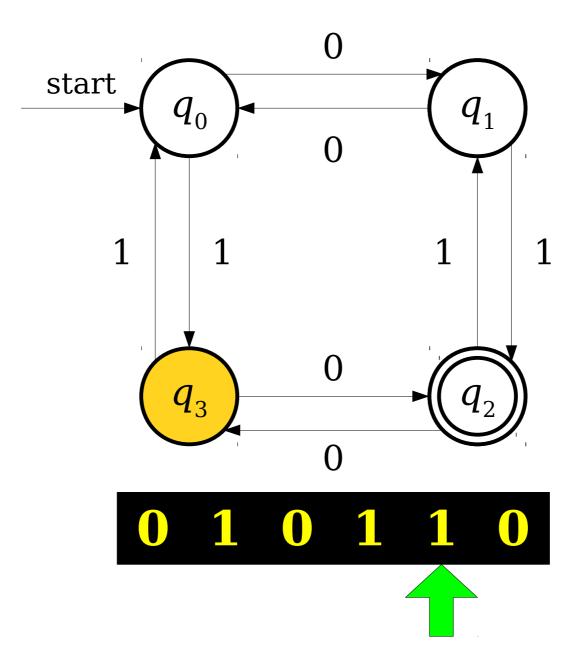


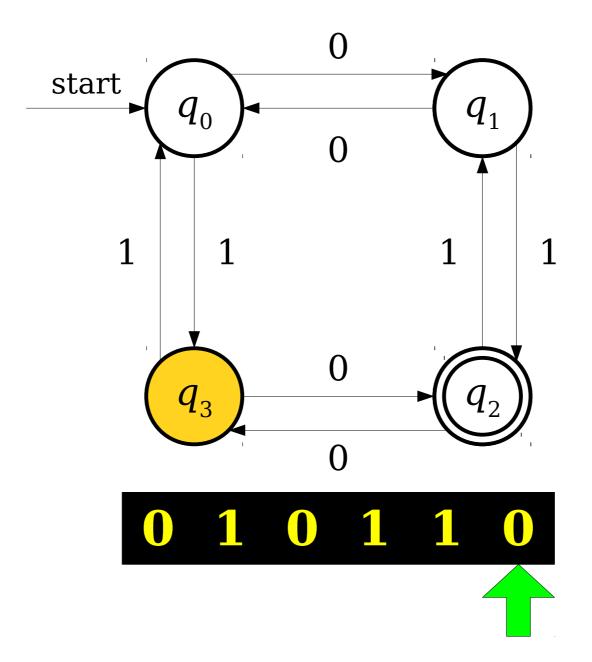


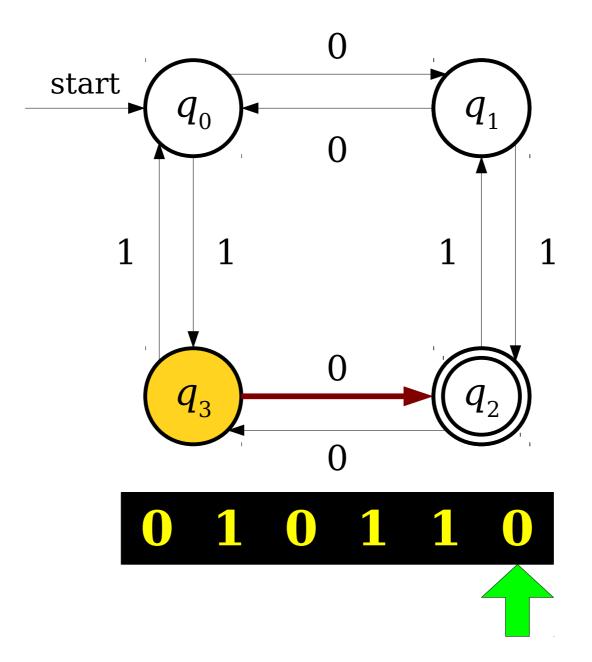


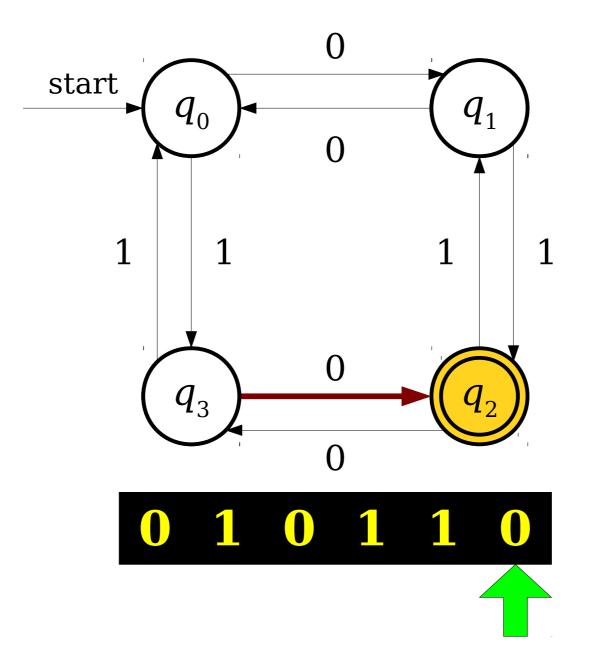


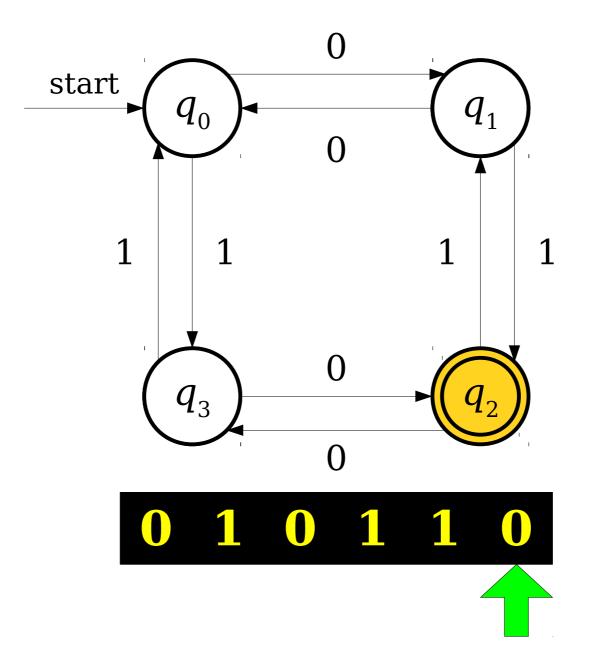


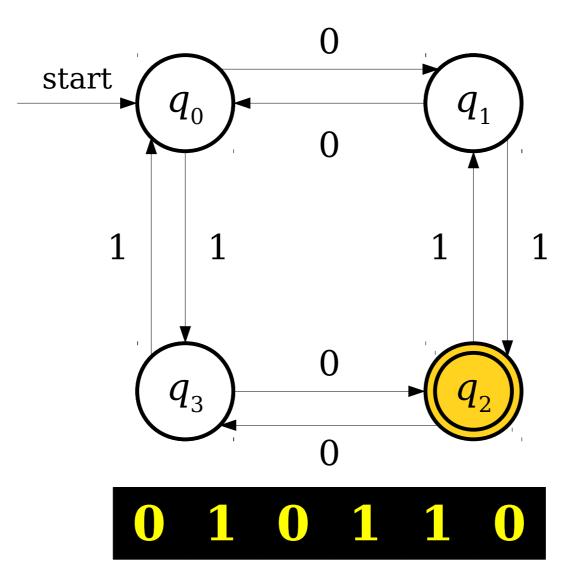


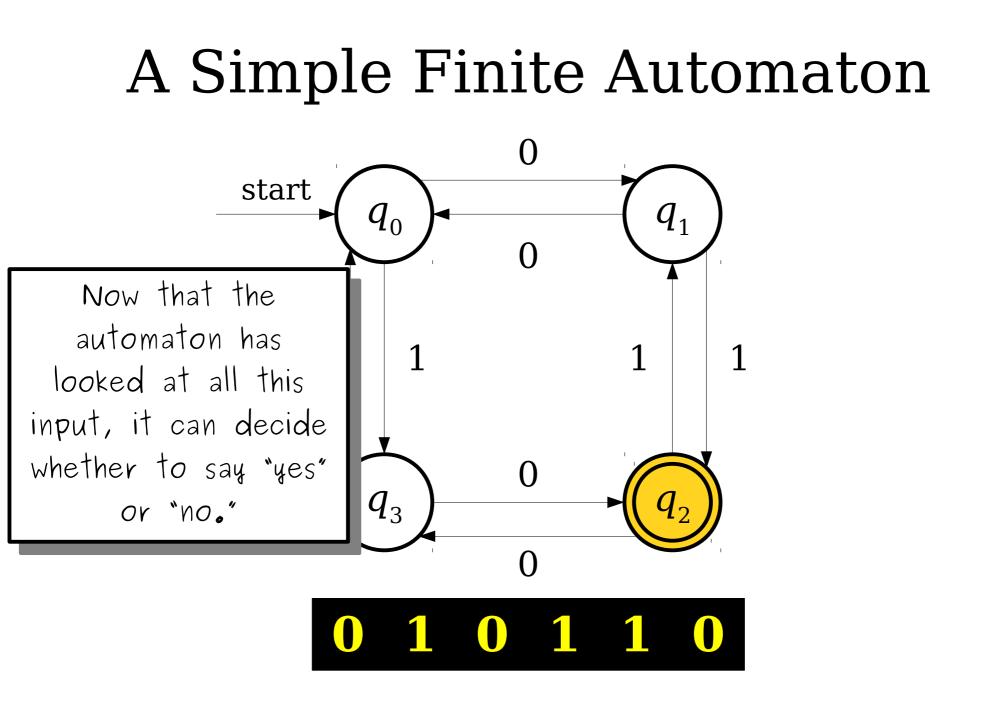


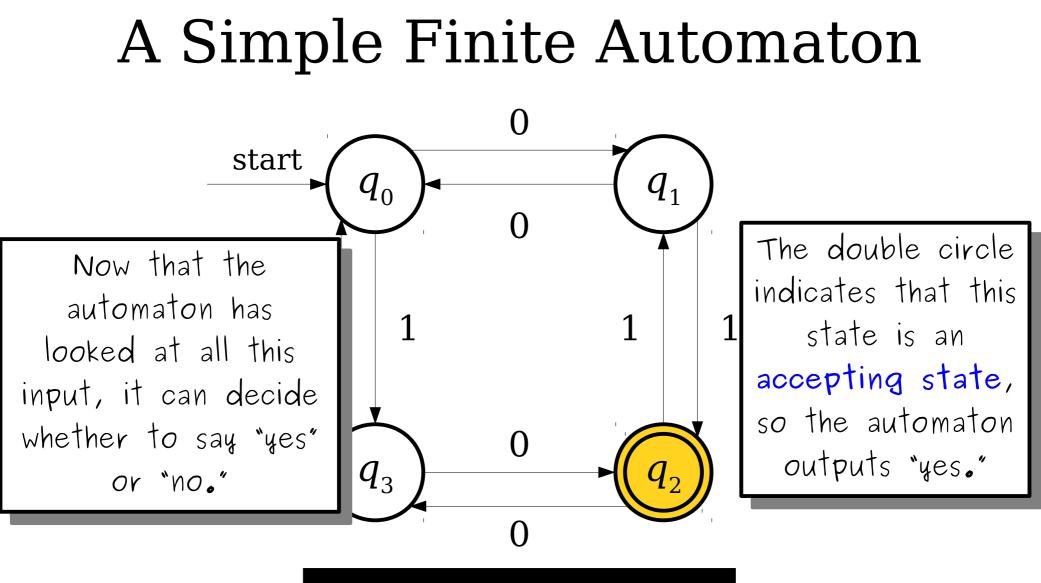


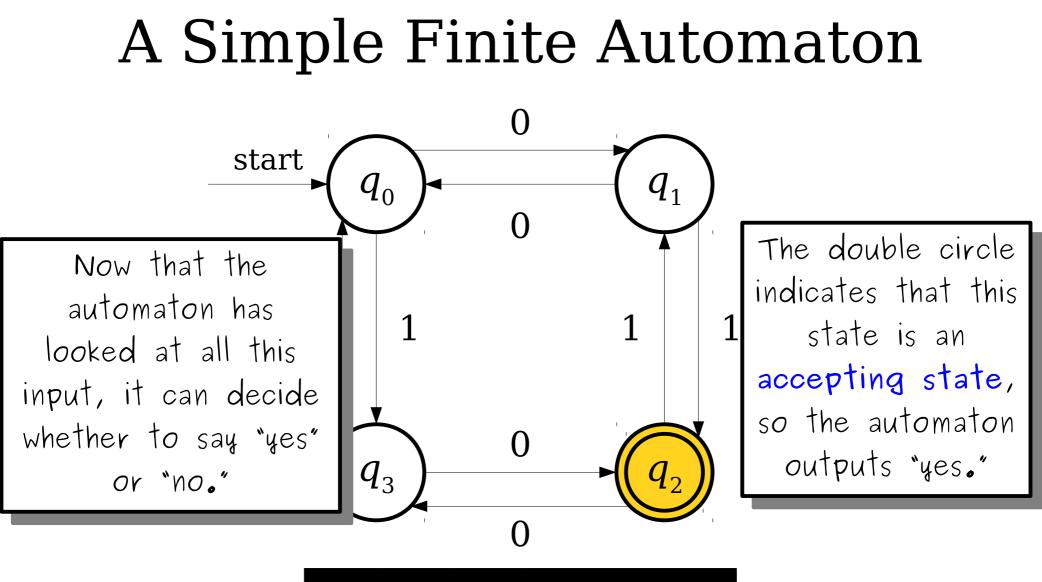


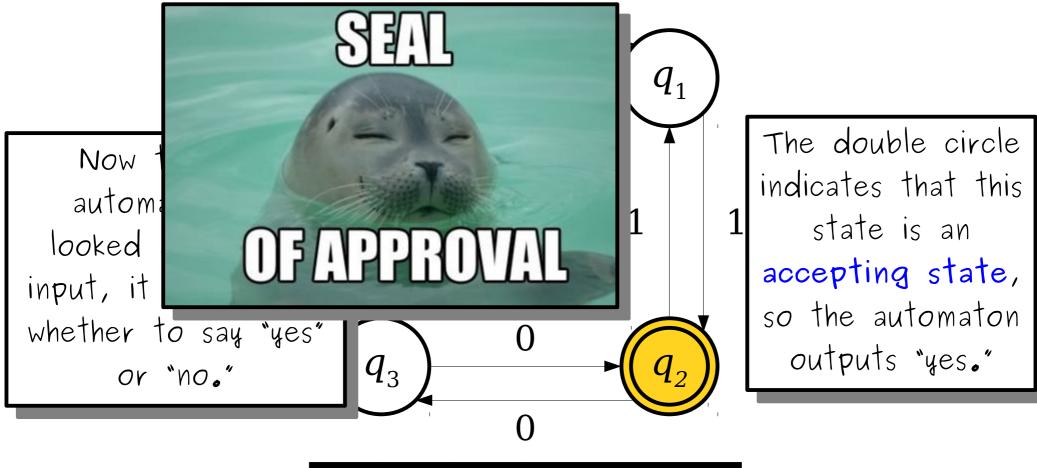


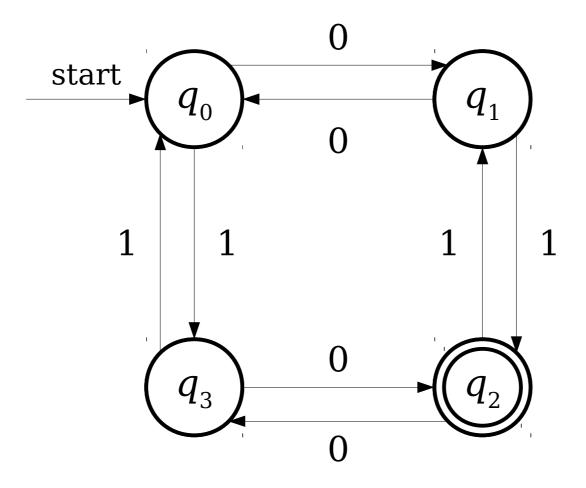


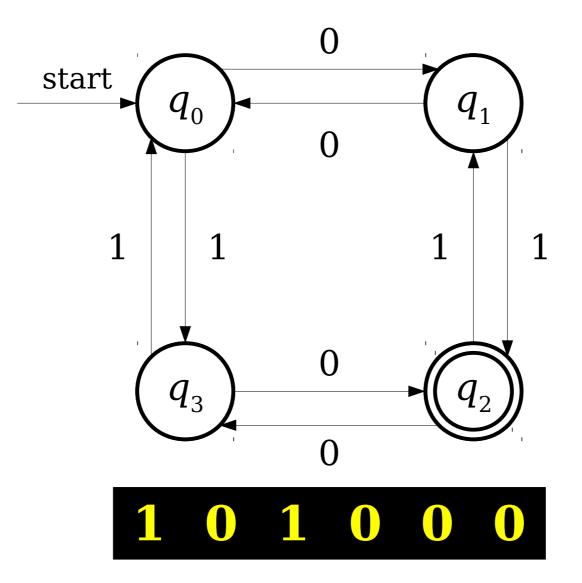


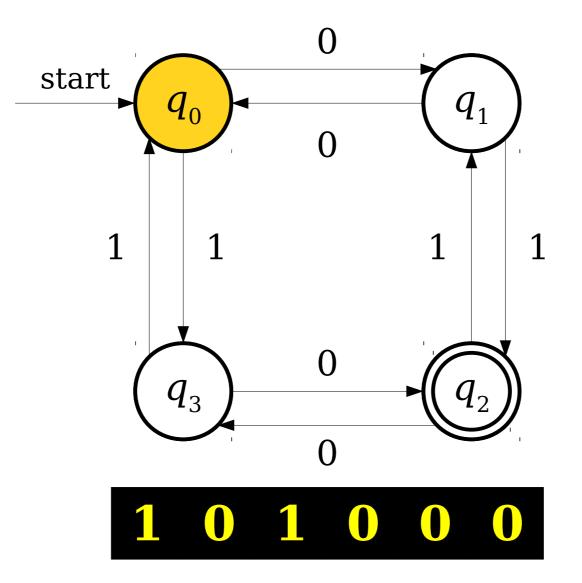




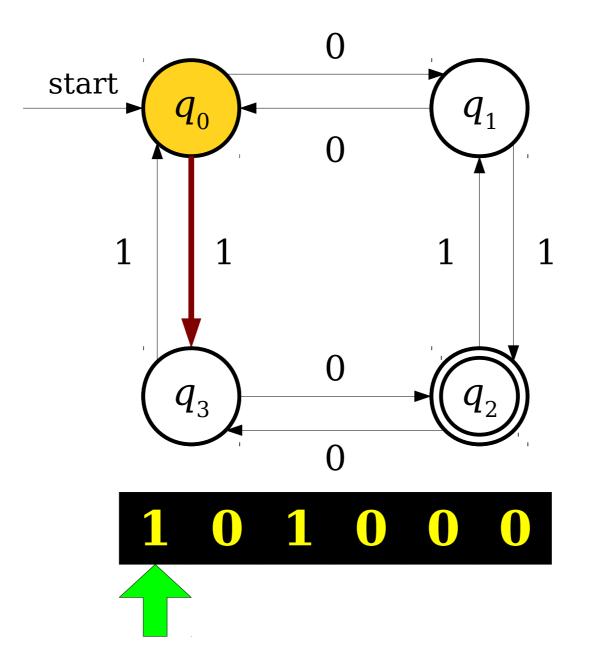


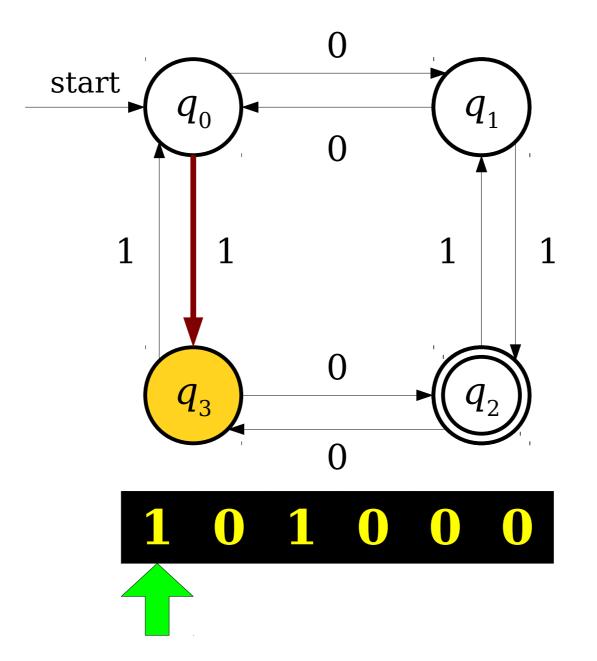




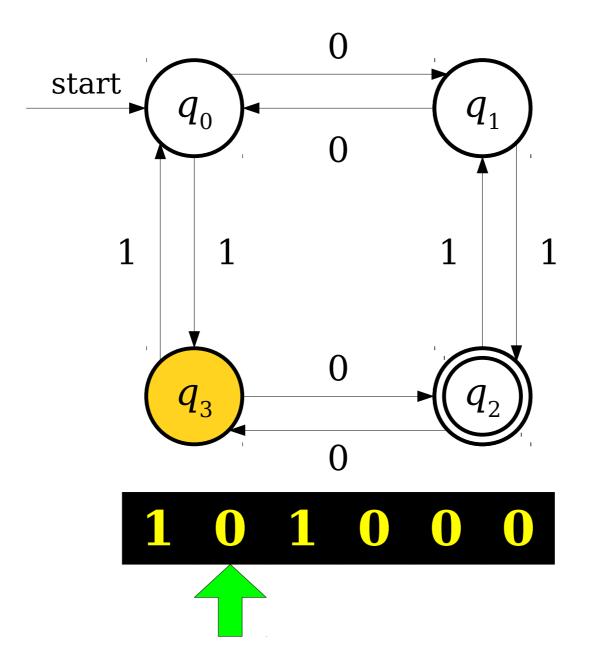


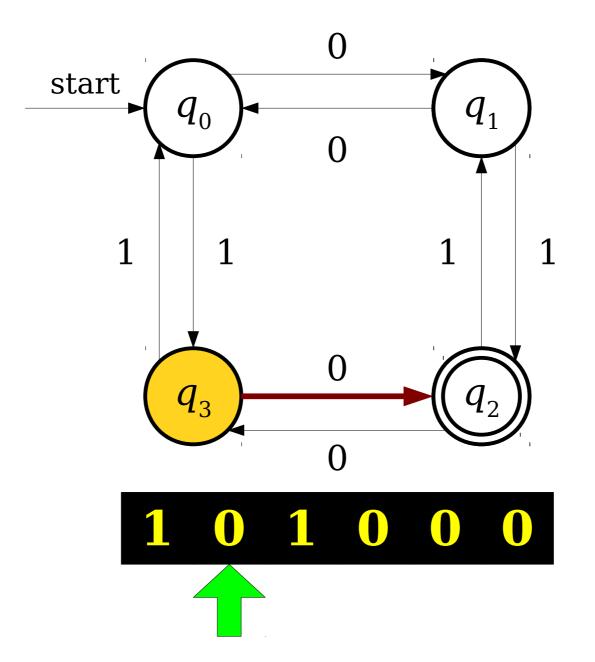


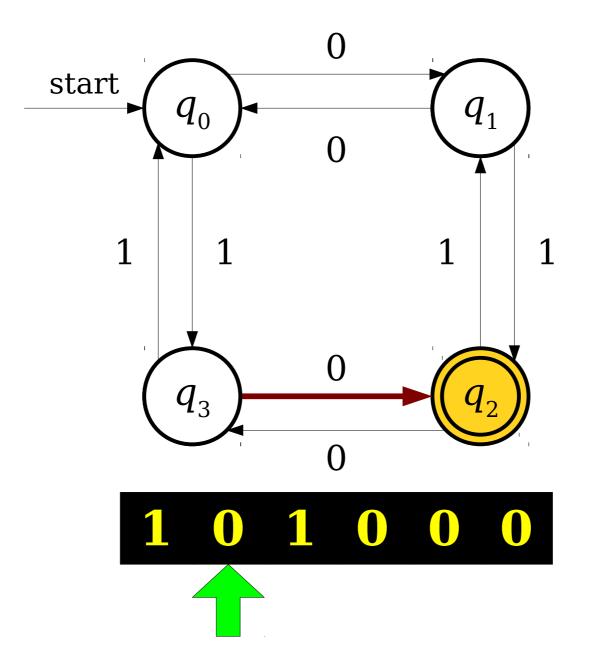


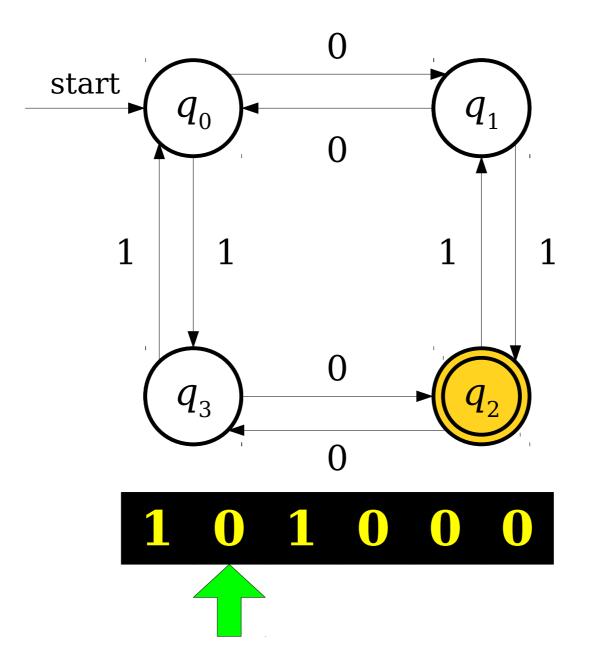


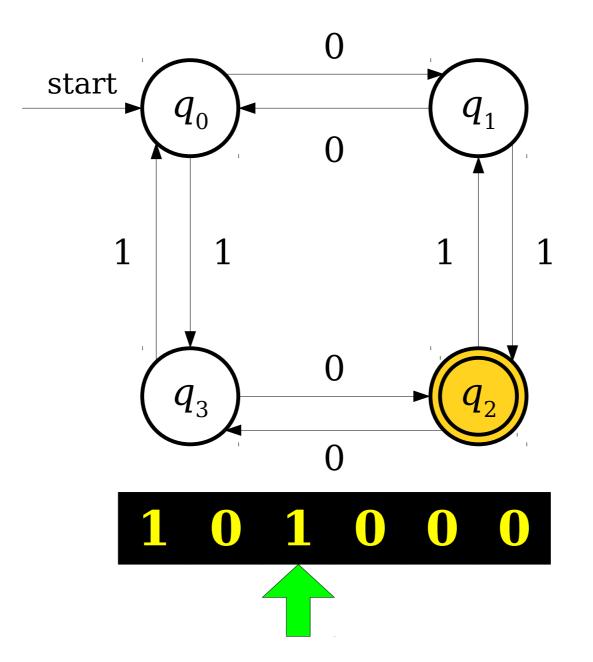


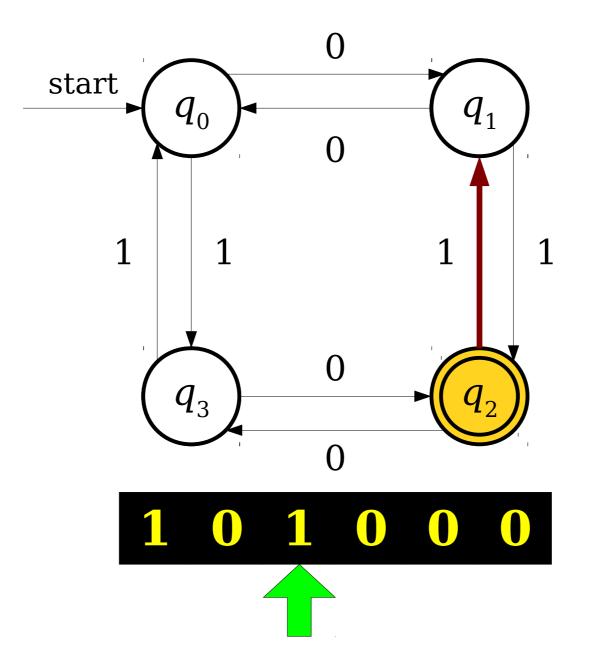


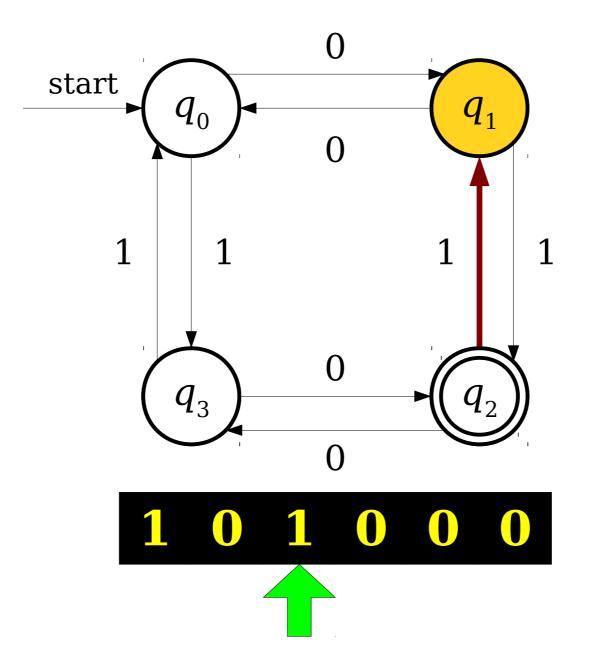


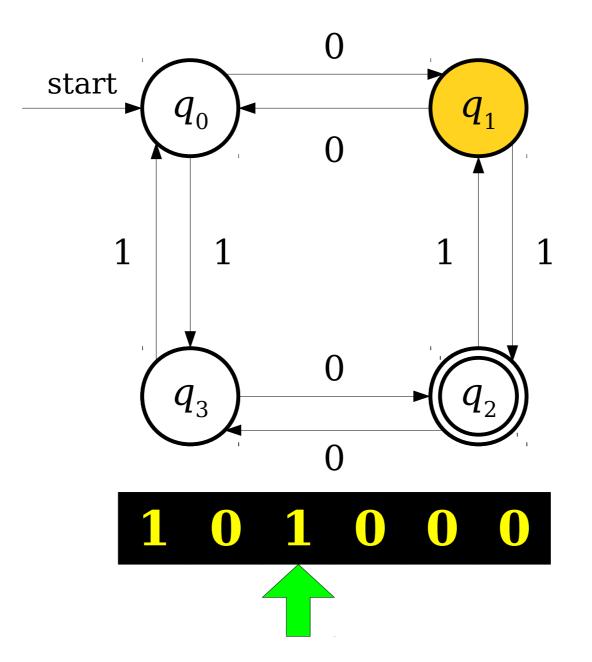


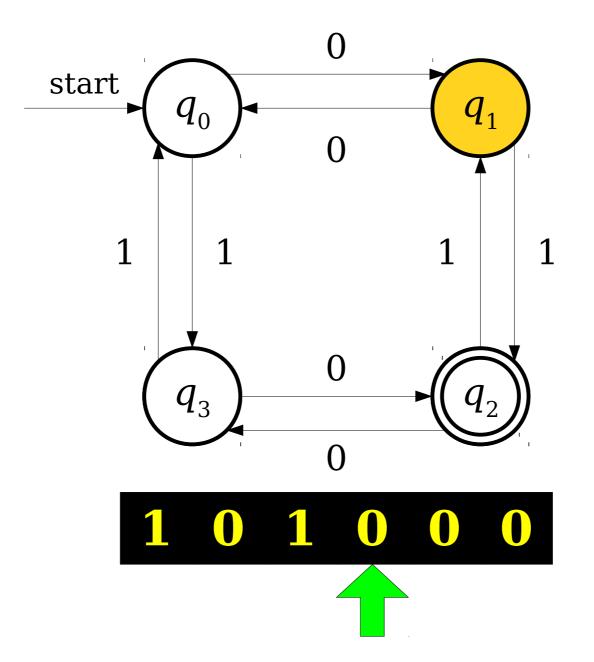


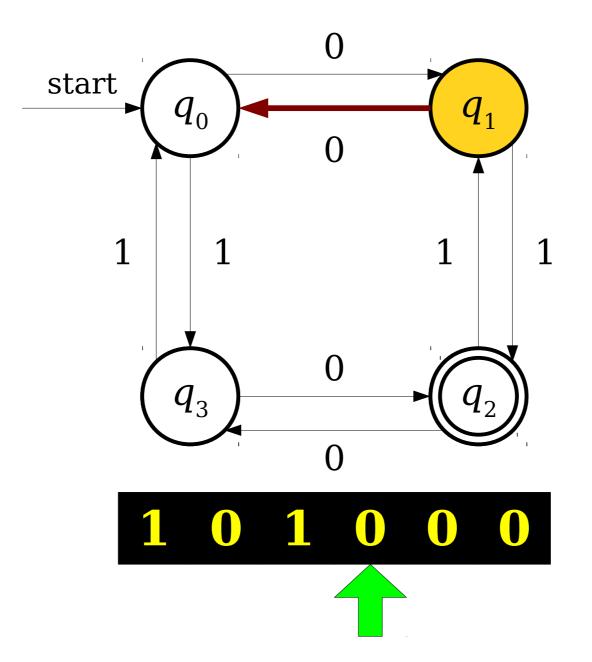


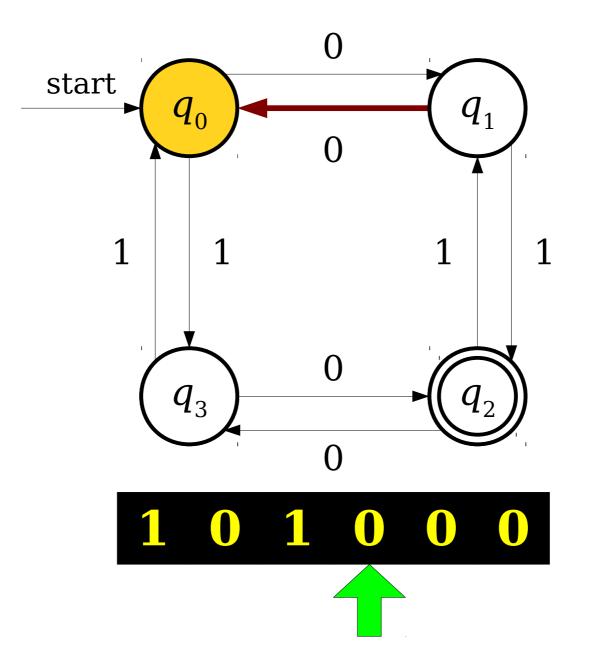


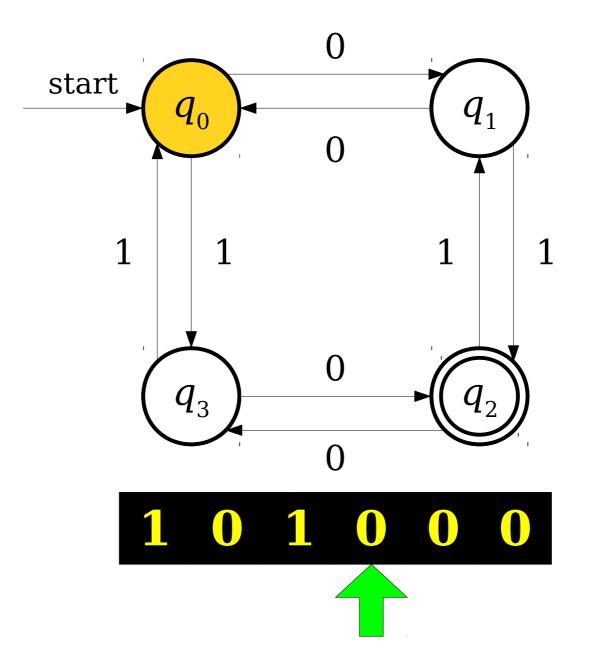


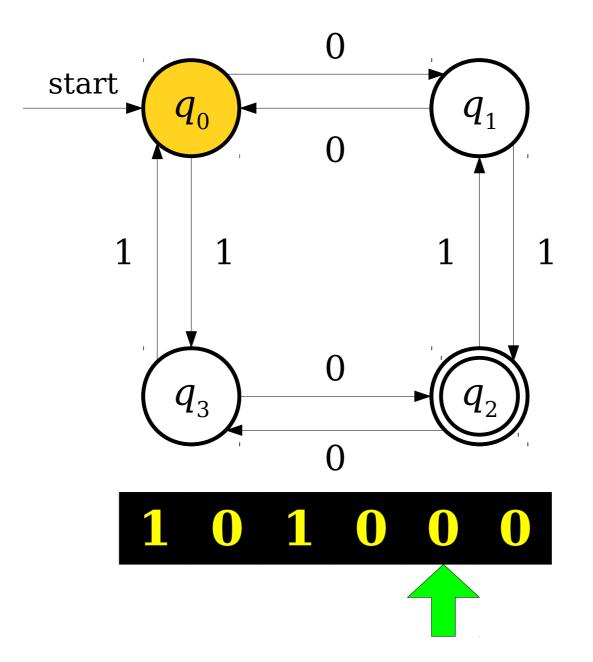


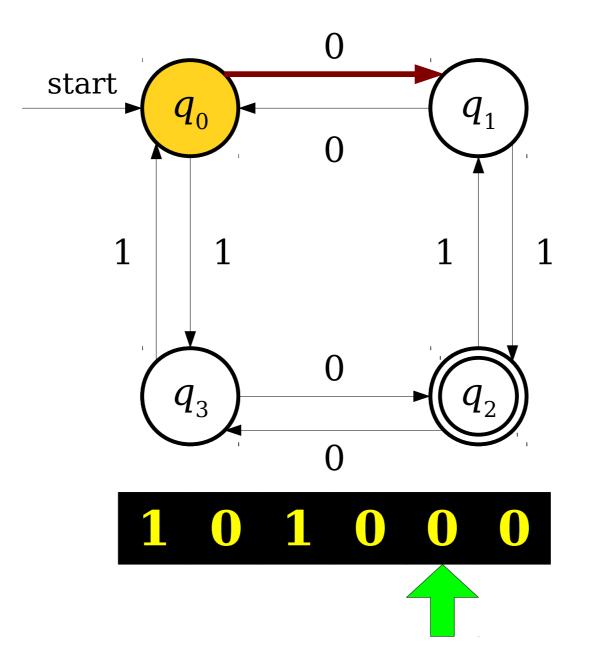


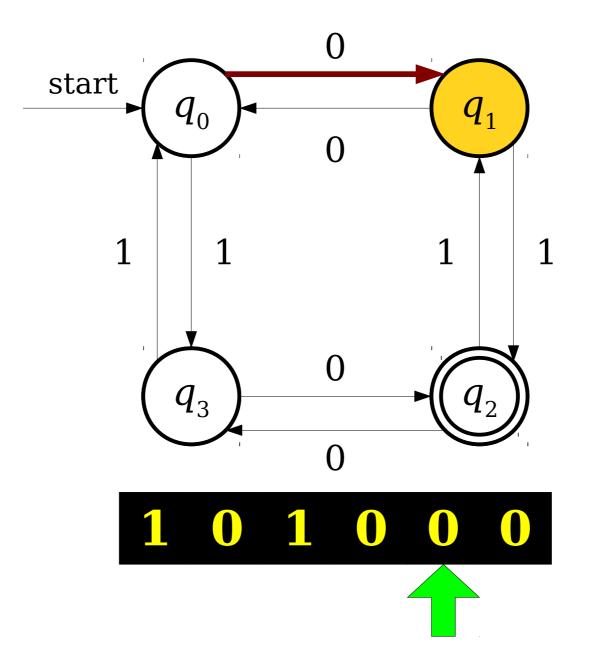


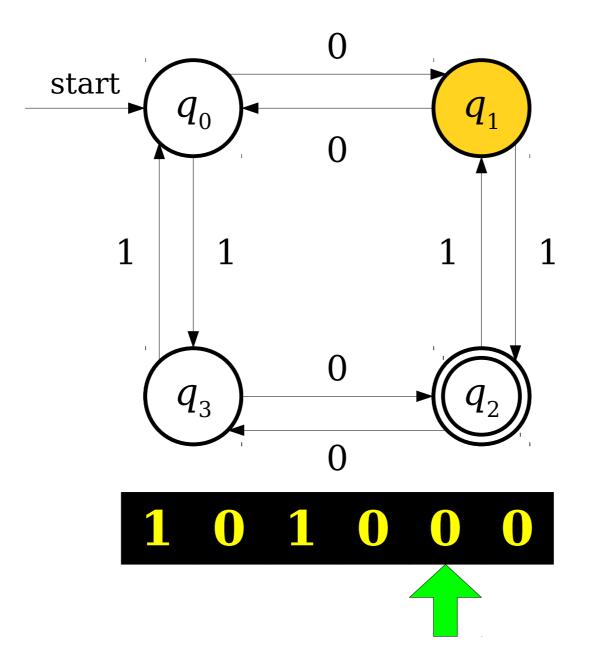


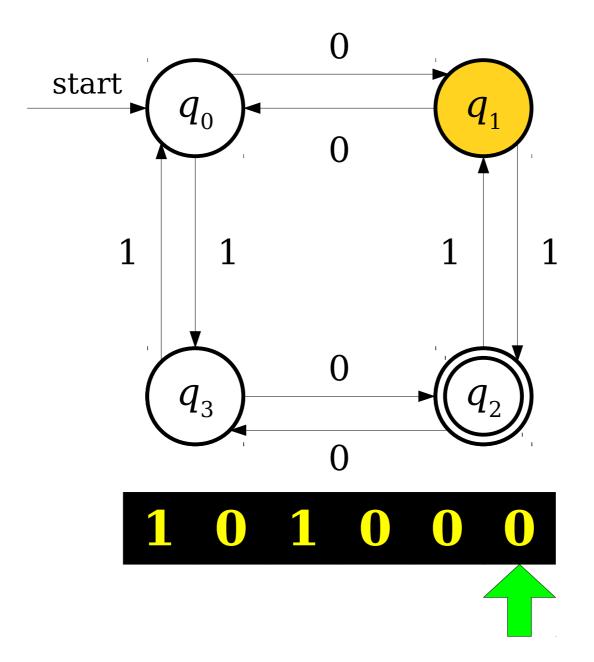


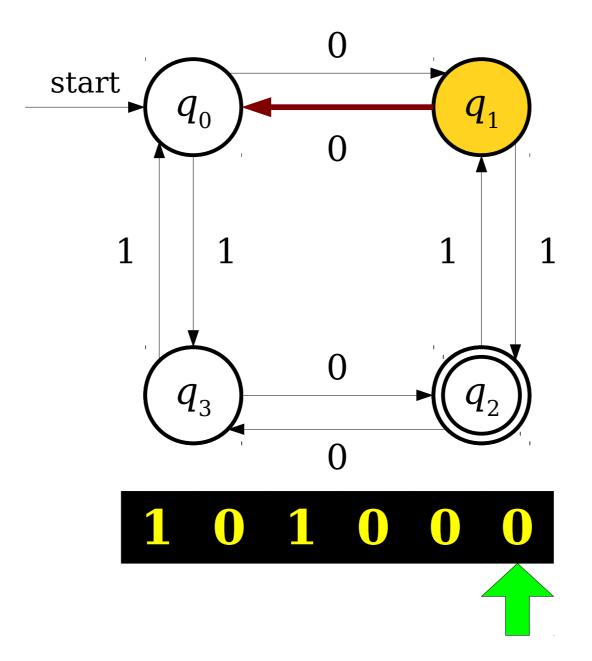


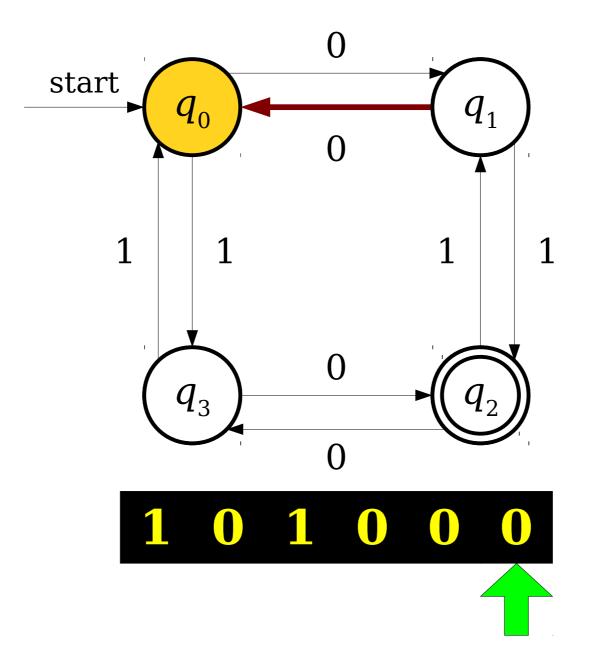


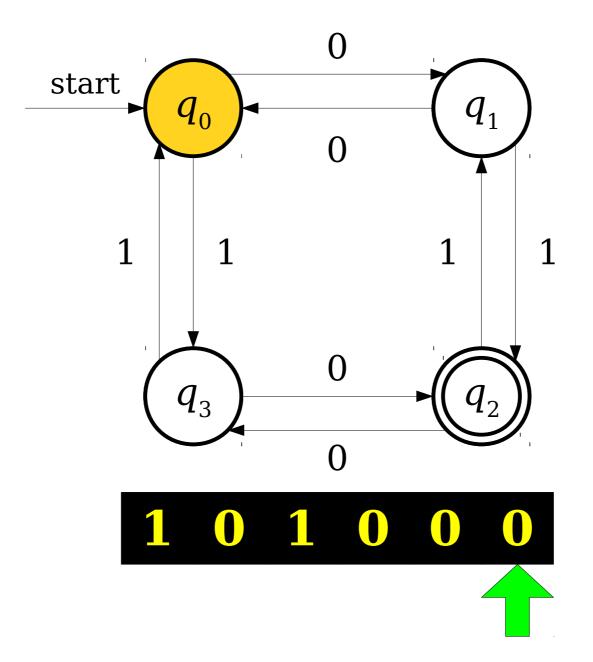


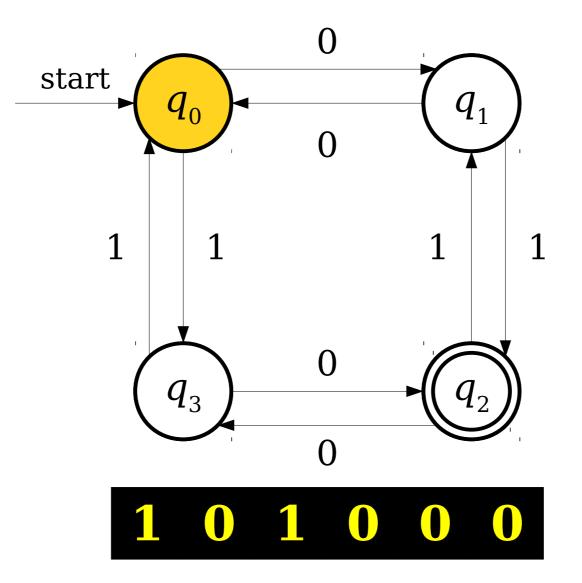


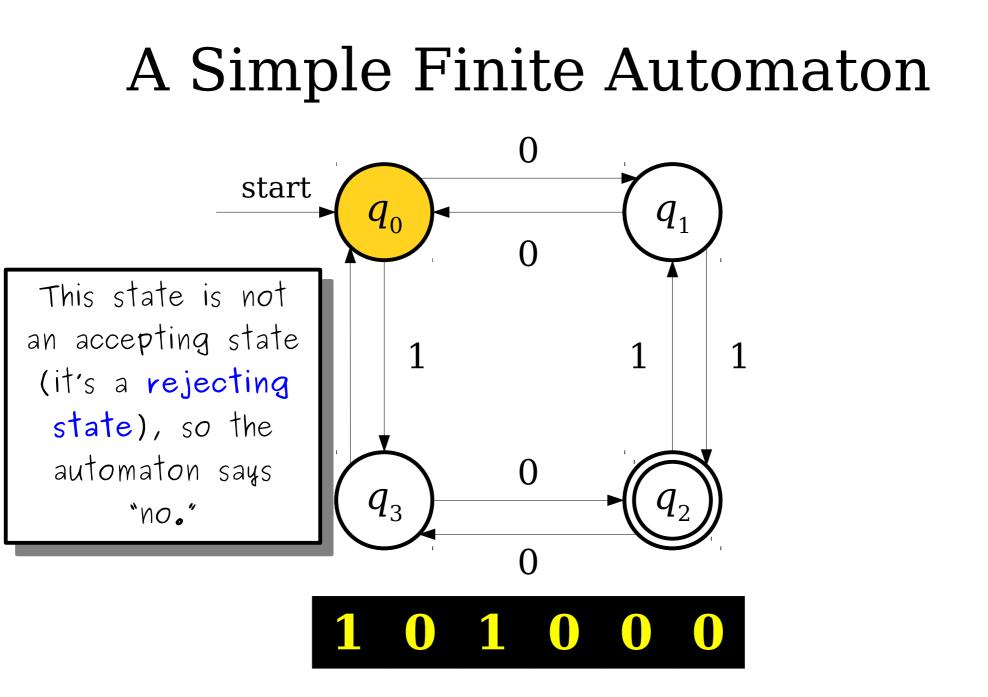


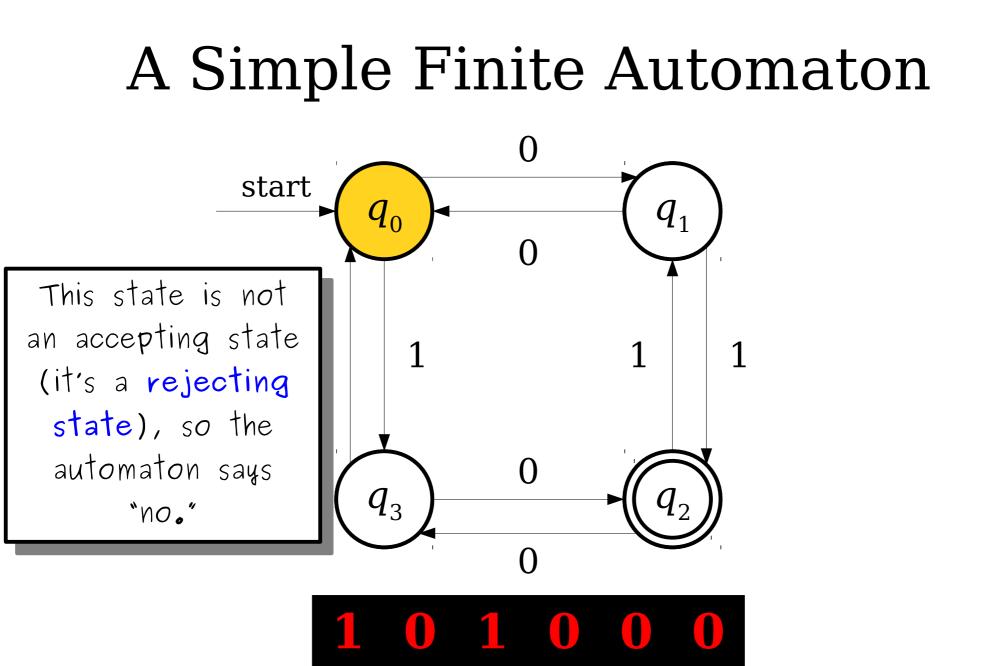


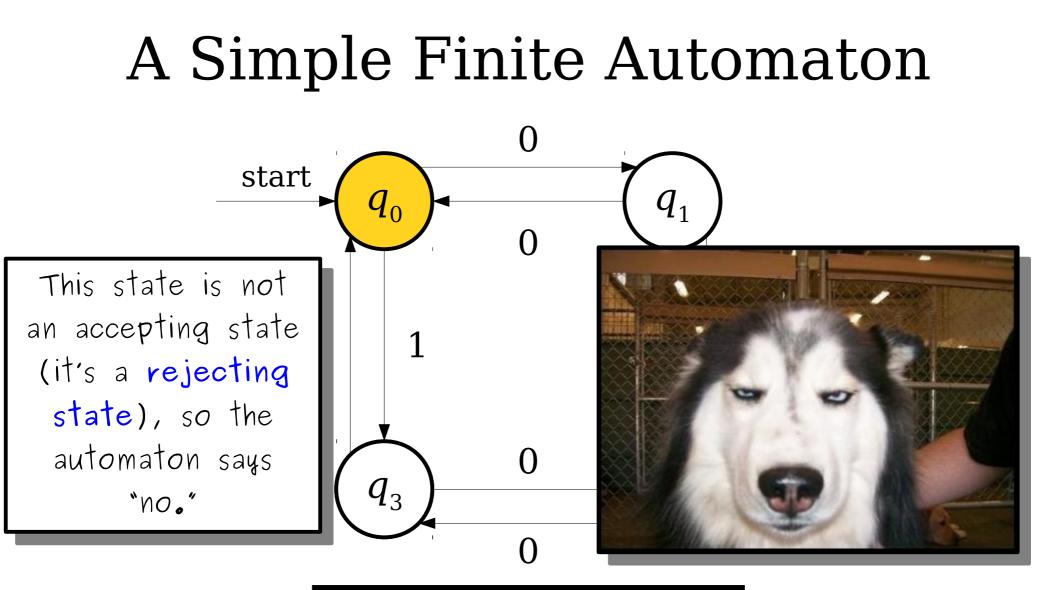




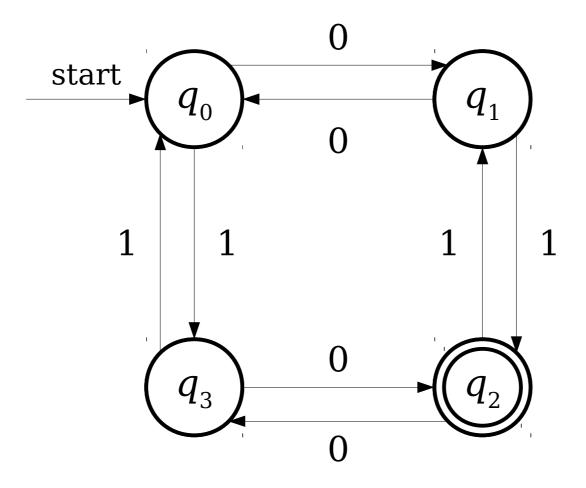


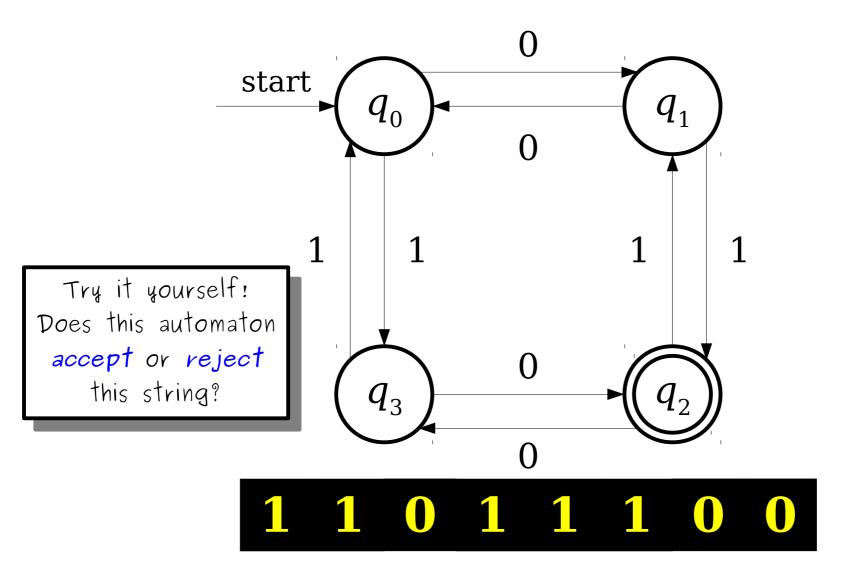






1 0 1 0 0 0





The Story So Far

- A *finite automaton* is a collection of *states* joined by *transitions*.
- Some state is designated as the *start state*.
- Some number of states are designated as accepting states.
- The automaton processes a string by beginning in the start state and following the indicated transitions.
- If the automaton ends in an accepting state, it *accepts* the input.
- Otherwise, the automaton *rejects* the input.

Time-Out For Announcements!

Midterm Graded

- We've finished grading the midterm exam and emailed out grades yesterday.
- We'll be handing back exams right after lecture today.
 - SCPD students we'll send the exams back to the SCPD office later today.
- **Please read the solutions handout**. It contains statistics, common mistakes, and advice for going forward.

How to Improve

- If you aren't happy with your exam score and aren't sure what to do next, check out Handout #30, "How to Improve in CS103," which is up on the course website.
- There is plenty of time available to sharpen your skills this quarter. You can do this.
 We've seen people turn things around after the first midterm. It's absolutely doable.

More Practice

- If you're looking for more practice, check out *Extra Practice Problems 2*, which is now up on the course website.
- It's a collection of 21 problems about discrete structures, focusing on the topics from PS3, PS4, and PS5.
- Solutions are also available.

Problem Sets

- Problem Set Four solutions are now available online and in hardcopy.
- We'll aim to get PS4 graded and returned before PS5 comes due, but because of midterm grading it'll be a bit later than usual.
- Problem Set Five is due this Friday at 2:30PM.
 - As always, ask questions if you have them! Office hours and Piazza are great places to start.

Your Questions

"For former CS103 students who have gone on to achieve wild success, what traits did they exhibit when they were in your class?"

> They knew how to ask good questions when they were stuck.

"Your most embarrassing moment ever?"

The two or three times I showed up with inappropriate footwear. Why does everyone point this out?

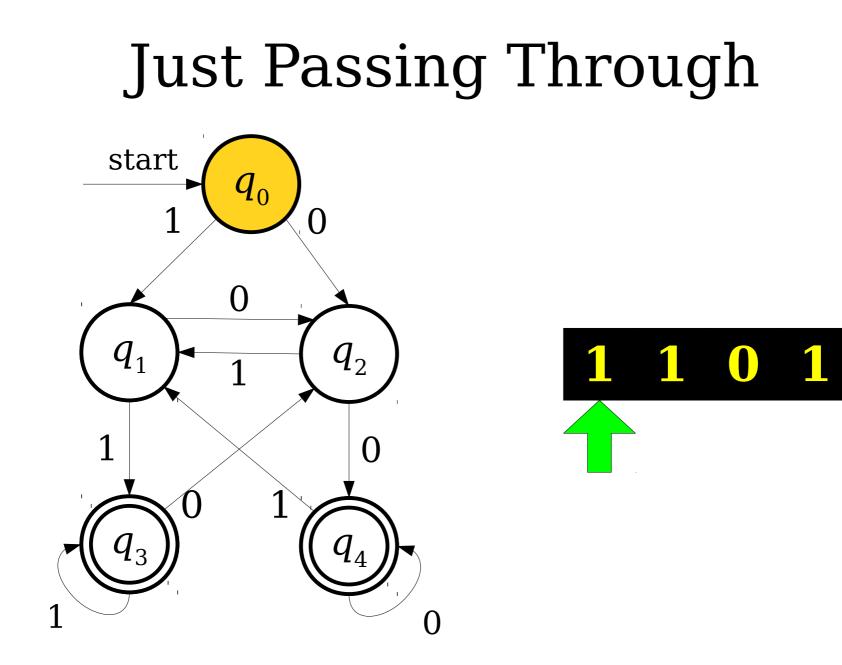
Back to CS103!

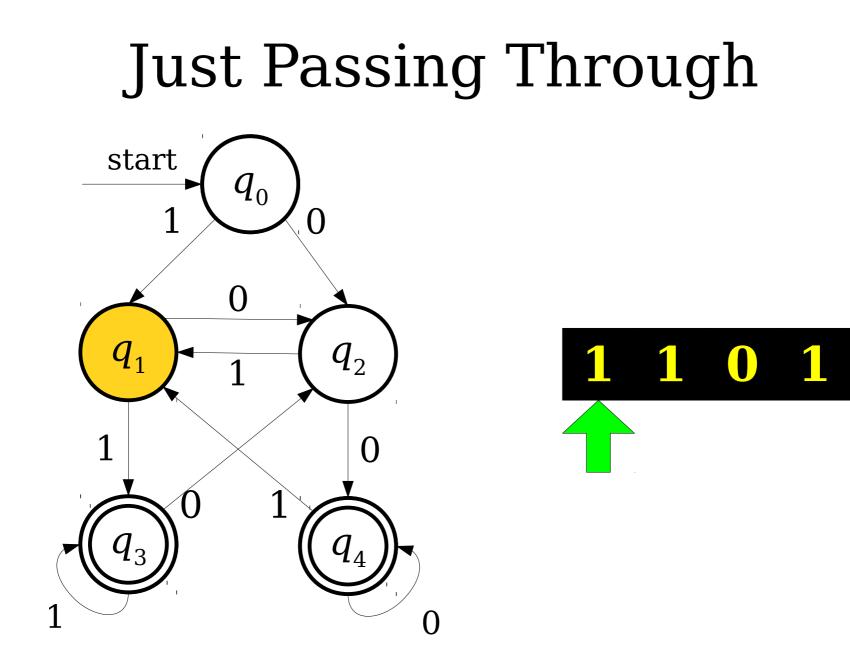
Just Passing Through start \boldsymbol{q}_0 1 \mathbf{O} () \boldsymbol{q}_1 \boldsymbol{q}_2 1 1 () \boldsymbol{q}_3 1 0

Just Passing Through start \boldsymbol{q}_0 1 \mathbf{O} () \boldsymbol{q}_1 \boldsymbol{q}_2 1 1 1 () \boldsymbol{q}_3 1 0

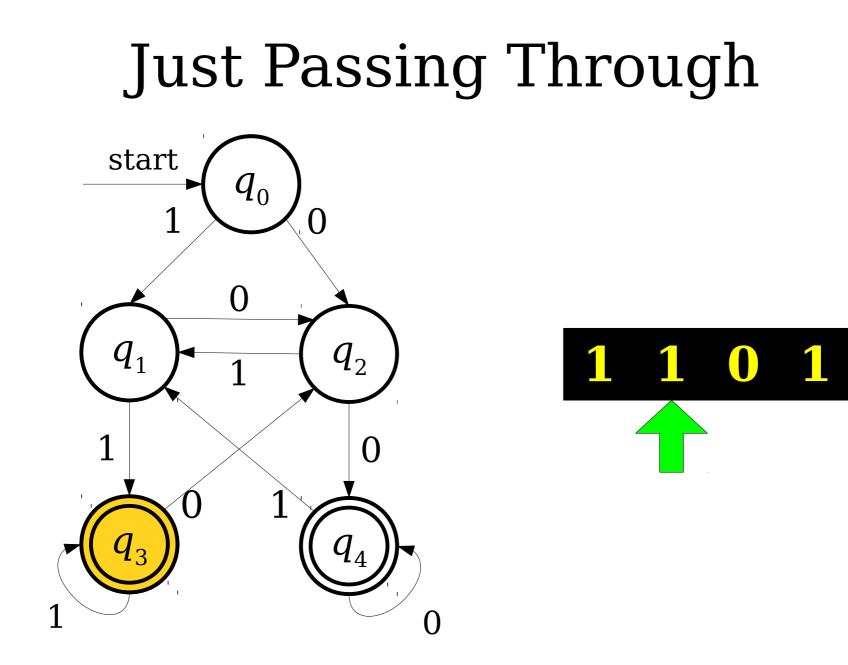
Just Passing Through start q_0 1 \mathbf{O} () ${\it q}_1$ \boldsymbol{q}_2 1 1 () \boldsymbol{q}_3 1 0

1



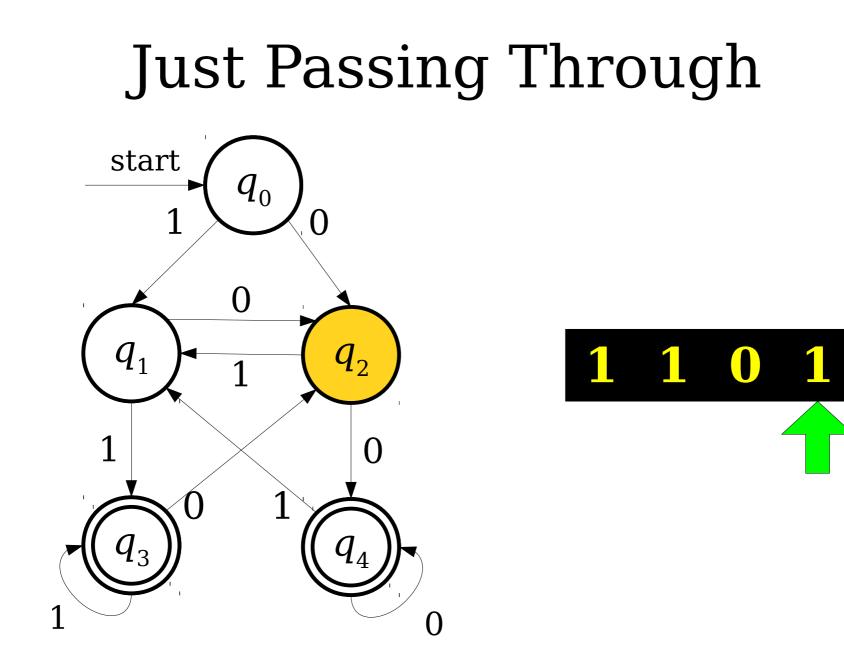


Just Passing Through start \boldsymbol{q}_0 1 \mathbf{O} () \boldsymbol{q}_1 \boldsymbol{q}_2 \mathbf{O} 1 1 \boldsymbol{q}_3 1 0



Just Passing Through start \boldsymbol{q}_0 1 \mathbf{O} () \boldsymbol{q}_1 \boldsymbol{q}_2 1 1 1 $\left(\right)$ q_3 1 0

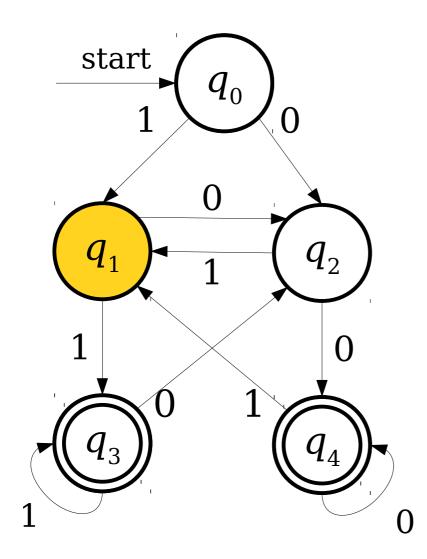
Just Passing Through start \boldsymbol{q}_0 1 \mathbf{O} () \boldsymbol{q}_1 \boldsymbol{q}_2 1 1 1 () \boldsymbol{q}_3 1 0



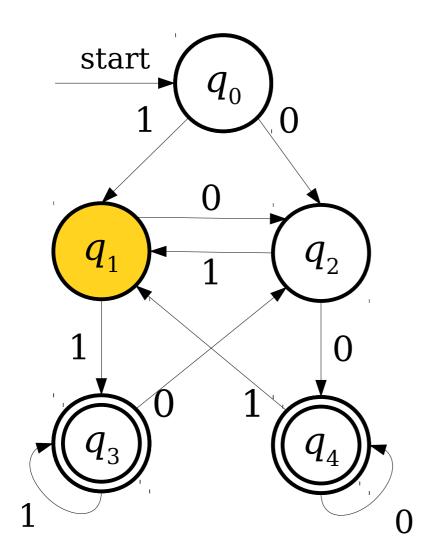
Just Passing Through start \boldsymbol{q}_0 1 \mathbf{O} () \boldsymbol{q}_1 \boldsymbol{q}_2 \mathbf{O} 1 1 1 \boldsymbol{q}_3 1 0

Just Passing Through start \boldsymbol{q}_0 1 \mathbf{O} () \boldsymbol{q}_1 \boldsymbol{q}_2 1 1 1 () \boldsymbol{q}_3 1 0

Just Passing Through



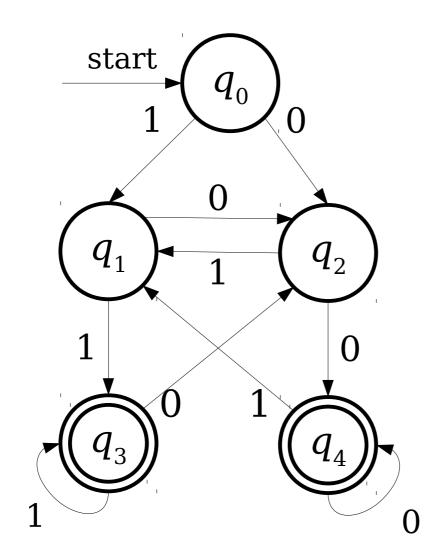
Just Passing Through



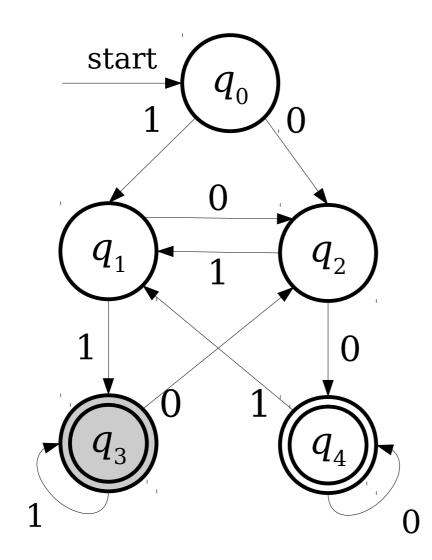
A finite automaton does *not* accept as soon as it enters an accepting state.

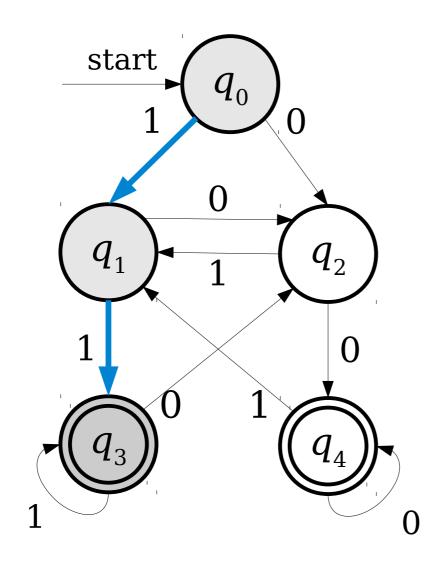
A finite automaton accepts if it **ends** in an accepting state.

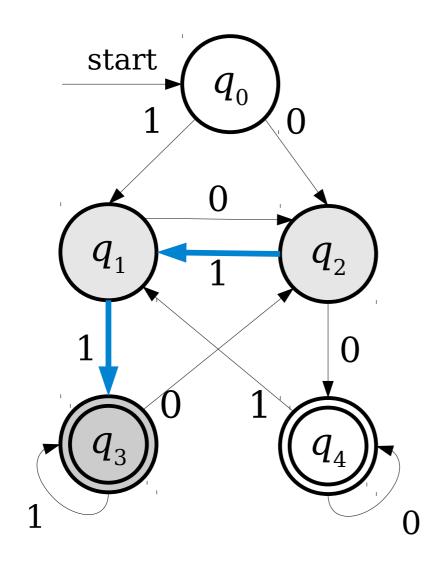
What Does This Accept?

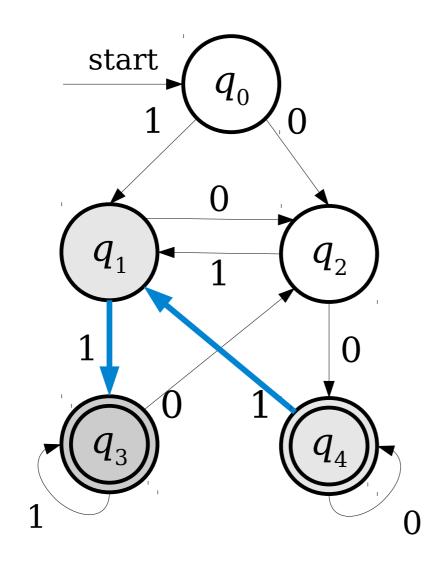


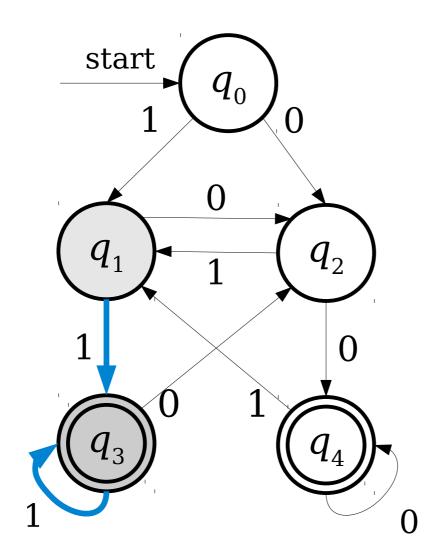
What Does This Accept?

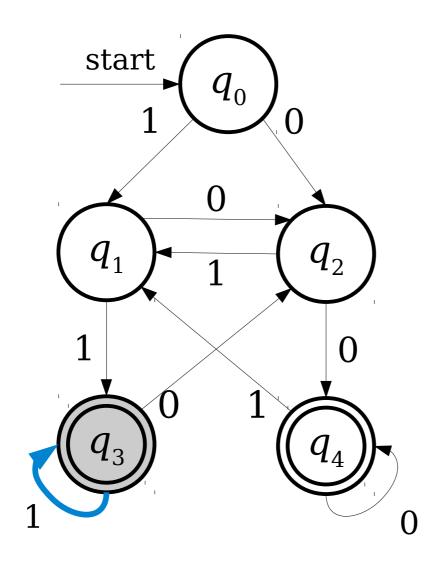


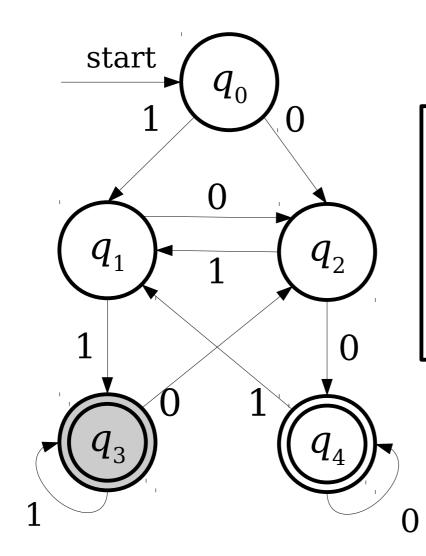




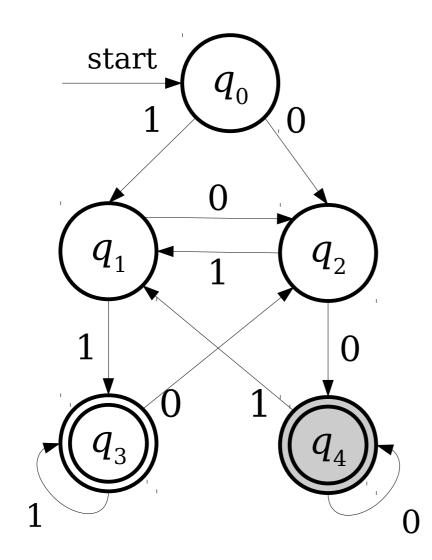


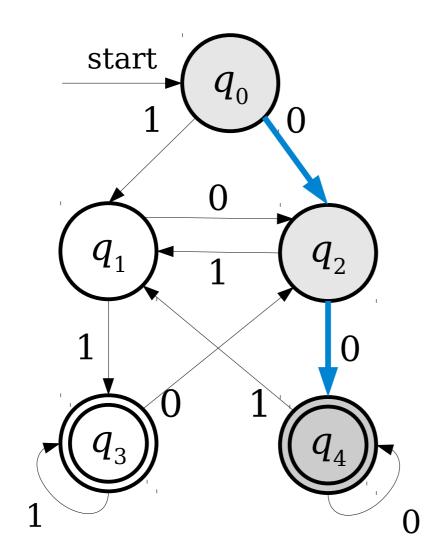


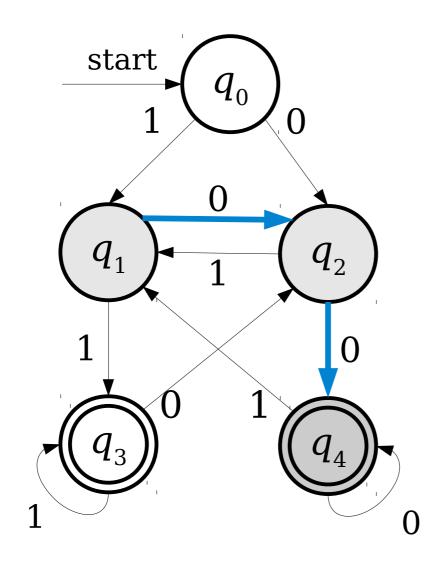


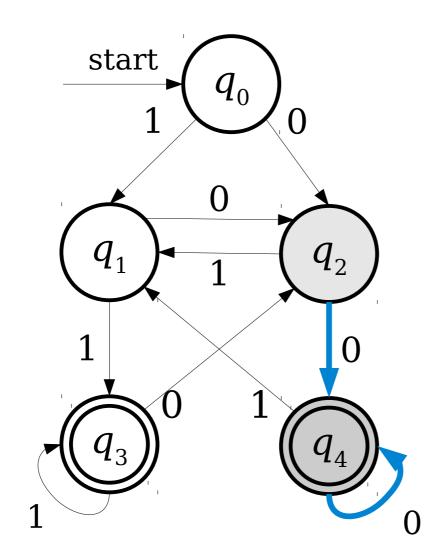


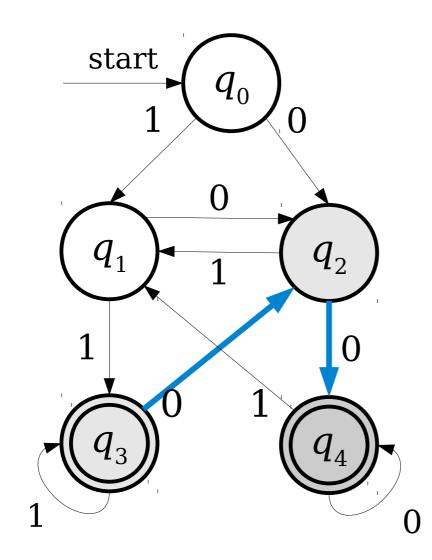
No matter where we start in the automaton, after seeing two 1's, we end up in accepting state g3.

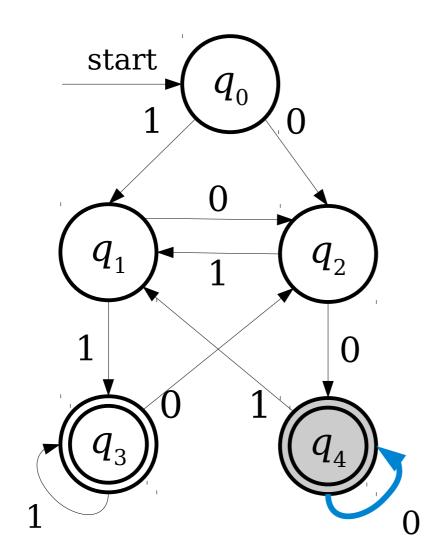


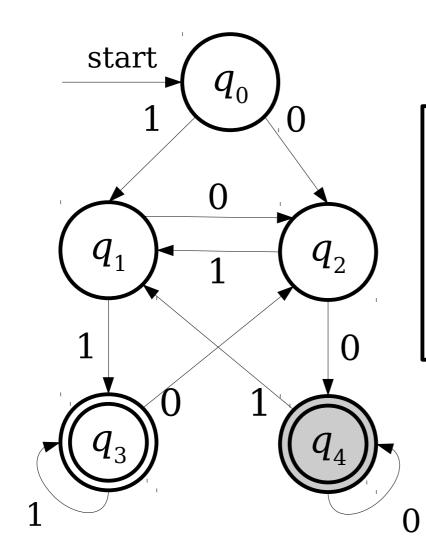




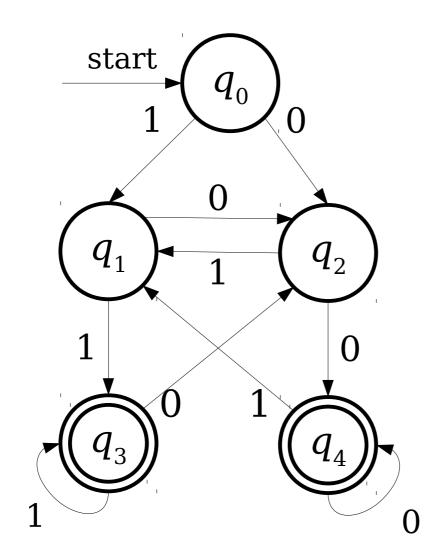


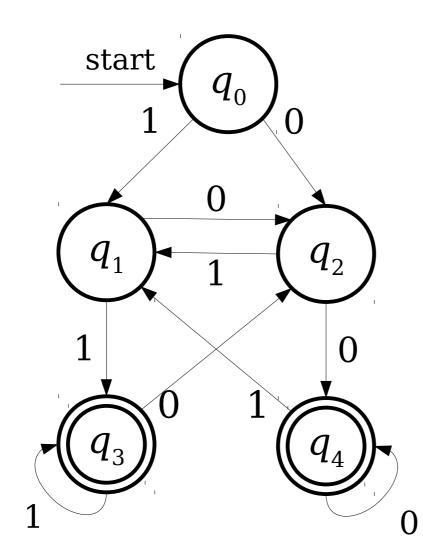






No matter where we start in the automaton, after seeing two o's, we end up in accepting state q_4 .

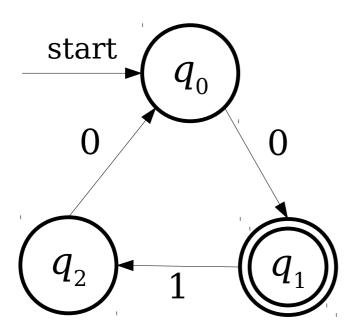


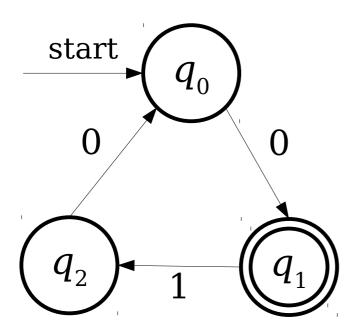


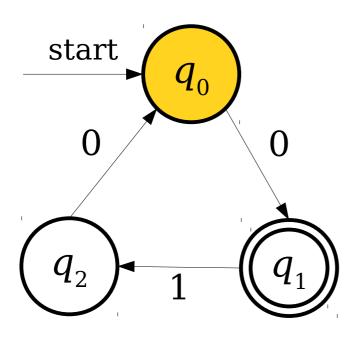
This automaton accepts a string in {0, 1}* iff the string ends in 00 or 11. The *language of an automaton* is the set of strings that it accepts.

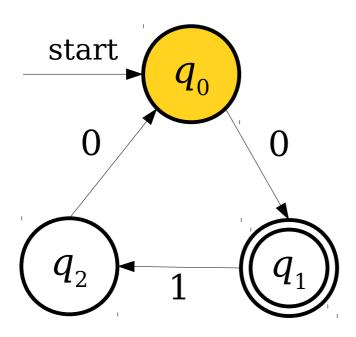
If D is an automaton that processes characters from the alphabet Σ , then $\mathscr{J}(D)$ is formally defined as

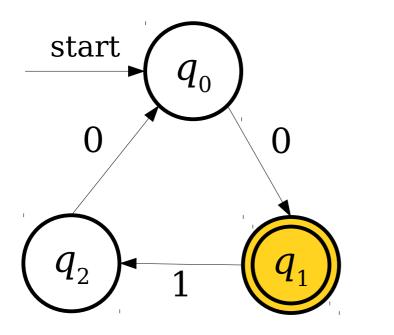
 $\mathscr{L}(D) = \{ w \in \Sigma^* \mid D \text{ accepts } w \}$

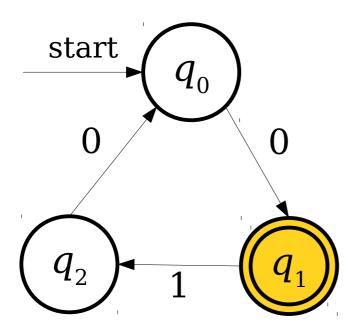


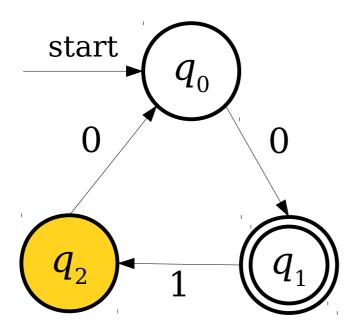


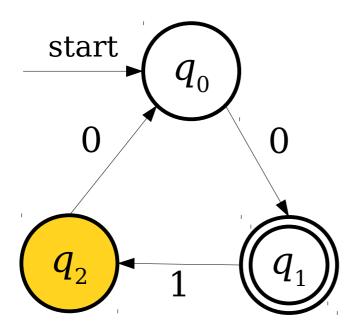


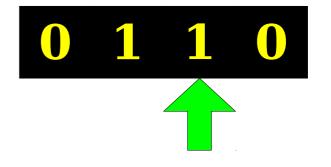


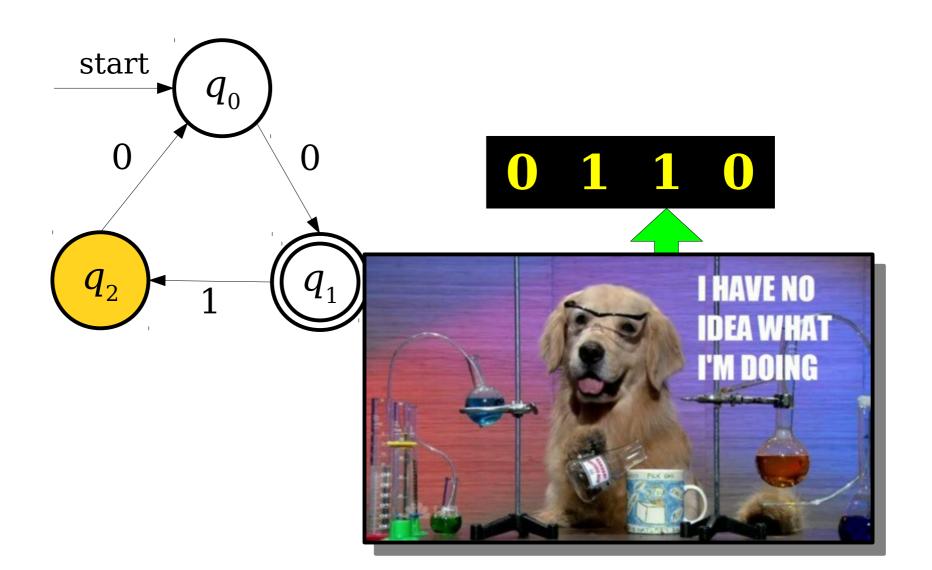


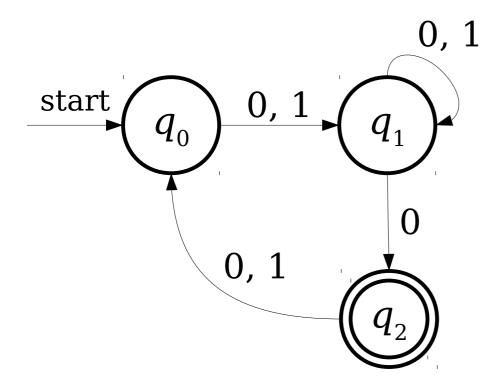


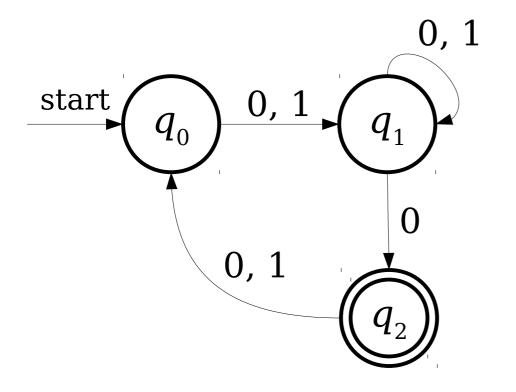


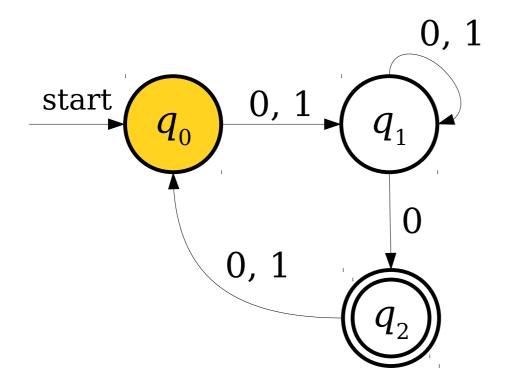


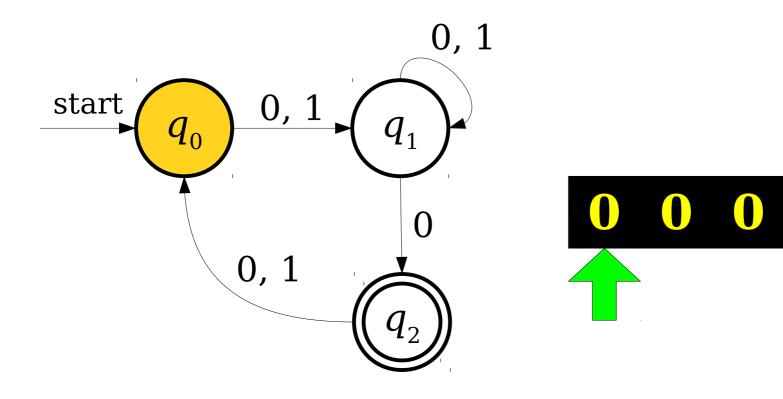


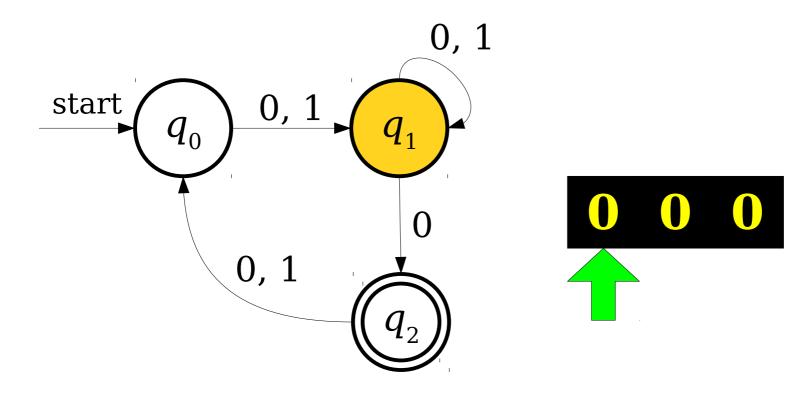


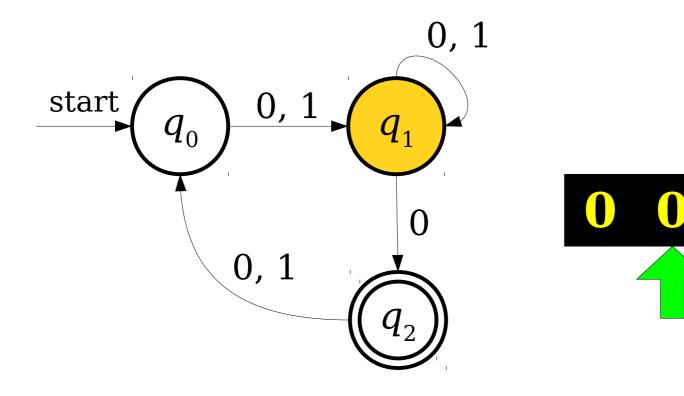


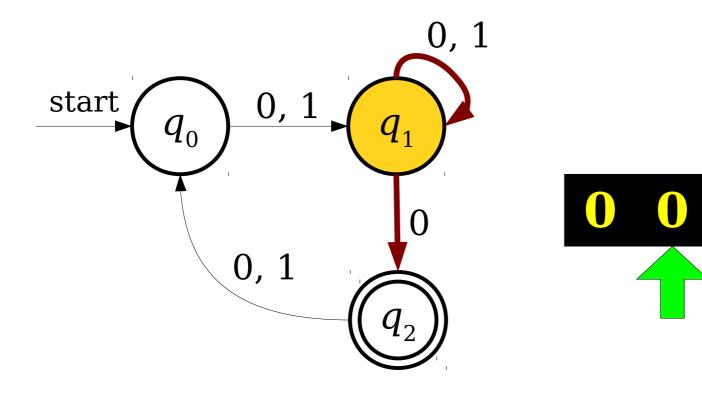


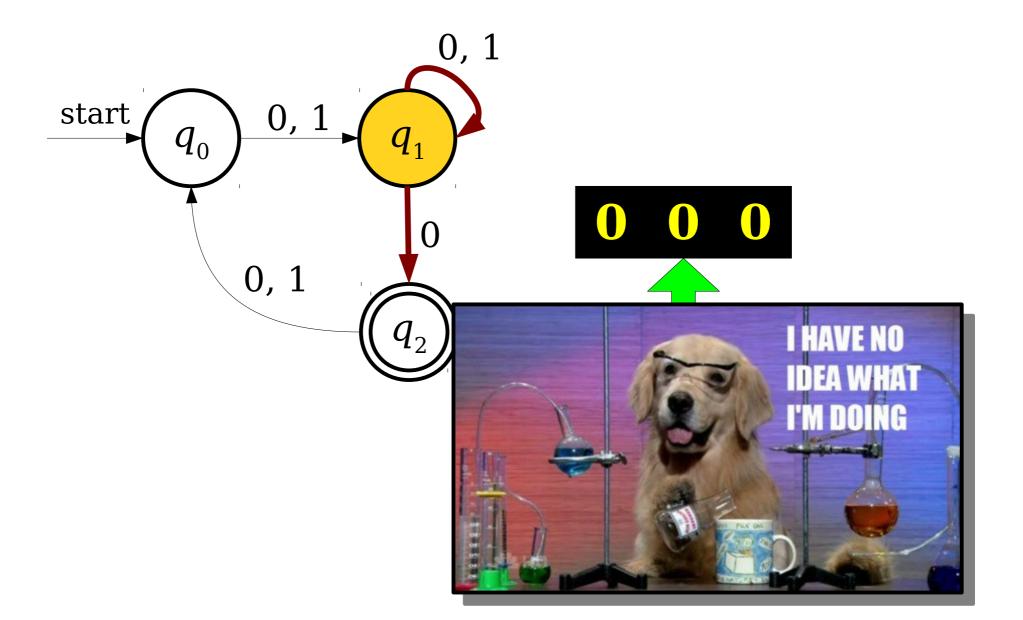












The Need for Formalism

- In order to reason about the limits of what finite automata can and cannot do, we need to formally specify their behavior in *all* cases.
- All of the following need to be defined or disallowed:
 - What happens if there is no transition out of a state on some input?
 - What happens if there are *multiple* transitions out of a state on some input?

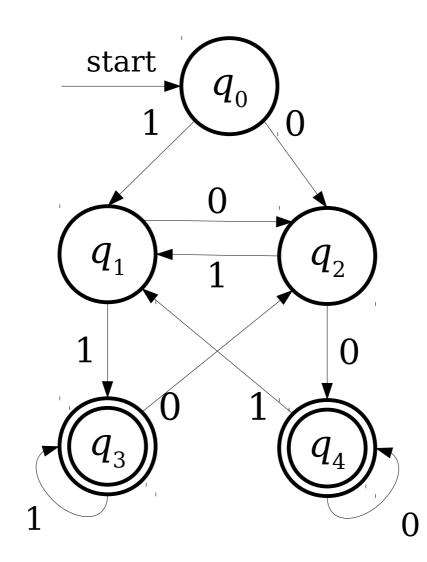
DFAs

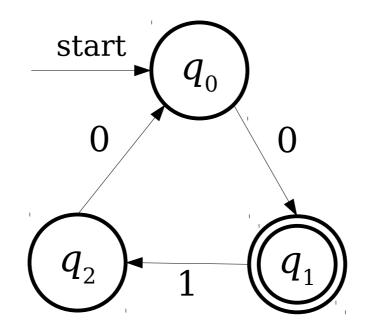
- A **DFA** is a
 - **D**eterministic
 - **F**inite
 - Automaton
- DFAs are the simplest type of automaton that we will see in this course.

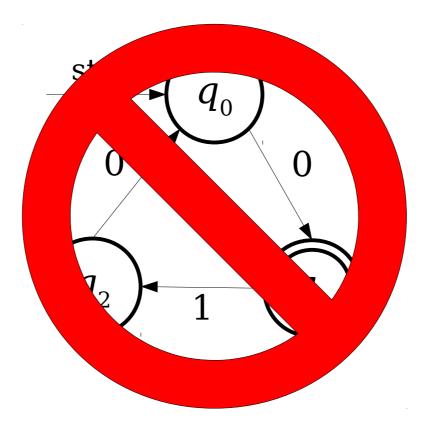
DFAs

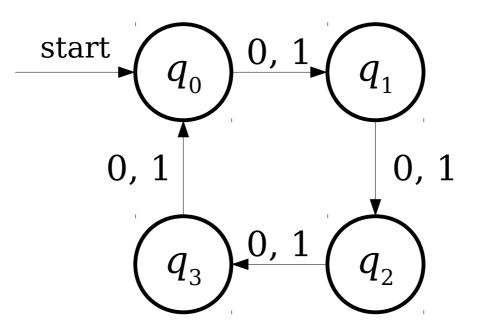
- A DFA is defined relative to some alphabet $\boldsymbol{\Sigma}.$
- For each state in the DFA, there must be $exactly \ one$ transition defined for each symbol in $\Sigma.$
 - This is the "deterministic" part of DFA.
- There is a unique start state.
- There are zero or more accepting states.

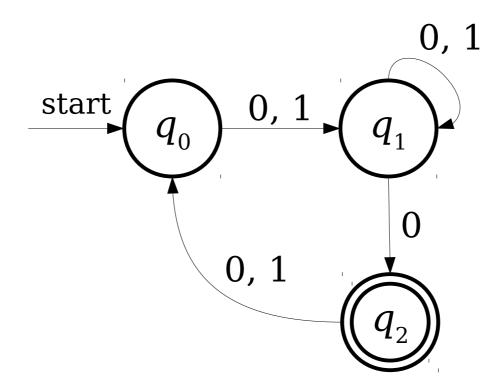


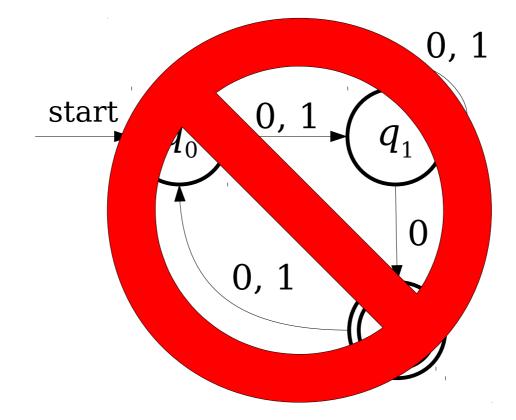












Is this a DFA?

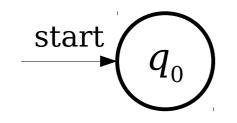
Is this a DFA?

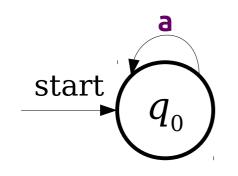
Is this a DFA?

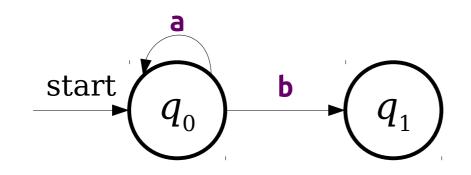
Drinking Family of Aardvarks

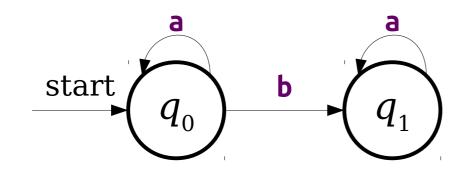
Designing DFAs

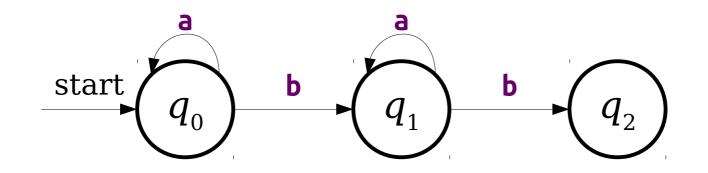
- At each point in its execution, the DFA can only remember what state it is in.
- **DFA Design Tip:** Build each state to correspond to some piece of information you need to remember.
 - Each state acts as a "memento" of what you're supposed to do next.
 - Only finitely many different states means only finitely many different things the machine can remember.

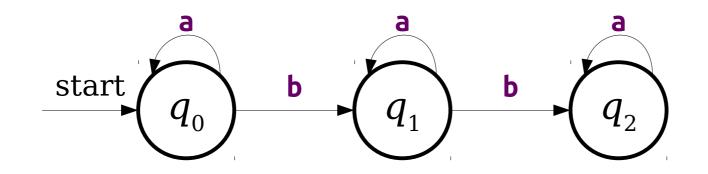


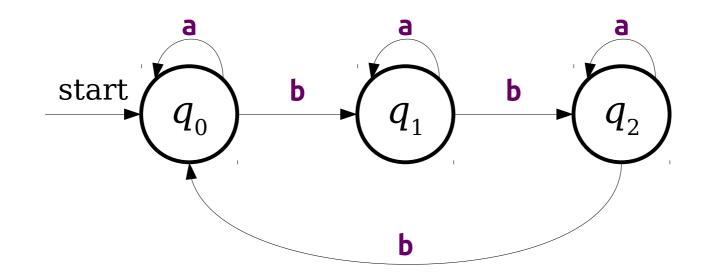


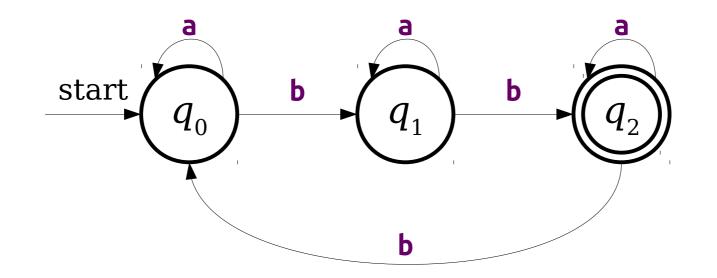


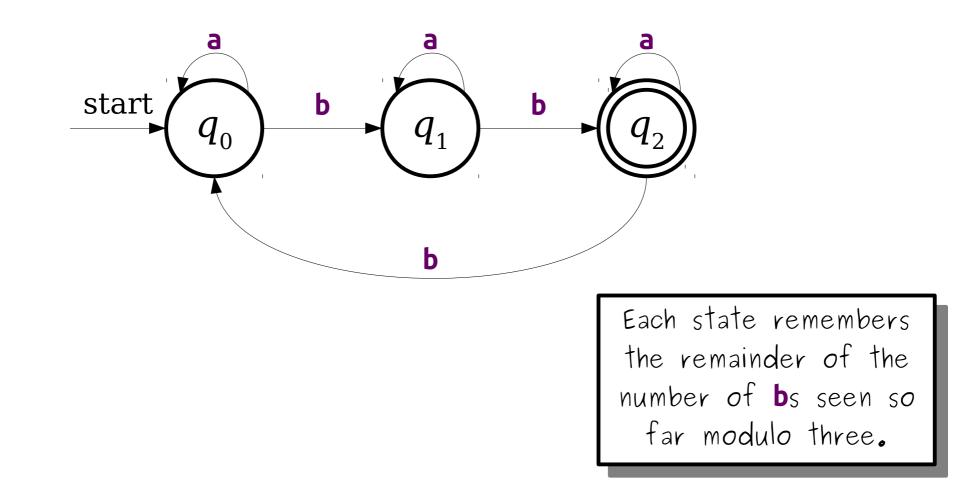


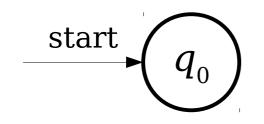


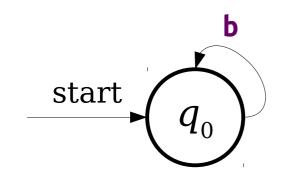


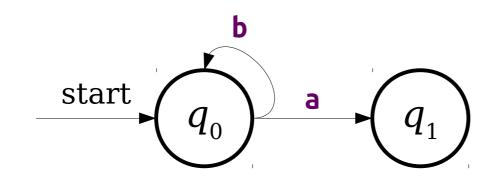


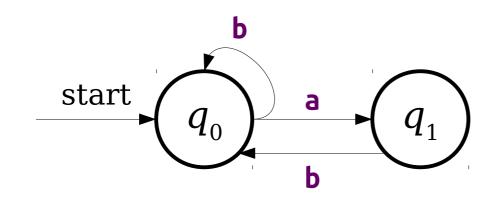


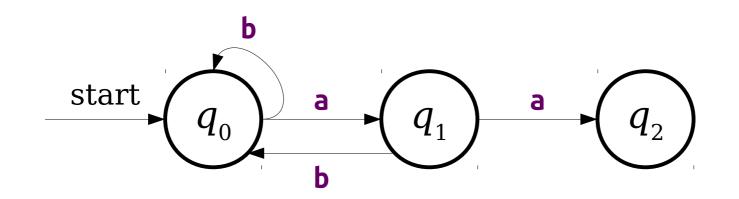


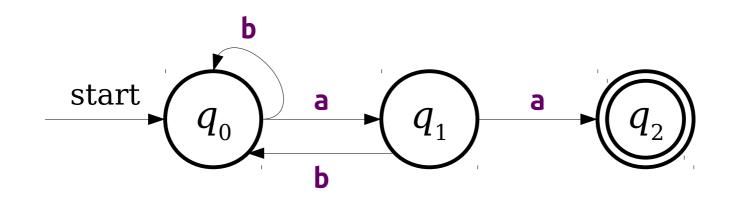


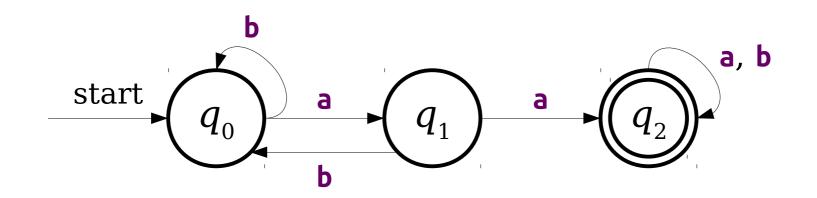


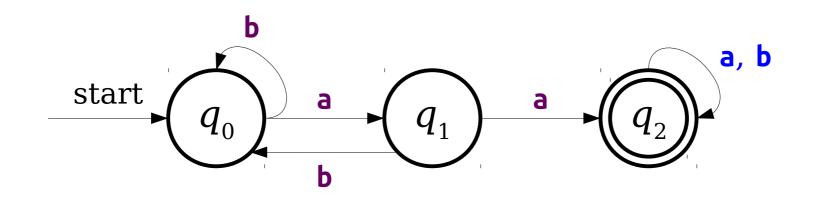


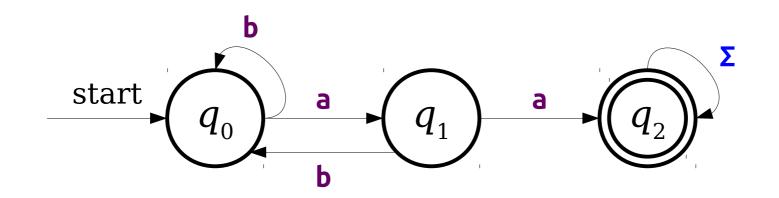


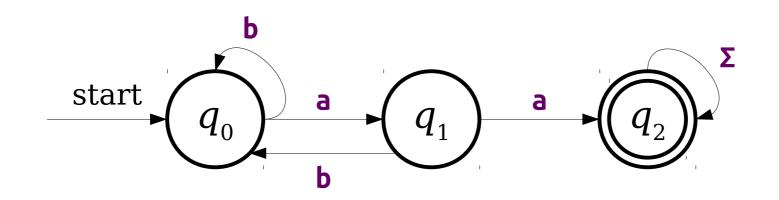












More Elaborate DFAs

 $L = \{ w \in \{a, *, /\} \}$ | w represents a C-style comment }

Let's have the **a** symbol be a placeholder for "some character that isn't a star or slash."

Try designing a DFA for comments! Here's some test cases to help you check your work:

Accepted:

Rejected:

/*a*/ /**/ /*aaa*aaa*/ /*a/a*/

More Elaborate DFAs

 $L = \{ w \in \{a, *, /\} \}$ | w represents a C-style comment }

