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What problems can we solve with a computer?

What kind of 
computer?



  

Computers are Messy
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Computers are Messy

That messiness makes it hard to rigorously 
say what we intuitively know to be true: 

that, on some fundamental level, different 
brands of computers or programming 

languages are more or less equivalent in 
what they are capable of doing.

C  vs  C++
         vs  Java
                vs Python



  

We need a simpler way of 
discussing computing machines.



  

An automaton (plural: automata) is a 
mathematical model of a computing device.
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Why Build Models?

● Mathematical simplicity.
● It is significantly easier to manipulate our 

abstract models of computers than it is to 
manipulate actual computers.

● Intellectual robustness.
● If we pick our models correctly, we can make 

broad, sweeping claims about huge classes of 
real computers by arguing that they're just 
special cases of our more general models.



  

Why Build Models?

● The models of computation we will explore in 
this class correspond to different conceptions of 
what a computer could do.

● Finite automata (next two weeks) are an 
abstraction of computers with finite resource 
constraints.
● Provide upper bounds for the computing machines 

that we can actually build.
● Turing machines (later) are an abstraction of 

computers with unbounded resources.
● Provide upper bounds for what we could ever hope to 

accomplish.



  

What problems can we solve with a computer?



  

What problems can we solve with a computer?

What is a 
“problem?”



  

Problems with Problems

● Before we can talk about what problems 
we can solve, we need a formal definition 
of a “problem.”

● We want a definition that
● corresponds to the problems we want to solve,
● captures a large class of problems, and
● is mathematically simple to reason about.

● No one definition has all three properties.



  

Formal Language Theory



  

Strings

● An alphabet is a finite, nonempty set of symbols 
called characters.

● Typically, we use the symbol Σ to refer to an alphabet.

● A string over an alphabet Σ is a finite sequence of 
characters drawn from Σ.

● Example: Let Σ = {a, b}. Here are some strings over Σ:

a    aabaaabbabaaabaaaabbb    abbababba  

● The empty string has no characters and is denoted ε.

● Calling attention to an earlier point: since all strings 
are finite sequences of characters from Σ, you cannot 
have a string of infinite length.



  

Languages

● A formal language is a set of strings.
● We say that L is a language over Σ if it is a 

set of strings over Σ.
● Example: The language of palindromes over 

Σ = {a, b, c} is the set
● {ε, a, b, c, aa, bb, cc, aaa, aba, aca, bab, … }

● The set of all strings composed from letters in 
Σ is denoted Σ*.

● Formally, we say that L is a language over Σ if 
L ⊆ Σ*.

 



  

The Cast of Characters

● Languages are sets of strings.
● Strings are finite sequences of characters.
● Characters are individual symbols.
● Alphabets are sets of characters.

Languages

Strings

are sets of            

Characters
are finite sequences of

Alphabets

are nonempty, finite sets of                           



  

The Model

● Fundamental Question: For what languages L 
can you design an automaton that takes as input a 
string, then determines whether the string is in L?

● The answer depends on the choice of L, the choice 
of automaton, and the definition of “determines.”

● In answering this question, we’ll go through a 
whirlwind tour of models of computation and see 
how this seemingly abstract question has very real 
and powerful consequences.



  

To Summarize

● An automaton is an idealized 
mathematical computing machine.

● A language is a set of strings, a string 
is a (finite) sequence of characters, and a 
character is an element of an alphabet.

● Goal: Figure out in which cases we can 
build automata for particular languages.



  

What problems can we solve with a computer?



  

Finite Automata



  

It’s time for another round of

Mathematicalisthenics!



  

We will distribute one packet to each row.

When the packet comes to you, follow the 
directions to help it on its Magical Journey.



  

If you are holding a packet an the top sheet 
has a giant star on it, please raise your 

hand.

★



  

What’s going on here?



  

A finite automaton is a simple type of  
mathematical machine for determining

whether a string is contained within some
language.



  

Each finite automaton consists of a set
of states connected by transitions.
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The Story So Far

● A finite automaton is a collection of states joined 
by transitions.

● Some state is designated as the start state.

● Some number of states are designated as 
accepting states.

● The automaton processes a string by beginning in 
the start state and following the indicated 
transitions.

● If the automaton ends in an accepting state, it 
accepts the input.

● Otherwise, the automaton rejects the input.



  

Time-Out For Announcements!



  

Midterm Graded

● We’ve finished grading the midterm exam 
and emailed out grades yesterday.

● We’ll be handing back exams right after 
lecture today.
● SCPD students – we’ll send the exams back to 

the SCPD office later today.
● Please read the solutions handout. It 

contains statistics, common mistakes, and 
advice for going forward.



  

How to Improve

● If you aren’t happy with your exam score 
and aren’t sure what to do next, check out 
Handout #30, “How to Improve in CS103,” 
which is up on the course website.

● There is plenty of time available to sharpen 
your skills this quarter. You can do this. 
We’ve seen people turn things around after 
the first midterm. It’s absolutely doable.



  

More Practice

● If you’re looking for more practice, check 
out Extra Practice Problems 2, which 
is now up on the course website.

● It’s a collection of 21 problems about 
discrete structures, focusing on the 
topics from PS3, PS4, and PS5.

● Solutions are also available.



  

Problem Sets

● Problem Set Four solutions are now available 
online and in hardcopy.

● We’ll aim to get PS4 graded and returned 
before PS5 comes due, but because of midterm 
grading it’ll be a bit later than usual.

● Problem Set Five is due this Friday at 2:30PM.
● As always, ask questions if you have them! Office 

hours and Piazza are great places to start.



  

Your Questions



  

“For former CS103 students who have 
gone on to achieve wild success, what 

traits did they exhibit when they were in 
your class?”

They knew how to 
ask good 

questions when 
they were stuck.

They knew how to 
ask good 

questions when 
they were stuck.



  

“Your most embarrassing moment ever?”

The two or three times I 
showed up with inappropriate 
footwear. Why does everyone 

point this out?

The two or three times I 
showed up with inappropriate 
footwear. Why does everyone 

point this out?



  

Back to CS103!
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A finite automaton does not accept as
soon as it enters an accepting state.

A finite automaton accepts if it ends in
an accepting state.



  

What Does This Accept?
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This automaton 
accepts a string in 

{0, 1}* iff the string 
ends in 00 or 11.
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The language of an automaton is the 
set of strings that it accepts.

 

If D is an automaton that processes 
characters from the alphabet Σ, then ℒ(D) 

is formally defined as
 

ℒ(D) = { w ∈ Σ* | D accepts w }
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The Need for Formalism

● In order to reason about the limits of 
what finite automata can and cannot do, 
we need to formally specify their behavior 
in all cases.

● All of the following need to be defined or 
disallowed:
● What happens if there is no transition out of 

a state on some input?
● What happens if there are multiple 

transitions out of a state on some input?



  

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton 
that we will see in this course.



  

DFAs

● A DFA is defined relative to some 
alphabet Σ.

● For each state in the DFA, there must be 
exactly one transition defined for each 
symbol in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.



  

Is this a DFA over {0, 1}?
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Is this a DFA?

Drinking Family of Aardvarks



  

Designing DFAs

● At each point in its execution, the DFA 
can only remember what state it is in.

● DFA Design Tip: Build each state to 
correspond to some piece of information 
you need to remember.
● Each state acts as a “memento” of what 

you're supposed to do next.
● Only finitely many different states means 

only finitely many different things the 
machine can remember.



  

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
         to two modulo three }
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Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }
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More Elaborate DFAs
L = { w ∈ {a, *, /}* | w represents a C-style comment  }

Let’s have the a symbol be a placeholder for “some character that 
isn’t a star or slash.”

Try designing a DFA for comments! Here’s some test cases to help 
you check your work:

Let’s have the a symbol be a placeholder for “some character that 
isn’t a star or slash.”

Try designing a DFA for comments! Here’s some test cases to help 
you check your work:

Accepted:

/*a*/
/**/
/***/

/*aaa*aaa*/
/*a/a*/

Rejected:

/**
/**/a/*aa*/
aaa/**/aa

/*/
/**a/
//aaaa
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