Finite Automata Part Two

Recap from Last Time

DFAs

- A **DFA** is a
 - **D**eterministic
 - **F**inite
 - Automaton
- DFAs are the simplest type of automaton that we will see in this course.

DFAs

- A DFA is defined relative to some alphabet $\boldsymbol{\Sigma}.$
- For each state in the DFA, there must be $exactly \ one$ transition defined for each symbol in $\Sigma.$
 - This is the "deterministic" part of DFA.
- There is a unique start state.
- There are zero or more accepting states.

A Sample DFA

 $L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring } \}$

New Stuff!

	0	1
q_{0}		
\boldsymbol{q}_1		
\boldsymbol{q}_2		
\boldsymbol{q}_3		

	0	1
\boldsymbol{q}_{0}	\boldsymbol{q}_1	\boldsymbol{q}_0
\boldsymbol{q}_1	q ₃	\boldsymbol{q}_2
\boldsymbol{q}_2	\boldsymbol{q}_3	\boldsymbol{q}_0
\boldsymbol{q}_3	\boldsymbol{q}_3	<i>Q</i> ₃

	0	1
$*q_{0}$	\boldsymbol{q}_1	\boldsymbol{q}_0
\boldsymbol{q}_1	\boldsymbol{q}_3	\boldsymbol{q}_2
\boldsymbol{q}_2	\boldsymbol{q}_3	\boldsymbol{q}_0
$*q_{3}$	\boldsymbol{q}_3	<i>Q</i> ₃

Tabular DFAs 0 0 0 start 1 \boldsymbol{q}_2 \boldsymbol{q}_1 **1**3 Σ 1 0

These stars indicate accepting states. $\begin{array}{c} * q_0 & q_1 & q_0 \\ q_1 & q_3 & q_2 \\ q_2 & q_3 & q_0 \\ * q_3 & q_3 & q_3 \end{array}$

Tabular DFAs start q_0 q_1 q_2 q_3

Σ

1

÷.,		
	0	1
$*q_{0}$	\boldsymbol{q}_1	\boldsymbol{q}_0
\boldsymbol{q}_1	\boldsymbol{q}_3	\boldsymbol{q}_2
\boldsymbol{q}_2	\boldsymbol{q}_3	${\it q}_{0}$
$*q_{3}$	\boldsymbol{q}_3	\boldsymbol{q}_3

Question to ponder: Why isn't there a column here for Σ ?

My Turn to Code Things Up!

```
int kTransitionTable[kNumStates][kNumSymbols] = {
     \{0, 0, 1, 3, 7, 1, ...\},\
      ...
};
bool kAcceptTable[kNumStates] = {
    false,
    true,
    true,
    ...
};
bool SimulateDFA(string input) {
    int state = 0;
    for (char ch: input) {
        state = kTransitionTable[state][ch];
    }
    return kAcceptTable[state];
}
```

The Regular Languages

A language L is called a **regular language** if there exists a DFA D such that $\mathscr{L}(D) = L$.

If L is a language and $\mathscr{L}(D) = L$, we say that D **recognizes** the language L.

- Given a language $L \subseteq \Sigma^*$, the *complement* of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:

$$\overline{L} = \Sigma^* - L$$

- Given a language $L \subseteq \Sigma^*$, the *complement* of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:

$$\overline{L} = \Sigma^* - L$$

- Given a language $L \subseteq \Sigma^*$, the *complement* of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:

$$\overline{L} = \Sigma^* - L$$

- Given a language $L \subseteq \Sigma^*$, the *complement* of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:

$$\overline{L} = \Sigma^* - L$$

- Given a language $L \subseteq \Sigma^*$, the *complement* of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:

$$\overline{L} = \Sigma^* - L$$
Good proofwriting
exercise: prove $\overline{L} = L$
for any language L.
 Σ^*

Complementing Regular Languages

 $L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring } \}$

 $\overline{L} = \{ w \in \{a, b\}^* \mid w \text{ does not } contain aa as a substring \}$

Complementing Regular Languages

 $L = \{ w \in \{a, *, /\} \}$ | w represents a C-style comment }

Closure Properties

- **Theorem:** If L is a regular language, then \overline{L} is also a regular language.
- As a result, we say that the regular languages are *closed under complementation*.

NFAS

Revisiting a Problem

NFAs

- An **NFA** is a
 - Nondeterministic
 - **F**inite
 - Automaton
- Structurally similar to a DFA, but represents a fundamental shift in how we'll think about computation.

(Non)determinism

- A model of computation is *deterministic* if at every point in the computation, there is exactly one choice that can make.
 - The machine accepts if that series of choices leads to an accepting state.
- A model of computation is *nondeterministic* if the computing machine may have multiple decisions that it can make at one point.
- The machine accepts if *any* series of choices leads to an accepting state.
 - (This sort of nondeterminism is technically called *existential nondeterminism*, the most philosophical-sounding term we'll introduce all quarter.)

0 1	. 0	1	1
-----	-----	---	---

0 1	0	1	1
-----	---	---	---

01	0	1	1
----	---	---	---

01	0	1	1
----	---	---	---

01	0	1	1
----	---	---	---

01	0	1	1
----	---	---	---

If a NFA needs to make a transition when no transition exists, the automaton dies and that particular path does not accept.

|--|

|--|

Oh no! There's no transition defined!

|--|

|--|

NFA Languages

The *language of an NFA* is $\mathscr{L}(N) = \{ w \in \Sigma^* | N \text{ accepts } w \}.$ What is the language of this NFA? (Assume $\Sigma = \{h, i\}.$)

NFA Languages

The *language of an NFA* is $\mathscr{L}(N) = \{ w \in \Sigma^* \mid N \text{ accepts } w \}.$ What is the language of this NFA? (Assume $\Sigma = \{0, 1\}.$)

NFA Languages

The *language of an NFA* is

 $\mathscr{L}(N) = \{ w \in \Sigma^* \mid N \text{ accepts } w \}.$

What is the language of this NFA? (Assume $\Sigma = \{0, 1\}$.)

- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.

- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.

- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.

a

- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of $\epsilon\text{-transitions}$ at any time without consuming any input.

- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.

a

- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of $\epsilon\text{-transitions}$ at any time without consuming any input.

a

- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of $\epsilon\text{-transitions}$ at any time without consuming any input.

- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of $\epsilon\text{-transitions}$ at any time without consuming any input.

- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.

9

- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.

a

- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.

- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of $\epsilon\text{-transitions}$ at any time without consuming any input.

9

- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of $\epsilon\text{-transitions}$ at any time without consuming any input.

- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.

a

- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.

9

- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of $\epsilon\text{-transitions}$ at any time without consuming any input.

- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.

Not at all fun or

rewarding exercise:

what is the language of

this NFA?

- NFAs have a special type of transition called the $\epsilon\text{-transition}.$
- An NFA may follow any number of ϵ -transitions at any time without consuming any input.
- NFAs are not *required* to follow ε-transitions. It's simply another option at the machine's disposal.

Time-Out For Announcements!

hsl. EGSOL Q. Y GWY.
Everything around us is Chenokes.
AcS IrAJ;
The dust was been an environment of the second s

EXPLORING THE ROLE OF TECH IN LANGUAGE REVITALIZATION

REGISTER FOR ASB BY FRIDAY, NOVEMBER 2, 11:59 PM

HTTP://ASB.STANFORD.EDU

Stanford Women in Computer Science

CASUAL DINNER

{w}

Tuesday, November 6th from 5-7 PM at Gates 403

Come have dinner with CS students and faculty. Everyone is welcome, especially students just starting out in CS!

Midterms Graded

- Midterms have been graded! If you didn't pick yours up yet, you can grab it from the Gates building.
 - SCPD students exams have been sent back to the SCPD distribution office. If you haven't received yours yet, ping the SCPD distribution office.
- We've posted a regrade request form on the course website with instructions about how to ask for a regrade. Regrade requests are due next Wednesday.

Your Questions

"I did bad on the midterm. How can I ask for help to solidify those past topics when in doing so, I'm not doing the PSET?"

Allow me to make a series of analogies. 😁

If you're shaky on one of the fundamental topics, you will likely end up <u>saving</u> time in the long run by drilling those skills until they're solidified.

"Favorite Halloween costume you've ever seen/you've ever come up with?"

This is also a candidate for "most embarrassing thing that's ever happened to you."

Back to CS103!

Intuiting Nondeterminism

- Nondeterministic machines are a serious departure from physical computers. How can we build up an intuition for them?
- There are two particularly useful frameworks for interpreting nondeterminism:
 - Perfect positive guessing
 - Massive parallelism

a b a b a	
-----------	--

- We can view nondeterministic machines as having *Magic Superpowers* that enable them to guess choices that lead to an accepting state.
 - If there is at least one choice that leads to an accepting state, the machine will guess it.
 - If there are no choices, the machine guesses any one of the wrong guesses.
- There is no known way to physically model this intuition of nondeterminism – this is quite a departure from reality!

	а	b	а	b	а
--	---	---	---	---	---

We're in at least one accepting state, so there's some path that gets us to an accepting state.

a b a b a

а	b	а	b
---	---	---	---

We're not in any accepting state, so no possible path accepts.

- An NFA can be thought of as a DFA that can be in many states at once.
- At each point in time, when the NFA needs to follow a transition, it tries all the options at the same time.
- (Here's a rigorous explanation about how this works; read this on your own time).
 - Start off in the set of all states formed by taking the start state and including each state that can be reached by zero or more ϵ -transitions.
 - When you read a symbol **a** in a set of states *S*:
 - Form the set S' of states that can be reached by following a single a transition from some state in S.
 - Your new set of states is the set of states in S', plus the states reachable from S' by following zero or more ε -transitions.

So What?

- Each intuition of nondeterminism is useful in a different setting:
 - Perfect guessing is a great way to think about how to design a machine.
 - Massive parallelism is a great way to test machines and has nice theoretical implications.
- Nondeterministic machines may not be feasible, but they give a great basis for interesting questions:
 - Can any problem that can be solved by a nondeterministic machine be solved by a deterministic machine?
 - Can any problem that can be solved by a nondeterministic machine be solved *efficiently* by a deterministic machine?
- The answers vary from automaton to automaton.

Designing NFAs

Designing NFAs

- Embrace the nondeterminism!
- Good model: *Guess-and-check*:
 - Is there some information that you'd really like to have? Have the machine *nondeterministically guess* that information.
 - Then, have the machine *deterministically check* that the choice was correct.
- The *guess* phase corresponds to trying lots of different options.
- The *check* phase corresponds to filtering out bad guesses or wrong options.

 $L = \{ w \in \{a, b, c\}^* | at least one of a, b, or c is not in w \}$ a, b

Nondeterministically guess which character is missing.

Deterministically *check* whether that character is indeed missing.

Guess-and-Check

 $L = \{ w \in \{a, b, c\}^* | at least one of a, b, or c is not in w \}$ a, b

Guess-and-Check

 $L = \{ w \in \{a, b, c\}^* | at least one of a, b, or c is not in w \}$ a, b

Just how powerful are NFAs?

Next Time

- The Powerset Construction
 - So beautiful. So elegant. So cool!
- More Closure Properties
 - Other set-theoretic operations.
- Language Transformations
 - What's the deal with the notation Σ^* ?