
  

Regular Expressions



  

Recap from Last Time



  

Regular Languages

● A language L is a regular language if 
there is a DFA D such that (ℒ( D) = L.

● Theorem: The following are equivalent:
● L is a regular language.
● There is a DFA for L.
● There is an NFA for L.



  

Language Concatenation

● If w ∈ Σ* and x ∈ Σ*, then wx is the 
concatenation of w and x.

● If L₁ and L₂ are languages over Σ, the 
concatenation of L₁ and L₂ is the language 
L₁L₂ defined as

L₁L₂ = { wx | w ∈ L₁ and x ∈ L₂ }
● Example: if L₁ = { a, ba, bb } and L₂ = { aa, bb }, 

then

L₁L₂ = { aaa, abb, baaa, babb, bbaa, bbbb }



  

Lots and Lots of Concatenation

● Consider the language L = { aa, b }
● LL is the set of strings formed by concatenating pairs of 

strings in L.

{ aaaa, aab, baa, bb }
● LLL is the set of strings formed by concatenating triples 

of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
● LLLL is the set of strings formed by concatenating 

quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}



  

Language Exponentiation

● We can define what it means to “exponentiate” a 
language as follows:

● L0 = {ε}}
● The set containing just the empty string.
● Idea: Any string formed by concatenating zero strings 

together is the empty string.
● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together works by 
concatenating n strings, then concatenating one more.

● Question: Why define L0 = {ε}}?
● Question: What is Ø0?



  

The Kleene Closure

● An important operation on languages is 
the Kleene Closure, which is defined as

L* = { w ∈ Σ*  |  ∃n ∈ ℕ. w ∈ Ln }
● Mathematically:

w ∈ L*     iff     ∃n ∈ ℕ. w ∈ Ln

● Intuitively, all possible ways of 
concatenating zero or more strings in L 
together, possibly with repetition.

● Question: What is Ø0?



  

The Kleene Closure

If L = { a, bb }, then L* = {

ε},

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}
Think of L* as the set of strings you 
can make if you have a collection of 
stamps – one for each string in L – 
and you form every possible string 

that can be made from those stamps.

Think of L* as the set of strings you 
can make if you have a collection of 
stamps – one for each string in L – 
and you form every possible string 

that can be made from those stamps.



  

Closure Properties

● Theorem: If L₁ and L₂ are regular 
languages over an alphabet Σ, then so are 
the following languages:
● L₁ 
● L₁ ∪ L₂ 
● L₁ ∩ L₂ 
● L₁L₂
● L₁*

● These properties are called closure 
properties of the regular languages.



  

New Stuff!



  

Another View of Regular Languages



  

Rethinking Regular Languages

● We currently have several tools for 
showing a language L is regular:
● Construct a DFA for L.
● Construct an NFA for L.
● Combine several simpler regular languages 

together via closure properties to form L.
● We have not spoken much of this last 

idea.



  

Constructing Regular Languages

● Idea: Build up all regular languages as 
follows:
● Start with a small set of simple languages we 

already know to be regular.
● Using closure properties, combine these 

simple languages together to form more 
elaborate languages.

● A bottom-up approach to the regular 
languages.



  

Regular Expressions

● Regular expressions are a way of 
describing a language via a string 
representation.

● They’re used extensively in software 
systems for string processing and as the 
basis for tools like grep and flex.

● Conceptually, regular expressions are 
strings describing how to assemble a 
larger language out of smaller pieces.



  

Atomic Regular Expressions

● The regular expressions begin with three 
simple building blocks.

● The symbol Ø is a regular expression that 
represents the empty language Ø.

● For any a ∈ Σ, the symbol a is a regular 
expression for the language {a}.

● The symbol ε is a regular expression that 
represents the language {ε}}.
● Remember: {ε} ≠ Ø!
● Remember: {ε} ≠ ε!



  

Compound Regular Expressions

● If R1 and R2 are regular expressions, R1R2 is a 
regular expression for the concatenation of the 
languages of R1 and R2.

● If R1 and R2 are regular expressions, R1 ∪ R2 is 
a regular expression for the union of the 
languages of R1 and R2.

● If R is a regular expression, R* is a regular 
expression for the Kleene closure of the 
language of R.

● If R is a regular expression, (R) is a regular 
expression with the same meaning as R.



  

Operator Precedence

● Regular expression operator precedence: 

(R)

R*

R1R2

R1 ∪ R2 

● So ab*c∪d is parsed as ((a(b*))c)∪d



  

Regular Expression Examples

● The regular expression trick∪treat 
represents the regular language { trick, 
treat }.

● The regular expression booo* represents the 
regular language { boo, booo, boooo, … }.

● The regular expression candy!(candy!)* 
represents the regular language { candy!, 
candy!candy!, candy!candy!candy!, … }.



  

Regular Expressions, Formally

● The language of a regular expression is the 
language described by that regular expression.

● Formally:
● ℒ((ε) = {ε}}
● ℒ((Ø) = Ø
● ℒ((a) = {a}

● ℒ((R1R2) = (ℒ( R1) (ℒ( R2)

● ℒ((R1 ∪ R2) = (ℒ( R1) ∪ (ℒ( R2)
● ℒ((R*) = (ℒ( R)*
● ℒ(((R)) = (ℒ( R)

Worthwhile activity: Apply 
this recursive definition to

a(b∪c)((d))

and see what you get.

Worthwhile activity: Apply 
this recursive definition to

a(b∪c)((d))

and see what you get.



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a 

substring }.

(a  b)*∪ b)* aa(a  b)*∪ b)*

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a 

substring }.

Σ*aaΣ*

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb



  

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | |w| = 4 }.

The length of 
a string w is 
denoted |w|

The length of 
a string w is 
denoted |w|



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

aaaa
baba
bbbb
baaa

ΣΣΣΣ



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

aaaa
baba
bbbb
baaa

Σ4



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

Here are some candidate regular expressions for 
the language L. Which of these are correct?

 

Σ*aΣ*
b*ab*  b*∪ b)*
b*(a  ε)b*)b*∪ b)*
b*a*b*  b*∪ b)*
b*(a*  ε)b*)b*∪ b)*

Here are some candidate regular expressions for 
the language L. Which of these are correct?

 

Σ*aΣ*
b*ab*  b*∪ b)*
b*(a  ε)b*)b*∪ b)*
b*a*b*  b*∪ b)*
b*(a*  ε)b*)b*∪ b)*



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a  ε)b*)∪ b)* b*

bbbbabbb
bbbbbb
abbb
a



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*a?b*

bbbbabbb
bbbbbb
abbb
a



  

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @ aa*.aa* (.aa*)*



  

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)*



  

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+(.a+)+



  

For Comparison

a+(.a+)*@a+(.a+)+

q1

start
q3

@

q2

.       a

q4
a

       a        a

q5
. q6

q7

.       a

       a

a

q8

@, .

@, .             @            @, .
 @

@, .

q0
a

@, .
Σ



  

Shorthand Summary

● Rn is shorthand for RR … R (n times).
● Edge case: define R⁰ = ε}.

● Σ is shorthand for “any character in Σ.”
● R? is shorthand for (R  ε)b*)∪ b)* , meaning 

“zero or one copies of R.”
● R⁺ is shorthand for RR*, meaning “one or 

more copies of R.”



  

Time-Out for Announcements!



  



  

Engineers for a Sustainable World

● Engineers for a Sustainable World (ESW) 
is holding an information session this 
Thursday, November 8, at 8:00PM in the 
Crothers Hall Big Lounge.

● There are some very cool projects you 
can get involved with here involving 
power grids and archaeology.

● Want to attend? RSVP using this link.

https://goo.gl/forms/kZD6hprtUwvfokTC2


  

Cardinal Quarter Opportunities Fair

● Want to work on a public service project?
● Want over 400 choices to pick from?
● Stop by the Cardinal Quarter 

Opportunities Fair on Tuesday, 
November 13th.
● 6:30PM – 8:00PM, Tresidder Union, Oak 

Lounge.



  

Midterm Exam Logistics

● The next midterm is Monday, November 12th from 7:00PM – 
10:00PM. Locations are divvied up by last (family) name:
● A-L: Go to Bishop Auditorium.
● M-Z: Go to Cubberley Auditorium.

● The exam focuses on Lecture 06 – 13 (binary relations through 
induction, inclusive) and PS3 – PS5. Finite automata onward is 
not tested.
● Topics from earlier in the quarter (proofwriting, first-order logic, set 

theory, etc.) are also fair game, but that’s primarily because the later 
material builds on this earlier material.

● The exam is closed-book, closed-computer, and limited-note. You 
can bring a double-sided, 8.5” × 11” sheet of notes with you to 
the exam, decorated however you’d like.

● Students with OAE accommodations: please contact us 
immediately if you haven’t yet done so. We’ll ping you about 
setting up alternate exams.



  

Practice Midterm Exam

● We'll be holding a practice midterm exam Wednesday 
from 7PM – 10PM in 320-105.

● The practice midterm exam is composed of what we 
think is a good representative sample of older midterm 
questions from across the years. It’s probably the best 
indicator of what you should expect to see.

● Course staff will be on hand to answer your questions.
● Can't make it? We'll release the practice exam and 

solutions online. Set up your own practice exam time 
with a small group and work through it under realistic 
conditions!



  

Other Practice Materials

● We’ve posted five practice midterms to the 
course website, with solutions.
● We’ll post the practice exam from this evening 

a little bit later, bringing the total to six.
● There’s also Extra Practice Problems 2, 

plus all the CS103A materials.
● Need more practice? Let us know and 

we’ll see what we can do!



  

Problem Sets

● Problem Set Five solutions are now out.
● Please read them! We’ve included long, detailed 

explanations for some of the trickier problems that 
show off how to get to the solution.

● We’ll aim to have PS5 graded and returned on 
Wednesday evening.

● Problem Set Six is out and is due this Friday at 
2:30PM.
● Be careful about using late days here, since the 

exam is on Monday.



  

Your Questions



  

“Is it okay to end a friendship that’s 
become too emotionally draining even if 
the other person could really use your 

support?”

I’ll take this one in class 
because it doesn’t have a 

short answer.

I’ll take this one in class 
because it doesn’t have a 

short answer.



  

Back to CS103!



  

The Power of Regular Expressions

Theorem: If R is a regular expression, 
then (ℒ( R) is regular.

Proof idea: Use induction!
● The atomic regular expressions all represent 

regular languages.
● The combination steps represent closure 

properties.
● So anything you can make from them must 

be regular!



  

Thompson’s Algorithm

● In practice, many regex matchers use an 
algorithm called Thompson's algorithm 
to convert regular expressions into NFAs 
(and, from there, to DFAs).
● Read Sipser if you’re curious!

● Fun fact: the “Thompson” here is Ken 
Thompson, one of the co-inventors of 
Unix!



  

The Power of Regular Expressions

Theorem: If L is a regular language, 
then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an 
arbitrary NFA into a regular expression.



  

Generalizing NFAs

q₄

q₀

q₂

start

ε   

  b

a

Σ

b

q₁

q₃

Σ  

These are all regular 
expressions!

These are all regular 
expressions!



  

Generalizing NFAs

q₀
start ab  b∪ b)* q₁

q₂ q₃a*b?a*

a   ab*    

Note: Actual NFAs aren't 
allowed to have transitions 
like these. This is just a 

thought experiment.

Note: Actual NFAs aren't 
allowed to have transitions 
like these. This is just a 

thought experiment.



  

Generalizing NFAs

q₀
start ab  b∪ b)* q₁

q₂ q₃a*b?a*

a   ab*    

a a a b a a b b b



  

Generalizing NFAs

q₀
start ab  b∪ b)* q₁

q₂ q₃a*b?a*

a   ab*    

a a a b a a b b b



  

Generalizing NFAs

q₀
start ab  b∪ b)* q₁

q₂ q₃a*b?a*

a   ab*    

a a a b a a b b b



  

Generalizing NFAs

q₀
start ab  b∪ b)* q₁

q₂ q₃a*b?a*

a   ab*    

a a a b a a b b b



  

Key Idea 1: Imagine that we can label 
transitions in an NFA with arbitrary regular 

expressions.



  

Generalizing NFAs

q₀
start ab  b∪ b)* q₁

Is there a simple 
regular expression for 
the language of this 
generalized NFA?

Is there a simple 
regular expression for 
the language of this 
generalized NFA?



  

Generalizing NFAs

q₀
start a+(.a+)*@a+(.a+)+

q₁

Is there a simple 
regular expression for 
the language of this 
generalized NFA?

Is there a simple 
regular expression for 
the language of this 
generalized NFA?



  

Key Idea 2: If we can convert an NFA into 
a generalized NFA that looks like this...

...then we can easily read off a regular 
expression for the original NFA.

q₀
start some-regex q₁



  

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Here, R , ₁₁ R , ₁₂, R , and ₂, ₁ R  are ₂, ₂, 

arbitrary regular expressions.
Here, R , ₁₁ R , ₁₂, R , and ₂, ₁ R  are ₂, ₂, 

arbitrary regular expressions.



  

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Question: Can we get a clean 
regular expression from this NFA?
Question: Can we get a clean 

regular expression from this NFA?



  

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Key Idea 3: Somehow transform 
this NFA so that it looks like this:
Key Idea 3: Somehow transform 
this NFA so that it looks like this:

q₀
start some-regex q₁



  

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

The first step is going to be a
bit weird...

The first step is going to be a
bit weird...



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε} ε}



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε} ε}

Could we eliminate 
this state from 

the NFA?

Could we eliminate 
this state from 

the NFA?



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε} ε}

ε} R11* R12

Note: We're using 
concatenation and 

Kleene closure in order 
to skip this state.

Note: We're using 
concatenation and 

Kleene closure in order 
to skip this state.



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε} ε}

ε} R11* R12

R21 R11* R12



  

From NFAs to Regular Expressions

qs qfqfq2
start ε}

R11* R12

R21 R11* R12

R22



  

From NFAs to Regular Expressions

qs qfqfq2
start ε}

R11* R12

R22 ∪ R21 R11* R12

Note: We're using union 
to combine these 

transitions together.

Note: We're using union 
to combine these 

transitions together.



  

From NFAs to Regular Expressions

qs qfqfq2
start ε}R11* R12

R22 ∪ R21 R11* R12



  

From NFAs to Regular Expressions

qs qfqfq2
start ε}R11* R12

R22 ∪ R21 R11* R12

R11* R12 (R22 ∪ R21R11*R12)* ε}



  

From NFAs to Regular Expressions

qs qfqf
start R11* R12 (R22 ∪ R21R11*R12)*

q1
start q2

R12

R21

R11 R22

q2



  

The Construction at a Glance

● Start with an NFA N for the language L.
● Add a new start state qs and accept state qf to the 

NFA.
● Add an ε}-transition from qs to the old start state of N.

● Add ε}-transitions from each accepting state of N to qf, 
then mark them as not accepting.

● Repeatedly remove states other than qs and qf 
from the NFA by “shortcutting” them until only 
two states remain: qs and qf.

● The transition from qs to qf is then a regular 
expression for the NFA.



  

Eliminating a State

● To eliminate a state q from the automaton, do the following 
for each pair of states q₀ and q₁, where there's a transition 
from q₀ into q and a transition from q into q₁:

● Let Rin be the regex on the transition from q₀ to q.

● Let Rout be the regex on the transition from q to q₁.

● If there is a regular expression Rstay on a transition from q 
to itself, add a new transition from q₀ to q₁ labeled
((Rin)(Rstay)*(Rout)).

● If there isn't, add a new transition from q₀ to q₁ labeled 
((Rin)(Rout))

● If a pair of states has multiple transitions between them 
labeled R₁, R₂, …, Rₖ, replace them with a single transition 
labeled R₁ ∪ R₂ ∪ … ∪ Rₖ.



  

Our Transformations

DFA NFA Regexp

direct conversion

subset construction

state elimination

Thompson's algorithm



  

Theorem: The following are all equivalent:
 

  · L is a regular language.
  · There is a DFA D such that (ℒ( D) = L.
  · There is an NFA N such that (ℒ( N) = L.
  · There is a regular expression R such that (ℒ( R) = L.



  

Why This Matters

● The equivalence of regular expressions and 
finite automata has practical relevance.
● Tools like grep and flex that use regular 

expressions capture all the power available via 
DFAs and NFAs.

● This also is hugely theoretically significant: 
the regular languages can be assembled 
“from scratch” using a small number of 
operations!



  

Next Time

● Applications of Regular Languages
● Answering “so what?”

● Intuiting Regular Languages
● What makes a language regular?

● The Myhill-Nerode Theorem
● The limits of regular languages.
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