

Regular Expressions

Recap from Last Time

Regular Languages

● A language L is a regular language if
there is a DFA D such that (ℒ(D) = L.

● Theorem: The following are equivalent:
● L is a regular language.
● There is a DFA for L.
● There is an NFA for L.

Language Concatenation

● If w ∈ Σ* and x ∈ Σ*, then wx is the
concatenation of w and x.

● If L₁ and L₂ are languages over Σ, the
concatenation of L₁ and L₂ is the language
L₁L₂ defined as

L₁L₂ = { wx | w ∈ L₁ and x ∈ L₂ }
● Example: if L₁ = { a, ba, bb } and L₂ = { aa, bb },

then

L₁L₂ = { aaa, abb, baaa, babb, bbaa, bbbb }

Lots and Lots of Concatenation

● Consider the language L = { aa, b }
● LL is the set of strings formed by concatenating pairs of

strings in L.

{ aaaa, aab, baa, bb }
● LLL is the set of strings formed by concatenating triples

of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
● LLLL is the set of strings formed by concatenating

quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}

Language Exponentiation

● We can define what it means to “exponentiate” a
language as follows:

● L0 = {ε}}
● The set containing just the empty string.
● Idea: Any string formed by concatenating zero strings

together is the empty string.
● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together works by
concatenating n strings, then concatenating one more.

● Question: Why define L0 = {ε}}?
● Question: What is Ø0?

The Kleene Closure

● An important operation on languages is
the Kleene Closure, which is defined as

L* = { w ∈ Σ* | ∃n ∈ ℕ. w ∈ Ln }
● Mathematically:

w ∈ L* iff ∃n ∈ ℕ. w ∈ Ln

● Intuitively, all possible ways of
concatenating zero or more strings in L
together, possibly with repetition.

● Question: What is Ø0?

The Kleene Closure

If L = { a, bb }, then L* = {

ε},

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}
Think of L* as the set of strings you
can make if you have a collection of
stamps – one for each string in L –
and you form every possible string

that can be made from those stamps.

Think of L* as the set of strings you
can make if you have a collection of
stamps – one for each string in L –
and you form every possible string

that can be made from those stamps.

Closure Properties

● Theorem: If L₁ and L₂ are regular
languages over an alphabet Σ, then so are
the following languages:
● L₁
● L₁ ∪ L₂
● L₁ ∩ L₂
● L₁L₂
● L₁*

● These properties are called closure
properties of the regular languages.

New Stuff!

Another View of Regular Languages

Rethinking Regular Languages

● We currently have several tools for
showing a language L is regular:
● Construct a DFA for L.
● Construct an NFA for L.
● Combine several simpler regular languages

together via closure properties to form L.
● We have not spoken much of this last

idea.

Constructing Regular Languages

● Idea: Build up all regular languages as
follows:
● Start with a small set of simple languages we

already know to be regular.
● Using closure properties, combine these

simple languages together to form more
elaborate languages.

● A bottom-up approach to the regular
languages.

Regular Expressions

● Regular expressions are a way of
describing a language via a string
representation.

● They’re used extensively in software
systems for string processing and as the
basis for tools like grep and flex.

● Conceptually, regular expressions are
strings describing how to assemble a
larger language out of smaller pieces.

Atomic Regular Expressions

● The regular expressions begin with three
simple building blocks.

● The symbol Ø is a regular expression that
represents the empty language Ø.

● For any a ∈ Σ, the symbol a is a regular
expression for the language {a}.

● The symbol ε is a regular expression that
represents the language {ε}}.
● Remember: {ε} ≠ Ø!
● Remember: {ε} ≠ ε!

Compound Regular Expressions

● If R1 and R2 are regular expressions, R1R2 is a
regular expression for the concatenation of the
languages of R1 and R2.

● If R1 and R2 are regular expressions, R1 ∪ R2 is
a regular expression for the union of the
languages of R1 and R2.

● If R is a regular expression, R* is a regular
expression for the Kleene closure of the
language of R.

● If R is a regular expression, (R) is a regular
expression with the same meaning as R.

Operator Precedence

● Regular expression operator precedence:

(R)

R*

R1R2

R1 ∪ R2

● So ab*c∪d is parsed as ((a(b*))c)∪d

Regular Expression Examples

● The regular expression trick∪treat
represents the regular language { trick,
treat }.

● The regular expression booo* represents the
regular language { boo, booo, boooo, … }.

● The regular expression candy!(candy!)*
represents the regular language { candy!,
candy!candy!, candy!candy!candy!, … }.

Regular Expressions, Formally

● The language of a regular expression is the
language described by that regular expression.

● Formally:
● ℒ((ε) = {ε}}
● ℒ((Ø) = Ø
● ℒ((a) = {a}

● ℒ((R1R2) = (ℒ(R1) (ℒ(R2)

● ℒ((R1 ∪ R2) = (ℒ(R1) ∪ (ℒ(R2)
● ℒ((R*) = (ℒ(R)*
● ℒ(((R)) = (ℒ(R)

Worthwhile activity: Apply
this recursive definition to

a(b∪c)((d))

and see what you get.

Worthwhile activity: Apply
this recursive definition to

a(b∪c)((d))

and see what you get.

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a

substring }.

(a b)*∪ b)* aa(a b)*∪ b)*

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a

substring }.

Σ*aaΣ*

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | |w| = 4 }.

The length of
a string w is
denoted |w|

The length of
a string w is
denoted |w|

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

aaaa
baba
bbbb
baaa

ΣΣΣΣ

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

aaaa
baba
bbbb
baaa

Σ4

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

Here are some candidate regular expressions for
the language L. Which of these are correct?

Σ*aΣ*
b*ab* b*∪ b)*
b*(a ε)b*)b*∪ b)*
b*a*b* b*∪ b)*
b*(a* ε)b*)b*∪ b)*

Here are some candidate regular expressions for
the language L. Which of these are correct?

Σ*aΣ*
b*ab* b*∪ b)*
b*(a ε)b*)b*∪ b)*
b*a*b* b*∪ b)*
b*(a* ε)b*)b*∪ b)*

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a ε)b*)∪ b)* b*

bbbbabbb
bbbbbb
abbb
a

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*a?b*

bbbbabbb
bbbbbb
abbb
a

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @ aa*.aa* (.aa*)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+(.a+)+

For Comparison

a+(.a+)*@a+(.a+)+

q1

start
q3

@

q2

. a

q4
a

 a a

q5
. q6

q7

. a

 a

a

q8

@, .

@, . @ @, .
 @

@, .

q0
a

@, .
Σ

Shorthand Summary

● Rn is shorthand for RR … R (n times).
● Edge case: define R⁰ = ε}.

● Σ is shorthand for “any character in Σ.”
● R? is shorthand for (R ε)b*)∪ b)* , meaning

“zero or one copies of R.”
● R⁺ is shorthand for RR*, meaning “one or

more copies of R.”

Time-Out for Announcements!

Engineers for a Sustainable World

● Engineers for a Sustainable World (ESW)
is holding an information session this
Thursday, November 8, at 8:00PM in the
Crothers Hall Big Lounge.

● There are some very cool projects you
can get involved with here involving
power grids and archaeology.

● Want to attend? RSVP using this link.

https://goo.gl/forms/kZD6hprtUwvfokTC2

Cardinal Quarter Opportunities Fair

● Want to work on a public service project?
● Want over 400 choices to pick from?
● Stop by the Cardinal Quarter

Opportunities Fair on Tuesday,
November 13th.
● 6:30PM – 8:00PM, Tresidder Union, Oak

Lounge.

Midterm Exam Logistics

● The next midterm is Monday, November 12th from 7:00PM –
10:00PM. Locations are divvied up by last (family) name:
● A-L: Go to Bishop Auditorium.
● M-Z: Go to Cubberley Auditorium.

● The exam focuses on Lecture 06 – 13 (binary relations through
induction, inclusive) and PS3 – PS5. Finite automata onward is
not tested.
● Topics from earlier in the quarter (proofwriting, first-order logic, set

theory, etc.) are also fair game, but that’s primarily because the later
material builds on this earlier material.

● The exam is closed-book, closed-computer, and limited-note. You
can bring a double-sided, 8.5” × 11” sheet of notes with you to
the exam, decorated however you’d like.

● Students with OAE accommodations: please contact us
immediately if you haven’t yet done so. We’ll ping you about
setting up alternate exams.

Practice Midterm Exam

● We'll be holding a practice midterm exam Wednesday
from 7PM – 10PM in 320-105.

● The practice midterm exam is composed of what we
think is a good representative sample of older midterm
questions from across the years. It’s probably the best
indicator of what you should expect to see.

● Course staff will be on hand to answer your questions.
● Can't make it? We'll release the practice exam and

solutions online. Set up your own practice exam time
with a small group and work through it under realistic
conditions!

Other Practice Materials

● We’ve posted five practice midterms to the
course website, with solutions.
● We’ll post the practice exam from this evening

a little bit later, bringing the total to six.
● There’s also Extra Practice Problems 2,

plus all the CS103A materials.
● Need more practice? Let us know and

we’ll see what we can do!

Problem Sets

● Problem Set Five solutions are now out.
● Please read them! We’ve included long, detailed

explanations for some of the trickier problems that
show off how to get to the solution.

● We’ll aim to have PS5 graded and returned on
Wednesday evening.

● Problem Set Six is out and is due this Friday at
2:30PM.
● Be careful about using late days here, since the

exam is on Monday.

Your Questions

“Is it okay to end a friendship that’s
become too emotionally draining even if
the other person could really use your

support?”

I’ll take this one in class
because it doesn’t have a

short answer.

I’ll take this one in class
because it doesn’t have a

short answer.

Back to CS103!

The Power of Regular Expressions

Theorem: If R is a regular expression,
then (ℒ(R) is regular.

Proof idea: Use induction!
● The atomic regular expressions all represent

regular languages.
● The combination steps represent closure

properties.
● So anything you can make from them must

be regular!

Thompson’s Algorithm

● In practice, many regex matchers use an
algorithm called Thompson's algorithm
to convert regular expressions into NFAs
(and, from there, to DFAs).
● Read Sipser if you’re curious!

● Fun fact: the “Thompson” here is Ken
Thompson, one of the co-inventors of
Unix!

The Power of Regular Expressions

Theorem: If L is a regular language,
then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an
arbitrary NFA into a regular expression.

Generalizing NFAs

q₄

q₀

q₂

start

ε

 b

a

Σ

b

q₁

q₃

Σ

These are all regular
expressions!

These are all regular
expressions!

Generalizing NFAs

q₀
start ab b∪ b)* q₁

q₂ q₃a*b?a*

a ab*

Note: Actual NFAs aren't
allowed to have transitions
like these. This is just a

thought experiment.

Note: Actual NFAs aren't
allowed to have transitions
like these. This is just a

thought experiment.

Generalizing NFAs

q₀
start ab b∪ b)* q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ b)* q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ b)* q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ b)* q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Key Idea 1: Imagine that we can label
transitions in an NFA with arbitrary regular

expressions.

Generalizing NFAs

q₀
start ab b∪ b)* q₁

Is there a simple
regular expression for
the language of this
generalized NFA?

Is there a simple
regular expression for
the language of this
generalized NFA?

Generalizing NFAs

q₀
start a+(.a+)*@a+(.a+)+

q₁

Is there a simple
regular expression for
the language of this
generalized NFA?

Is there a simple
regular expression for
the language of this
generalized NFA?

Key Idea 2: If we can convert an NFA into
a generalized NFA that looks like this...

...then we can easily read off a regular
expression for the original NFA.

q₀
start some-regex q₁

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Here, R , ₁₁ R , ₁₂, R , and ₂, ₁ R are ₂, ₂,

arbitrary regular expressions.
Here, R , ₁₁ R , ₁₂, R , and ₂, ₁ R are ₂, ₂,

arbitrary regular expressions.

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Question: Can we get a clean
regular expression from this NFA?
Question: Can we get a clean

regular expression from this NFA?

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Key Idea 3: Somehow transform
this NFA so that it looks like this:
Key Idea 3: Somehow transform
this NFA so that it looks like this:

q₀
start some-regex q₁

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

The first step is going to be a
bit weird...

The first step is going to be a
bit weird...

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε} ε}

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε} ε}

Could we eliminate
this state from

the NFA?

Could we eliminate
this state from

the NFA?

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε} ε}

ε} R11* R12

Note: We're using
concatenation and

Kleene closure in order
to skip this state.

Note: We're using
concatenation and

Kleene closure in order
to skip this state.

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε} ε}

ε} R11* R12

R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2
start ε}

R11* R12

R21 R11* R12

R22

From NFAs to Regular Expressions

qs qfqfq2
start ε}

R11* R12

R22 ∪ R21 R11* R12

Note: We're using union
to combine these

transitions together.

Note: We're using union
to combine these

transitions together.

From NFAs to Regular Expressions

qs qfqfq2
start ε}R11* R12

R22 ∪ R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2
start ε}R11* R12

R22 ∪ R21 R11* R12

R11* R12 (R22 ∪ R21R11*R12)* ε}

From NFAs to Regular Expressions

qs qfqf
start R11* R12 (R22 ∪ R21R11*R12)*

q1
start q2

R12

R21

R11 R22

q2

The Construction at a Glance

● Start with an NFA N for the language L.
● Add a new start state qs and accept state qf to the

NFA.
● Add an ε}-transition from qs to the old start state of N.

● Add ε}-transitions from each accepting state of N to qf,
then mark them as not accepting.

● Repeatedly remove states other than qs and qf
from the NFA by “shortcutting” them until only
two states remain: qs and qf.

● The transition from qs to qf is then a regular
expression for the NFA.

Eliminating a State

● To eliminate a state q from the automaton, do the following
for each pair of states q₀ and q₁, where there's a transition
from q₀ into q and a transition from q into q₁:

● Let Rin be the regex on the transition from q₀ to q.

● Let Rout be the regex on the transition from q to q₁.

● If there is a regular expression Rstay on a transition from q
to itself, add a new transition from q₀ to q₁ labeled
((Rin)(Rstay)*(Rout)).

● If there isn't, add a new transition from q₀ to q₁ labeled
((Rin)(Rout))

● If a pair of states has multiple transitions between them
labeled R₁, R₂, …, Rₖ, replace them with a single transition
labeled R₁ ∪ R₂ ∪ … ∪ Rₖ.

Our Transformations

DFA NFA Regexp

direct conversion

subset construction

state elimination

Thompson's algorithm

Theorem: The following are all equivalent:

 · L is a regular language.
 · There is a DFA D such that (ℒ(D) = L.
 · There is an NFA N such that (ℒ(N) = L.
 · There is a regular expression R such that (ℒ(R) = L.

Why This Matters

● The equivalence of regular expressions and
finite automata has practical relevance.
● Tools like grep and flex that use regular

expressions capture all the power available via
DFAs and NFAs.

● This also is hugely theoretically significant:
the regular languages can be assembled
“from scratch” using a small number of
operations!

Next Time

● Applications of Regular Languages
● Answering “so what?”

● Intuiting Regular Languages
● What makes a language regular?

● The Myhill-Nerode Theorem
● The limits of regular languages.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

