
  

Nonregular Languages



  

Recap from Last Time



  

Theorem: The following are all equivalent:
 

  · L is a regular language.
  · There is a DFA D such that (ℒ( D) = L.
  · There is an NFA N such that (ℒ( N) = L.
  · There is a regular expression R such that (ℒ( R) = L.



  

New Stuff!



  

Why does this matter?



  

Buttons as Finite-State Machines:

http://cs103.stanford.edu/tools/button-fsm/

http://cs103.stanford.edu/tools/button-fsm/


  

http://www.tti.unipa.it/~gneglia/ip_networks06/slides/TCPIP_State_Transition_Diagram.pdf

http://www.tti.unipa.it/~gneglia/ip_networks06/slides/TCPIP_State_Transition_Diagram.pdf


  

https://blog.codecentric.de/en/2016/07/handling-ios-app-states-state-machine/

https://blog.codecentric.de/en/2016/07/handling-ios-app-states-state-machine/


  

What exactly is a finite-state machine?
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The Model

● The computing device has internal workings that can be 
in one of finitely many possible configurations.
● Each state in a DFA corresponds to some possible 

configuration of the internal workings.
● After each button press, the computing device does 

some amount of processing, then gets to a configuration 
where it's ready to receive more input.
● Each transition abstracts away how the computation is done 

and just indicates what the ultimate configuration looks like.
● After the user presses the “done” button, the computer 

outputs either YES or NO.
● The accepting and rejecting states of the machine model 

what happens when that button is pressed.



  

Computers as Finite Automata

● My computer has 12GB of RAM and about 
150GB of hard disk space.

● That's a total of 162GB of memory, which is 
1,391,569,403,904 bits.

● There are “only” 21,391,569,403,904 possible 
configurations of the memory in my 
computer.

● You could in principle build a DFA 
representing my computer, where there's one 
symbol per type of input the computer can 
receive.



  

A Powerful Intuition

● Regular languages correspond to problems 
that can be solved with finite memory.
● At each point in time, we only need to store 

one of finitely many pieces of information.
● Nonregular languages, in a sense, correspond 

to problems that cannot be solved with finite 
memory.

● Since every computer ever built has finite 
memory, in a sense, nonregular languages 
correspond to problems that cannot be solved 
by physical computers!



  

Finding Nonregular Languages



  

Finding Nonregular Languages

● To prove that a language is regular, we can just find a 
DFA, NFA, or regex for it.

● To prove that a language is not regular, we need to 
prove that there are no possible DFAs, NFAs, or 
regexes for it.
● Claim: We can actually just prove that there's no DFA for it. 

Why is this?
● This sort of argument will be challenging. Our 

arguments will be somewhat technical in nature, since 
we need to rigorously establish that no amount of 
creativity could produce a DFA for a given language.

● Let's see an example of how to do this.



  

A Simple Language

● Let Σ = {a, b} and consider the following 
language:

E = {anbn | n ∈ ℕ }     
● E is the language of all strings of n a's 

followed by n b's:

{ ε, ab, aabb, aaabbb, aaaabbbb, … }



  

A Simple Language

E = {anbn | n ∈ ℕ }      

How many of the following are regular 
expressions for the language E defined 

above?

a*b*
(ab)*

ε  ab  a∪ ab ∪ a ∪ ab ∪ a 2b2  a∪ ab ∪ a 3b3

How many of the following are regular 
expressions for the language E defined 

above?

a*b*
(ab)*

ε  ab  a∪ ab ∪ a ∪ ab ∪ a 2b2  a∪ ab ∪ a 3b3



  

Another Attempt

● Let’s try to design an NFA for

E = {anbn | n ∈ ℕ }.      
● Does this machine work?

a

b
start



  

Another Attempt

● Let’s try to design an NFA for

E = {anbn | n ∈ ℕ }.      
● How about this one?

ε ε
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Another Attempt

● Let’s try to design an NFA for

E = {anbn | n ∈ ℕ }.      
● What about this?

start a a

b   b   

b   



  

We seem to be running into some trouble.
Why is that?



  

Let's imagine what a DFA for the language
{ anbn | n ∈ ℕ} would have to look like.

Can we say anything about it?
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These cannot be 
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This isn't a single 
transition. Think of it as 
“after reading aaaa, we 
end up at this state.”

This isn't a single 
transition. Think of it as 
“after reading aaaa, we 
end up at this state.”
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What’s Going On?

● As you just saw, the strings a4 and a2 can't end up in 
the same state in any DFA for E = {anbn | n ∈ ℕ}.

● Two proof routes:
● Direct: The states you reach for a4 and a2 have to behave 

differently when reading b4 – in one case it should lead to 
an accept state, in the other it should lead to a reject state. 
Therefore, they must be different states.

● Contradiction: Suppose you do end up in the same state. 
Then a4b4 and a2b4 end up in the same state, so we either 
reject a4b4 (oops) or accept a2b4 (oops).

● Powerful intuition: Any DFA for E must keep a4 and 
a2 separated. It needs to remember something 
fundamentally different after reading those strings.



  

This idea – that two strings shouldn't end 
up in the same DFA state – is fundamental 

to discovering nonregular languages.

Let's go formalize this!



  

Distinguishability

● Let L be an arbitrary language over Σ.
● Two strings x ∈ Σ* and y ∈ Σ* are called 

distinguishable relative to L if there is a string 
w ∈ Σ* such that exactly one of xw and yw is in L.

● We denote this by writing x ≢�L y.

● In our previous example, we saw that a2 ≢WE a4.
● Try appending b4 to both of them.

● Formally, we say that x ≢WL y if the following is true:

∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)   



  

Distinguishability

● Theorem: Let L be an arbitrary language over Σ. Let 
x ∈ ΣΣ* and y ∈ ΣΣ* be strings where x ≢WL y. Then if D is any 
DFA for L, then D must end in different states when run 
on inputs x and y.

● Proof sketch:

q₀ qₖ qₙ

start  

y

x xw

yw
Hypothetically speaking, 

how would you formally 
prove this using the 5-tuple 

definition of a DFA?

Hypothetically speaking, 
how would you formally 

prove this using the 5-tuple 
definition of a DFA?
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Distinguishability

● Let's focus on this language for now:

E = {anbn | n ∈ ℕ } 

Lemma: If m, n ∈ ℕ and m ≠ n, then am ≢WE an.

Proof: Let am and an be strings where m ≠ n.
Then ambm ∈ E and anbm ∉ E. Therefore, we
see that am ≢WE an, as required. ■



  

A Bad Combination

● Suppose there is a DFA D for the language
E = {anbn | n ∈ ℕ }.

● We know the following:
● Any two strings of the form am and an, where m ≠ n, 

cannot end in the same state when run through D.
● There are infinitely many pairs of strings of the 

form am and an.
● However, there are only finitely many states they 

can end up in, since D is a deterministic finite 
automaton!

● What happens if we put these pieces together?



  

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢W  an, so by our earlier theorem 
we know that am and an cannot end in the same state when 
run through D. But this is impossible, since we know that 
am and an must end in the same state when run through D.

We have reached a contradiction, so our assumption must 
have been wrong. Therefore, E is not regular. ■



  

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢W  an, so by our earlier theorem 
we know that am and an cannot end in the same state when 
run through D. But this is impossible, since we know that 
am and an must end in the same state when run through D.

We have reached a contradiction, so our assumption must 
have been wrong. Therefore, E is not regular. ■



  

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢W  an, so by our earlier theorem 
we know that am and an cannot end in the same state when 
run through D. But this is impossible, since we know that 
am and an must end in the same state when run through D.

We have reached a contradiction, so our assumption must 
have been wrong. Therefore, E is not regular. ■



  

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢W  an, so by our earlier theorem 
we know that am and an cannot end in the same state when 
run through D. But this is impossible, since we know that 
am and an must end in the same state when run through D.

We have reached a contradiction, so our assumption must 
have been wrong. Therefore, E is not regular. ■



  

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢W  an, so by our earlier theorem 
we know that am and an cannot end in the same state when 
run through D. But this is impossible, since we know that 
am and an must end in the same state when run through D.

We have reached a contradiction, so our assumption must 
have been wrong. Therefore, E is not regular. ■



  

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢W  an, so by our earlier theorem 
we know that am and an cannot end in the same state when 
run through D. But this is impossible, since we know that 
am and an must end in the same state when run through D.

We have reached a contradiction, so our assumption must 
have been wrong. Therefore, E is not regular. ■



  

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢W  an, so by our earlier theorem 
we know that am and an cannot end in the same state when 
run through D. But this is impossible, since we know that 
am and an must end in the same state when run through D.

We have reached a contradiction, so our assumption must 
have been wrong. Therefore, E is not regular. ■

E



  

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢W  an, so by our earlier theorem 
we know that am and an cannot end in the same state when 
run through D. But this is impossible, since we know that 
am and an do end in the same state when run through D.

We have reached a contradiction, so our assumption must 
have been wrong. Therefore, E is not regular. ■

E



  

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢W  an, so by our earlier theorem 
we know that am and an cannot end in the same state when 
run through D. But this is impossible, since we know that 
am and an do end in the same state when run through D.

We have reached a contradiction, so our assumption must 
have been wrong. Therefore, E is not regular. ■

E



  

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢W  an, so by our earlier theorem 
we know that am and an cannot end in the same state when 
run through D. But this is impossible, since we know that 
am and an do end in the same state when run through D.

We have reached a contradiction, so our assumption must 
have been wrong. Therefore, E is not regular. ■

E



  

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢W  an, so by our earlier theorem 
we know that am and an cannot end in the same state when 
run through D. But this is impossible, since we know that 
am and an do end in the same state when run through D.

We have reached a contradiction, so our assumption must 
have been wrong. Therefore, E is not regular. ■

E

We're going to see a simpler proof of this result later on once we've built more 
machinery. If (hypothetically speaking) you want to prove something like this 

in the future, we'd recommend not using this proof as a template.
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machinery. If (hypothetically speaking) you want to prove something like this 

in the future, we'd recommend not using this proof as a template.



  

What Just Happened?

● We've just hit the limit of finite-
memory computation.

● To build a DFA for E = { anbn | n ∈ ℕ }, 
we need to have different memory 
configurations (states) for all possible 
strings of the form an.

● There's no way to do this with finitely 
many possible states!



  

Where We're Going

● We just used the idea of distinguishability to 
show that no possible DFA can exist for 
some language.

● This technique turns out to be pretty 
powerful.

● We're going to see one more example of this 
technique in action, then generalize it to an 
extremely powerful theorem for finding 
nonregular languages.



  

More Nonregular Languages



  

Another Language

● Consider the following language L over 
the alphabet Σ = {a, b, ≟}:

EQ = { w≟w | w ∈ {a, b}*}  
● EQ is the language all strings consisting 

of the same string of a's and b's twice, 
with a ≟ symbol in-between.

● Examples:

 ab ab≟  ∈ EQ  bbb bbb≟  ∈ EQ ≟≟ ∈ EQ

 ab ba≟  ∉ EQ  bbb aaa≟  ∉ EQ b≟ ∉ EQ



  

Another Language

EQ = { w≟w | w ∈ {a, b}*}  
● This language corresponds to the following 

problem:

Given strings x, y ∈, {a, b}*,
does x = y? 

● Justification: x = y happens if and only if
x≟y ∈ EQ.

● Is this language regular? 



  

The Intuition

EQ = { w≟w | w ∈ {a, b}*}  
● Intuitively, any machine for EQ has to be able 

to remember the contents of everything to the 
left of the ≟ so that it can match them against 
the contents of the string to the right of the ≟.

● There are infinitely many possible strings we 
can see, but we only have finite memory to 
store which string we saw.

● That's a problem... can we formalize this?
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Distinguishability

● Let's focus on this language for now:

EQ = { w≟w | w ∈ {a, b}*}  

Lemma: If x, y ∈ {a, b}* and x ≠ y, then
x ≢WEQ y.

Proof: Let x and y be two distinct, arbitrary
strings from {a, b}*. Then we see that
x≟x ∈ EQ and y≟x ∉ EQ, so we conclude that
x ≢WEQ y, as required. ■



  

Theorem: The language EQ = { w≟w | w ∈ {a, b}*} is not
regular.

Proof: Suppose for the sake of contradiction that L is regular.
Let D be a DFA for EQ and let k be the number of states in
D. Consider any k+1 distinct s {a, b} D
only has k states, by the pigeonhole principle there must
be at least two strings x and y that, when run through D,
end in the same state.

Our lemma tells us that x ≢WEQ y. By our earlier theorem, 
this means that x and y cannot end in the same state when 
run through D. But this is impossible, since specifically 
chose x and y to end in the same state when run through 
D.

We have reached a contradiction, so our assumption must 
have been wrong. Thus EQ is not regular. ■
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Time-Out for Announcements!



  

Midterm Exam Logistics

● The next midterm is Monday, November 12th from 
7:00PM – 10:00PM. Locations are divvied up by last 
(family) name:
● A-L: Go to Bishop Auditorium.
● M-Z: Go to Cubberley Auditorium.

● The exam focuses on Lecture 06 – 13 (binary relations 
through induction, inclusive) and PS3 – PS5. Finite 
automata onward is not tested.
● Topics from earlier in the quarter (proofwriting, first-order logic, 

set theory, etc.) are also fair game, but that’s primarily because 
the later material builds on this earlier material.

● The exam is closed-book, closed-computer, and limited-
note. You can bring a double-sided, 8.5” × 11” sheet of 
notes with you to the exam, decorated however you’d like.



  



  

Practice Midterm Exam

● We'll be holding a practice midterm exam tonight from 
7PM – 10PM in 320-105.

● The practice midterm exam is composed of what we 
think is a good representative sample of older midterm 
questions from across the years. It’s probably the best 
indicator of what you should expect to see.

● Course staff will be on hand to answer your questions.
● Can't make it? We'll release the practice exam and 

solutions online. Set up your own practice exam time 
with a small group and work through it under realistic 
conditions!



  

Other Practice Materials

● We’ve posted five practice midterms to the 
course website, with solutions.
● We’ll post the practice exam from this evening 

a little bit later, bringing the total to six.
● There’s also Extra Practice Problems 2, 

plus all the CS103A materials.
● Need more practice? Let us know and 

we’ll see what we can do!



  

Your Questions



  

“What did you wish you had done at 
Stanford but didn’t get the chance to do?”

So many things, but two stand out:
 

 1. I never took a creative writing class.
 2.I didn’t do SLE.
 

I’ve been playing catch-up ever since!

So many things, but two stand out:
 

 1. I never took a creative writing class.
 2.I didn’t do SLE.
 

I’ve been playing catch-up ever since!



  

“What if you don't enjoy the material in 
103, but see the value of it- is CS still right 

for you?”
 

“I've enjoyed CS 103 far more than any 
other CS class, and since it's not a 

programming class, it makes me question 
whether I should in fact be a CS major.”

I’d say that CS103 is “part of a balanced breakfast.” The 
techniques you’re learning and ways of thinking you’re 

developing are amazingly useful. If you love them, great! 
Keep exploring and see what else you like. You might find 
the intersection of theory and practice really exciting. If 
you’re not a huge fan, no worries! What you’re learning 
will be really valuable in the future, even if it isn’t your 

primary focus.
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Back to CS103!



  

Comparing Proofs



  

Theorem: The language E = { anbn | n ∈ ℕ } is not a regular
language.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E and let k be the number of states in
D.

Consider the strings a0, a1, a2, …, ak. This is a collection of 
k+1 strings and there are only k states in D. Therefore, by 
the pigeonhole principle, there must be two distinct strings 
am and an that end in the same state when run through D.

Our lemma tells us that am ≢WE a
n. By our earlier theorem we 

know that am and an cannot end in the same state when run 
through D. But this is impossible, since we know that am and 
an do end in the same state when run through D.

We have reached a contradiction, so our assumption must 
have been wrong. Therefore, E is not regular. ■
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know that x and y cannot end in the same state when run 
through D. But this is impossible, since we know that x and 
y must end in the same state when run through D.
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The Myhill-Nerode Theorem

Theorem: Let L be a language over Σ.
If there is a set S ⊆ Σ* with the following 
properties, then L is not regular:
● S is infinite (that is, S contains infinitely many 

strings).
● The strings in S are pairwise distinguishable 

relative to L. That is,

∀x ∈ S. ∀y ∈ S. (x ≠ y → x ≢�L y).
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Proof: Let L be an arbitrary language over Σ. Let S ⊆ Σ* be an
infinite set of strings with the following property: if x, y ∈ S and
x ≠ y, then x ≢WL y. We will show that L is not regular.

Suppose for the sake of contradiction that L is regular. This 
means that there must be some DFA D for L. Let k be the 
number of states in D. Since there are infinitely many strings in 
S, we can choose k+1 distinct strings from S and consider what 
happens when we run D on all of those strings. Because there 
are only k states in D and we've chosen k+1 strings from S, by 
the pigeonhole principle we know that at least two strings from 
S must end in the same state in D. Choose any two such strings 
and call them x and y.

Because x and y are distinct strings in S, we know that x ≢W  y. 
Our earlier theorem therefore tells us that when we run D on 
inputs x and y, they must end up in different states. But this is 
impossible – we chose x and y precisely because they end in the 
same state when run through D.

We have reached a contradiction, so our assumption must have 
been wrong. Thus L is not a regular language. ■

L



  

Using the Myhill-Nerode Theorem



  

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. This set is infinite
because it contains one string for each natural
number. Now, consider any strings an, am ∈ S
where an ≠ am. Then anbn ∈ E and ambn ∉ E.
Consequently, an ≢WE a

m. Therefore, by the Myhill-
Nerode theorem, L is not regular. ■
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To use the Myhill-Nerode theorem, we 
need to find an infinite set of strings that 
are pairwise distinguishable relative to E.
  

We know that any two strings of the form 
an and am, where n ≠ m, are 
distinguishable.
  

So build the set S = { an | n ∈ ℕ }.
  

Notice that S isn't a subset of E. That's 
okay: we never said that S needs to be a 
subset of E!
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Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. This set is infinite because it
contains infinitely many strings of the form an.
Now, consider any x, y ∈ S where x ≠ y. Then
x≟x ∈ EQ and y≟x ∉ EQ. Consequently, x ≢WEQ y.
Therefore, by the Myhill-Nerode theorem, EQ is
not regular. ■
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Notice that S isn't a subset of EQ. That's 
okay: we never said that S needs to be a 
subset of EQ!
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subset of EQ!



  

Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. This set is infinite because it
contains infinitely many strings of the form an.
Now, consider any x, y ∈ S where x ≠ y. Then
x≟x ∈ EQ and y≟x ∉ EQ. Consequently, x ≢WEQ y.
Therefore, by the Myhill-Nerode theorem, EQ is
ot regular. ■
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pairwise distinguishable relative to EQ.
  

We know that any two distinct strings over 
the alphabet {a, b} are distinguishable.
  

So pick the set S = {a, b}*.
  

Notice that S isn't a subset of EQ. That's 
okay: we never said that S needs to be a 
subset of EQ!

To use the Myhill-Nerode theorem, we need 
to find an infinite set of strings that are 
pairwise distinguishable relative to EQ.
  

We know that any two distinct strings over 
the alphabet {a, b} are distinguishable.
  

So pick the set S = {a, b}*.
  

Notice that S isn't a subset of EQ. That's 
okay: we never said that S needs to be a 
subset of EQ!



  

Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. This set contains infinitely 
many strings. Now, consider any x, y ∈ S where
x ≠ y. Then x≟x ∈ EQ and y≟x ∉ EQ. Consequently,
x ≢W   y. Therefore, by the Myhill-Nerode theorem,
EQ is not regular. ■

EQ



  

Approaching Myhill-Nerode

● The challenge in using the Myhill-Nerode 
theorem is finding the right set of strings.

● General intuition:
● Start by thinking about what information a 

computer “must” remember in order to 
answer correctly.

● Choose a group of strings that all require 
different information.

● Prove that those strings are distinguishable 
relative to the language in question.



  

Tying Everything Together

● One of the intuitions we hope you develop for DFAs 
is to have each state in a DFA represent some key 
piece of information the automaton has to remember.

● If you only need to remember one of finitely many 
pieces of information, that gives you a DFA.
● You can formalize this! If we have time, we’ll see this 

later this quarter. If not, and you’re curious, take CS154!
● If you need to remember one of infinitely many 

pieces of information, you can use the Myhill-Nerode 
theorem to prove that the language has no DFA.



  

Where We Stand



  

Where We Stand

● We've ended up where we are now by trying to answer the 
question “what problems can you solve with a computer?”

● We defined a computer to be DFA, which means that the 
problems we can solve are precisely the regular languages.

● We've discovered several equivalent ways to think about 
regular languages (DFAs, NFAs, and regular expressions) 
and used that to reason about the regular languages.

● We now have a powerful intuition for where we ended up: 
DFAs are finite-memory computers, and regular languages 
correspond to problems solvable with finite memory.

● Putting all of this together, we have a much deeper sense 
for what finite memory computation looks like – and what it 
doesn't look like!



  

Where We're Going

● What does computation look like with 
unbounded memory?

● What problems can you solve with 
unbounded-memory computers?

● What does it even mean to “solve” such a 
problem?

● And how do we know the answers to any 
of these questions?



  

Next Time

● Context-Free Languages
● Context-Free Grammars
● Generating Languages from Scratch


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124

