

Context-Free Grammars

Describing Languages

● We've seen two models for the regular languages:
● Finite automata accept precisely the strings in the

language.
● Regular expressions describe precisely the strings

in the language.

● Finite automata recognize strings in the language.
● Perform a computation to determine whether a

specific string is in the language.

● Regular expressions match strings in the language.
● Describe the general shape of all strings in the

language.

Context-Free Grammars

● A context-free grammar (or CFG) is an
entirely different formalism for defining a
class of languages.

● Goal: Give a description of a language by
recursively describing the structure of
the strings in the language.

● CFGs are best explained by example...

Arithmetic Expressions

● Suppose we want to describe all legal arithmetic
expressions using addition, subtraction,
multiplication, and division.

● Here is one possible CFG:

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → ×

Op → /

E
⇒ E Op E
⇒ E Op (E)
⇒ E Op (E Op E)
⇒ E × (E Op E)
⇒ int × (E Op E)
⇒ int × (int Op E)
⇒ int × (int Op int)
⇒ int × (int + int)

Arithmetic Expressions

● Suppose we want to describe all legal arithmetic
expressions using addition, subtraction,
multiplication, and division.

● Here is one possible CFG:

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → ×

Op → /

E
⇒ E Op E
⇒ E Op int
⇒ int Op int
⇒ int / int

Context-Free Grammars

● Formally, a context-free grammar
is a collection of four items:

● a set of nonterminal symbols
(also called variables),

● a set of terminal symbols (the
alphabet of the CFG),

● a set of production rules saying
how each nonterminal can be
replaced by a string of terminals
and nonterminals, and

● a start symbol (which must be a
nonterminal) that begins the
derivation. By convention, the start
symbol is the one on the left-hand
side of the first production.

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → ×

Op → /

Some CFG Notation

● In today’s slides, capital letters in Bold Red
Uppercase will represent nonterminals.
● e.g. A, B, C, D

● Lowercase letters in blue monospace will represent
terminals.
● e.g. t, u, v, w

● Lowercase Greek letters in gray italics will
represent arbitrary strings of terminals and
nonterminals.
● e.g. α, γ, ω

● You don't need to use these conventions on your
own; just make sure whatever you do is readable. ☺

A Notational Shorthand

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → ×

Op → /

A Notational Shorthand

E → int | E Op E | (E)

Op → + | - | × | /

Derivations

⇒ E

⇒ E Op E

⇒ E Op (E)

⇒ E Op (E Op E)

⇒ E × (E Op E)

⇒ int × (E Op E)

⇒ int × (int Op E)

⇒ int × (int Op int)

⇒ int × (int + int)

● A sequence of steps where
nonterminals are replaced by
the right-hand side of a
production is called a
derivation.

● If string α derives string ω, we
write α ⇒* ω.

● In the example on the left, we
see E ⇒* int × (int + int).

E → E Op E | int | (E)
Op → + | × | - | /

The Language of a Grammar

● If G is a CFG with alphabet Σ and start
symbol S, then the language of G is the
set

ℒ(G) = { ω ∈ Σ* | S ⇒* ω }
● That is, (ℒ(G) is the set of strings of

terminals derivable from the start
symbol.

Consider the following CFG G over Σ = {a, b, c, d}:

S → Sa | dT
T → bTb | c

Which of the following strings are in (ℒ(G)?

dca
dc
cad
bcb
dTaa

Consider the following CFG G over Σ = {a, b, c, d}:

S → Sa | dT
T → bTb | c

Which of the following strings are in (ℒ(G)?

dca
dc
cad
bcb
dTaa

If G is a CFG with alphabet Σ and start symbol S,
then the language of G is the set

ℒ((G) = { ω ∈ Σ* | S ⇒* ω }

If G is a CFG with alphabet Σ and start symbol S,
then the language of G is the set

ℒ((G) = { ω ∈ Σ* | S ⇒* ω }

Context-Free Languages

● A language L is called a context-free
language (or CFL) if there is a CFG G
such that L = (ℒ(G).

● Questions:
● What languages are context-free?
● How are context-free and regular languages

related?

From Regexes to CFGs

● CFGs consist purely of production rules
of the form A → ω. They do not have the
regular expression operators * or ∪.

● However, we can convert regular
expressions to CFGs as follows:

S → a*b

From Regexes to CFGs

● CFGs consist purely of production rules
of the form A → ω. They do not have the
regular expression operators * or ∪.

● However, we can convert regular
expressions to CFGs as follows:

S → Ab
A → Aa | ε

From Regexes to CFGs

● CFGs consist purely of production rules
of the form A → ω. They do not have the
regular expression operators * or ∪.

● However, we can convert regular
expressions to CFGs as follows:

S → a(b ∪ c*)

From Regexes to CFGs

● CFGs consist purely of production rules
of the form A → ω. They do not have the
regular expression operators * or ∪.

● However, we can convert regular
expressions to CFGs as follows:

S → aX
X → b | C
C → Cc | ε

Regular Languages and CFLs

● Theorem: Every regular language is
context-free.

● Proof Idea: Use the construction from
the previous slides to convert a regular
expression for L into a CFG for L. ■

● Great Exercise: Instead, show how to
convert a DFA/NFA into a CFG.

The Language of a Grammar

● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

 ℒ((G) = { anbn | n ∈ ℕ }

a ba ba ba b

Regular
Languages CFLs

All Languages

Why the Extra Power?

● Why do CFGs have more power than
regular expressions?

● Intuition: Derivations of strings have
unbounded “memory.”

S → aSb | ε

a ba ba ba b

Time-Out for Announcements!

Midterm Exam Logistics

● The next midterm is Monday, November 12th from
7:00PM – 10:00PM. Locations are divvied up by last
(family) name:
● A-L: Go to Bishop Auditorium.
● M-Z: Go to Cubberley Auditorium.

● The exam focuses on Lecture 06 – 13 (binary relations
through induction, inclusive) and PS3 – PS5. Finite
automata onward is not tested.
● Topics from earlier in the quarter (proofwriting, first-order logic,

set theory, etc.) are also fair game, but that’s primarily because
the later material builds on this earlier material.

● The exam is closed-book, closed-computer, and limited-
note. You can bring a double-sided, 8.5” × 11” sheet of
notes with you to the exam, decorated however you’d like.

Our Advice

● Eat dinner the night of the exam. You are not a
brain in a jar. You are a rich, complex, beautiful
biological system. Please take care of yourself.

● Read all the questions before diving into them.
Tunnel vision can hurt you on an exam. There’s
evidence that spreading your time out leads to better
outcomes.

● Reflect on how far you’ve come. How many of
these questions would you have been able to
understand two months ago? That’s the mark that
you’re learning something!

Your Questions

“What do you like most about teaching
CS103?”

The sense that everyone gets when
they turn around and see how high

they’ve climbed.

The sense that everyone gets when
they turn around and see how high

they’ve climbed.

Three Questions

● What is something you know now that, at
the start of the quarter, you knew you didn’t
know?

● What is something you know now that, at
the start of the quarter, you didn’t know
that you didn’t know?

● What is something you don’t know that, at
the start of the quarter, you didn’t know
that you didn’t know?

“Have you ever been in love before?”

Yep!Yep!

Back to CS103!

Designing CFGs

● Like designing DFAs, NFAs, and regular
expressions, designing CFGs is a craft.

● When thinking about CFGs:
● Think recursively: Build up bigger structures

from smaller ones.
● Have a construction plan: Know in what

order you will build up the string.
● Store information in nonterminals: Have

each nonterminal correspond to some useful
piece of information.

Designing CFGs

● Let Σ = {a, b} and let L = {w ∈ Σ* | w is
a palindrome }

● We can design a CFG for L by thinking
inductively:
● Base case: ε, a, and b are palindromes.
● If ω is a palindrome, then aωa and bωb are

palindromes.
● No other strings are palindromes.

S → ε | a | b | aSa | bSb

Designing CFGs

● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a
string of balanced braces }

● Some sample strings in L:

{{{}}}

{{}}{}

{{}{}}{{}{}}

{{{{{}}}{{}}}}

ε

{}{}

{

Designing CFGs

● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a
string of balanced braces }

● Let's think about this recursively.
● Base case: the empty string is a string of

balanced braces.
● Recursive step: Look at the closing brace that

matches the first open brace.

{{{ {{ {{ {{ {{} }}} }}} }}}}}

Designing CFGs

● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a
string of balanced braces }

● Let's think about this recursively.
● Base case: the empty string is a string of

balanced braces.
● Recursive step: Look at the closing brace that

matches the first open brace.

{{ { { { { { {{ {{ {} } } } } }} } }}}}

Designing CFGs

● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a
string of balanced braces }

● Let's think about this recursively.
● Base case: the empty string is a string of

balanced braces.
● Recursive step: Look at the closing brace that

matches the first open brace. Removing the first
brace and the matching brace forms two new
strings of balanced braces.

S → {S}S | ε

Designing CFGs

● Let Σ = {a, b} and let L = {w ∈ Σ* | w
has the same number of a's and b's }

How many of the following CFGs have language L?How many of the following CFGs have language L?

S → aSb | bSa | ε

S → abSba | baSab | ε S → SbaS | SabS | ε

S → abS | baS | ε

Designing CFGs: A Caveat

● When designing a CFG for a language,
make sure that it
● generates all the strings in the language and
● never generates a string outside the

language.
● The first of these can be tricky – make

sure to test your grammars!
● You'll design your own CFG for this

language on Problem Set 8.

CFG Caveats II

● Is the following grammar a CFG for the
language { anbn | n ∈ ℕ }?

S → aSb

● What strings in {a, b}* can you derive?
● Answer: None!

● What is the language of the grammar?
● Answer: Ø

● When designing CFGs, make sure your
recursion actually terminates!

Designing CFGs

● When designing CFGs, remember that each
nonterminal can be expanded out
independently of the others.

● Let Σ = {a, ≟} and let L = {an a≟ n | n ∈ ℕ }.
● Is the following a CFG for L?

S → X≟X

X → aX | ε

S
⇒ X≟X
⇒ aX≟X
⇒ aaX≟X
⇒ aa≟X
⇒ aa a≟ X
⇒ aa a≟

S
⇒ X≟X
⇒ aX≟X
⇒ aaX≟X
⇒ aa≟X
⇒ aa a≟ X
⇒ aa a≟

Finding a Build Order

● Let Σ = {a, ≟} and let L = {an a≟ n | n ∈ ℕ }.
● To build a CFG for L, we need to be more clever with

how we construct the string.
● If we build the strings of a's independently of one

another, then we can't enforce that they have the
same length.

● Idea: Build both strings of a's at the same time.

● Here's one possible grammar based on that idea:

S → ≟ | aSa S
⇒ aSa
⇒ aaSaa
⇒ aaaSaaa
⇒ aaa aaa≟

S
⇒ aSa
⇒ aaSaa
⇒ aaaSaaa
⇒ aaa aaa≟

Function Prototypes

● Let Σ = {void, int, double, name, (,), ,, ;}.
● Let's write a CFG for C-style function

prototypes!
● Examples:

● void name(int name, double name);

● int name();

● int name(double name);

● int name(int, int name, int);

● void name(void);

Function Prototypes

● Here's one possible grammar:
● S → Ret name (Args);
● Ret → Type | void
● Type → int | double
● Args → ε | void | ArgList
● ArgList → OneArg | ArgList, OneArg
● OneArg → Type | Type name

● Fun question to think about: what changes
would you need to make to support pointer
types?

Summary of CFG Design Tips

● Look for recursive structures where they exist:
they can help guide you toward a solution.

● Keep the build order in mind – often, you'll
build two totally different parts of the string
concurrently.
● Usually, those parts are built in opposite directions:

one's built left-to-right, the other right-to-left.
● Use different nonterminals to represent

different structures.

Applications of Context-Free Grammars

CFGs for Programming Languages
BLOCK → STMT

 | { STMTS }

STMTS → ε
 | STMT STMTS

STMT → EXPR;
 | if (EXPR) BLOCK

 | while (EXPR) BLOCK
 | do BLOCK while (EXPR);
 | BLOCK
 | …

EXPR → identifier
 | constant

 | EXPR + EXPR
 | EXPR – EXPR
 | EXPR * EXPR
 | ...

Grammars in Compilers

● One of the key steps in a compiler is figuring out
what a program “means.”

● This is usually done by defining a grammar showing
the high-level structure of a programming language.

● There are certain classes of grammars (LL(1)
grammars, LR(1) grammars, LALR(1) grammars,
etc.) for which it's easy to figure out how a
particular string was derived.

● Tools like yacc or bison automatically generate
parsers from these grammars.

● Curious to learn more? Take CS143!

Natural Language Processing

● By building context-free grammars for actual
languages and applying statistical inference, it's
possible for a computer to recover the likely meaning
of a sentence.
● In fact, CFGs were first called phrase-structure

grammars and were introduced by Noam Chomsky in his
seminal work Syntactic Structures.

● They were then adapted for use in the context of
programming languages, where they were called Backus-
Naur forms.

● Stanford's CoreNLP project is one place to look for
an example of this.

● Want to learn more? Take CS124 or CS224N!

http://nlp.stanford.edu/software/lex-parser.shtml

Next Time

● Turing Machines
● What does a computer with unbounded

memory look like?
● How would you program it?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

