
  

Complexity Theory
Part Two



  

Recap from Last Time



  

The Complexity Class P

● The complexity class P (polynomial 
time) is defined as

     P = { L | There is a polynomial-time 
                   decider for L }

● Intuitively, P contains all decision 
problems that can be solved efficiently.

● This is like class P, except with 
“efficiently” tacked onto the end.



  

The Complexity Class NP

● The complexity class NP (nondeterministic 
polynomial time) contains all problems that 
can be verified in polynomial time.

● Formally:

      NP = { L | There is a polynomial-time 
                        verifier for L }

● Intuitively, NP is the set of problems where 
“yes” answers can be checked efficiently.

● This is like the class RE, but with “efficiently” 
tacked on to the definition.



  

The Biggest Unsolved Problem in
Theoretical Computer Science:

P  ≟ NP



  

Theorem (Baker-Gill-Solovay): Any 
proof that purely relies on universality and 
self-reference cannot resolve P  ≟ NP.

Proof: Take CS154!



  

So how are we going to
reason about P and NP?



New Stuff!



A Challenge



  

      NP        PREG

Problems in NP vary widely in their 
difficulty, even if P = NP.

 

How can we rank the relative difficulties 
of problems?



  

Reducibility



  

Maximum Matching

● Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.

A maximum 
matching.

A maximum 
matching.



  

Maximum Matching

● Jack Edmonds' paper “Paths, Trees, and 
Flowers” gives a polynomial-time 
algorithm for finding maximum 
matchings.
● He’s the guy from last time with the quote 

about “better than decidable.”
● Using this fact, what other problems can 

we solve?



  

Domino Tiling



  

Solving Domino Tiling



  

Solving Domino Tiling



  

Solving Domino Tiling



  

In Pseudocode

boolean canPlaceDominoes(Grid G, int k) {

 return hasMatching(gridToGraph(G), k);

}



  

Intuition:

Tiling a grid with dominoes can't be 
“harder” than solving maximum matching, 

because if we can solve maximum 
matching efficiently, we can solve domino 

tiling efficiently.



  

Another Example



  

Reachability

● Consider the following problem:

Given an directed graph G and nodes s 
and t in G, is there a path from s to t? 

● This problem can be solved in polynomial
time (use DFS or BFS).



  

Converter Conundrums

● Suppose that you want to plug your laptop into a 
projector.

● Your laptop only has a VGA output, but the 
projector needs HDMI input.

● You have a box of connectors that convert various 
types of input into various types of output (for 
example, VGA to DVI, DVI to DisplayPort, etc.)

● Question: Can you plug your laptop into the 
projector?



  

Converter Conundrums

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI

Connectors
RGB to USB

VGA to DisplayPort
DB13W3 to CATV

DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

Connectors
RGB to USB

VGA to DisplayPort
DB13W3 to CATV

DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI



  

In Pseudocode

boolean canPlugIn(List<Plug> plugs) {

 return isReachable(plugsToGraph(plugs),
                     VGA, HDMI);

}



  

Intuition:

Finding a way to plug a computer into a 
projector can't be “harder” than 

determining reachability in a graph, since 
if we can determine reachability in a graph, 
we can find a way to plug a computer into a 

projector.



  

Intuition:

Problem A can't be “harder” than problem 
B, because solving problem B lets us solve 

problem A.

bool solveProblemA(string input) {
    return solveProblemB(transform(input));
}



  

bool solveProblemA(string input) {
    return solveProblemB(transform(input));
}

● If A and B are problems where it's 
possible to solve problem A using the 
strategy shown above*, we write

A ≤p B. 

● We say that A is polynomial-time 
reducible to B.

* Assuming that transform
* runs in polynomial time.



bool solveProblemA(string input) {
    return solveProblemB(transform(input));
}

● This is a powerful general problem-solving
technique. You’ll see it a lot in CS161.

● Hypothetically speaking, maybe something
like this would be useful to you on PS9?



  

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

      NPP



This ≤ₚ relation lets us rank the relative 
difficulties of problems in P and NP.

What else can we do with it?



Time-Out for Announcements!



  

Camp Kesem

● Camp Kesem is a week-long 
summer camp and year-round 
community for kids who have a 
parent currently in treatment for 
cancer, in remission from cancer, 
or who has passed away from 
cancer. It’s free for all families, 
and the week of camp is an 
opportunity for these kids to just 
be kids (in other words, Camp is 
fun!).

● New counselor applications for 
Camp Kesem 2019 are due 
tomorrow (Thursday) at 
midnight, and you can find more 
information at 
campkesemstanford.org/apply. 
Feel free to email your head TA 
Josh if you have any questions!

https://www.campkesemstanford.org/apply


Please evaluate this course on Axess.

Your feedback makes a difference.



  

Problem Set Nine

● Problem Set Nine is due this Friday at 
2:30PM.
● No late submissions can be accepted. 

This is university policy – sorry!
● As always, if you have questions, stop by 

office hours or ask on Piazza.



  

Final Exam Logistics

● Our final exam is Monday, December 10th from 3:30PM – 
6:30PM. Locations are divvied up by last (family) name:
● A-L: Go to Nvidia Auditorium.
● M-Z: Go to Cubberley Auditorium.

● The exam is cumulative. You’re responsible for topics 
from PS0 – PS9 and all of the lectures.

● As with the midterms, the exam is closed-book, closed-
computer, and limited-note. You can bring one double-
sided sheet of 8.5” × 11” notes with you to the exam, 
decorated any way you’d like.

● Students with OAE accommodations: Josh should have 
reached out to you at this point to set up alternate 
exams. Contact us ASAP if you didn’t hear from us.



  

Preparing for the Final

● On the course website you’ll find
● seven practice final exams, which are all real exams 

with minor modifications, with solutions, and
● a giant set of practice problems (EPP3), with 

solutions.
● Our recommendation: Look back over the 

exams and problem sets and redo any problems 
that you didn’t really get the first time around.

● Keep the TAs in the loop: stop by office hours to 
have them review your answers and offer 
feedback.



  

Exam Review Sessions

● Your amazing TAs will be holding two 
review sessions this weekend:

Saturday, 1:00PM – 3:00PM in 200-034

Saturday, 4:00PM – 6:00PM in 200-034
● SCPD students: Julian will be holding an 

online review session on Saturday from 
3:00PM – 5:00PM.



  

Your Questions



  

“What do you think about the relative 
importance of talent vs hard work?”

Hard work is so much more valuable than 
talent. The most successful people I know 

are that way because they’ve worked hard and 
strategically to get where they are.

 

I’d qualify this by saying that hard work is 
less important than strategic work. You need 
to make sure to focus your efforts in places 

and areas where they matter.

Hard work is so much more valuable than 
talent. The most successful people I know 

are that way because they’ve worked hard and 
strategically to get where they are.

 

I’d qualify this by saying that hard work is 
less important than strategic work. You need 
to make sure to focus your efforts in places 

and areas where they matter.



  

“If you could teach a non-CS, non-math 
class, what would it be?”

Perhaps this doesn’t fully answer the question, but I’d love to 
co-teach a class called “Truth” with folks from philosophy, law, 
religious studies, sociology, etc. where we investigate what the 
concept of “truth” means. I’d talk about mathematical truth and 
how it works, and someone else would talk about what legal truth 

is, and we’d get voices about religious truths, how people 
decide what they consider true, how societies arrive at 

conclusions of what’s true, etc.
 

Lest you think this is a political statement, I’ve had this idea 
since at least 2014. ☺

Perhaps this doesn’t fully answer the question, but I’d love to 
co-teach a class called “Truth” with folks from philosophy, law, 
religious studies, sociology, etc. where we investigate what the 
concept of “truth” means. I’d talk about mathematical truth and 
how it works, and someone else would talk about what legal truth 

is, and we’d get voices about religious truths, how people 
decide what they consider true, how societies arrive at 

conclusions of what’s true, etc.
 

Lest you think this is a political statement, I’ve had this idea 
since at least 2014. ☺



  

“have you always been such a confident 
teacher/public speaker? what have you 

done to improve?”

No, not at all. I used to be absolutely terrified of messing 
things up in front of people, so I used to memorize almost 

everything I was going to say. Then I realized that when I did 
mess up nothing bad actually happened and if anything it helped 

lead the discussion in a productive way.

Pro tip: in many cases, public speaking is about advocating on 
behalf of something. Focus on doing the best advocacy you can 
rather than worrying about how you yourself are coming across.

No, not at all. I used to be absolutely terrified of messing 
things up in front of people, so I used to memorize almost 

everything I was going to say. Then I realized that when I did 
mess up nothing bad actually happened and if anything it helped 

lead the discussion in a productive way.

Pro tip: in many cases, public speaking is about advocating on 
behalf of something. Focus on doing the best advocacy you can 
rather than worrying about how you yourself are coming across.



  

“Some say that learning CS theory like the contents of 
CS103 is an inefficient use of time for those pursuing 

non-research careers. What's your opinion?”
 

“If we get a B- in this class, would you recommend 
repeating the class or studying on our own to fill the 

gaps?”
 

“What are your top 3 book recommendations?”
 

“Why is the Collatz Conjecture difficult to prove? It 
seems like a mathematician definitely should have 

cracked this by now.”
 

“What advice do you have for leading a happy and 
fulfilling life?”

“...” These are great 
questions. Ask me 

next time!

These are great 
questions. Ask me 

next time!



  

Back to CS103!



  

An Analogy: Running Really Fast



  

For people A and B, we say A ≤ᵣ B if
A’s top running speed is at most B’s top speed.
(Intuitively: B can run at least as fast as A.)

 

We say that person P is CS103-fast if
∀A ∈ CS103. A ≤ᵣ P.

(How fast are you if you’re CS103-fast?)
 

We say that person P is CS103-complete if
P ∈ CS103 and P is CS103-fast.

(How fast are you if you’re CS103-complete?)

CS103 CS103-fastCS103-complete

Usain 
Bolt

Usain 
Bolt

Paula
Radcliffe

Paula
Radcliffe

Fastest 
runner in 

CS103

Fastest 
runner in 

CS103
Tied for 

fastest in 
CS103

Tied for 
fastest in 

CS103



  

For languages A and B, we say A ≤ₚ B if
A reduces to B in polynomial time.

(Intuitively: B is at least as hard as A.)
 

We say that a language L is NP-hard if
∀A ∈ NP. A ≤ₚ L.

(How hard is a problem that’s NP-hard?)
 

We say that a language L is NP-complete if
L ∈ NP and L is NP-hard.

(How hard is a problem that’s NP-complete?)

NP NP-hardNP-complete

LD
LD

ATM
ATMHardest 

problem in 
NP

Hardest 
problem in 

NP
Tied for 

hardest in 
NP

Tied for 
hardest in 

NP



  

Intuition: The NP-complete problems are 
the hardest problems in NP.

 

If we can determine how hard those 
problems are, it would tell us a lot about 

the P  ≟ NP question.



  

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■Intuition: This means the hardest 

problems in NP aren’t actually that 
hard. We can solve them in 

polynomial time. So that means we 
can solve all problems in NP in 

polynomial time.

Intuition: This means the hardest 
problems in NP aren’t actually that 

hard. We can solve them in 
polynomial time. So that means we 

can solve all problems in NP in 
polynomial time.



  

The Tantalizing Truth

     P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem A. Since L is NP-complete, we know
that A ≤ₚ L. Since L ∈ P and A ≤ₚ L, we see that A ∈ P. Since
our choice of A was arbitrary, this means that NP ⊆ P, so
P = NP. ■



  

The Tantalizing Truth

Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■

Intuition: This means the hardest 
problems in NP are so hard that 

they can’t be solved in polynomial 
time. So the hardest problems in NP 

aren’t in P, meaning P ≠ NP.

Intuition: This means the hardest 
problems in NP are so hard that 

they can’t be solved in polynomial 
time. So the hardest problems in NP 

aren’t in P, meaning P ≠ NP.



  

The Tantalizing Truth

      NP

P 
NPC

Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■



  

How do we even know NP-complete
problems exist in the first place?



  

Satisfiability

● A propositional logic formula φ is called 
satisfiable if there is some assignment to 
its variables that makes it evaluate to true.
● p ∧ q is satisfiable.
● p ∧ ¬p is unsatisfiable.
● p → (q ∧ ¬q) is satisfiable.

● An assignment of true and false to the 
variables of φ that makes it evaluate to 
true is called a satisfying assignment.



  

SAT

● The boolean satisfiability problem 
(SAT) is the following:

Given a propositional logic
formula φ, is φ satisfiable?

● Formally:

SAT = { ⟨φ⟩ | φ is a satisfiable PL       φ⟩ | φ is a satisfiable PL       
formula }



  

Theorem (Cook-Levin): SAT is NP-complete.

Proof Idea: To see that SAT ∈ NP, show how to 
make a polynomial-time verifier for it. Key idea: 
have the certificate be a satisfying assignment.

To show that SAT is NP-hard, given a 
polymomial-time verifier V for an arbitrary NP 
language L, for any string w you can construct a 
polynomially-sized formula φ(w) that says “there 
is a certificate c where V accepts ⟨w, c⟩.” This 
formula is satisfiable if and only if w ∈ L, so 
deciding whether the formula is satisfiable 
decides whether w is in L. ■-ish

Proof: Take CS154!



  

Why All This Matters

● Resolving P   ≟ NP is equivalent to just 
figuring out how hard SAT is.

SAT ∈ P   ↔    P = NP
● We've turned a huge, abstract, theoretical 

problem about solving problems versus 
checking solutions into the concrete task of 
seeing how hard one problem is.

● You can get a sense for how little we know 
about algorithms and computation given 
that we can't yet answer this question!



  

Why All This Matters

● You will almost certainly encounter NP-hard 
problems in practice – they're everywhere!

● If a problem is NP-hard, then there is no known 
algorithm for that problem that
● is efficient on all inputs,
● always gives back the right answer, and
● runs deterministically.

● Useful intuition: If you need to solve an NP-hard 
problem, you will either need to settle for an 
approximate answer, an answer that's likely but not 
necessarily right, or have to work on really small 
inputs.



  

Sample NP-Hard Problems
● Computational biology: Given a set of genomes, what is the most 

probable evolutionary tree that would give rise to those genomes? 
(Maximum parsimony problem)

● Game theory: Given an arbitrary perfect-information, finite, two-player 
game, who wins? (Generalized geography problem)

● Operations research: Given a set of jobs and workers who can 
perform those tasks in parallel, can you complete all the jobs within 
some time bound? (Job scheduling problem)

● Machine learning: Given a set of data, find the simplest way of 
modeling the statistical patterns in that data (Bayesian network 
inference problem)

● Medicine: Given a group of people who need kidneys and a group of 
kidney donors, find the maximum number of people who survive. (Cycle 
cover problem)

● Systems: Given a set of processes and a number of processors, find the 
optimal way to assign those tasks so that they complete as soon as 
possible (Processor scheduling problem)



  

Coda: What if P  ≟ NP is resolved?



  

Next Time

● The Big Picture
● Where to Go from Here
● A Final “Your Questions”
● Parting Words!
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