Mathematical Logic

Part Two
Recap from Last Time
Take out a sheet of paper!
What's the truth table for the → connective?
What's the negation of $p \rightarrow q$?
Some muggle is intelligent.

$\exists m. (\text{Muggle}(m) \land \text{Intelligent}(m))$

\exists is the **existential quantifier** and says “for some choice of m, the following is true.”
Some Technical Details
Variables and Quantifiers

Each quantifier has two parts:
• the variable that is introduced, and
• the statement that's being quantified.

The variable introduced is scoped just to the statement being quantified.

\((\exists x. \text{Loves}(\text{You}, x)) \land (\exists y. \text{Loves}(y, \text{You}))\)
Variables and Quantifiers

Each quantifier has two parts:
• the variable that is introduced, and
• the statement that's being quantified.

The variable introduced is scoped just to the statement being quantified.

\((\exists x. \text{Loves}(\text{You}, x)) \land (\exists y. \text{Loves}(y, \text{You}))\)

The variable \(x\) just lives here.

The variable \(y\) just lives here.
Variables and Quantifiers

Each quantifier has two parts:

• the variable that is introduced, and
• the statement that's being quantified.

The variable introduced is scoped just to the statement being quantified.

\[(\exists x. Loves(You, x)) \land (\exists y. Loves(y, You))\]
Variables and Quantifiers

Each quantifier has two parts:
• the variable that is introduced, and
• the statement that's being quantified.

The variable introduced is scoped just to the statement being quantified.

$$(\exists x. Loves(You, x)) \land (\exists x. Loves(x, You))$$
Variables and Quantifiers

Each quantifier has two parts:
• the variable that is introduced, and
• the statement that's being quantified.

The variable introduced is scoped just to the statement being quantified.

\((\exists x. Loves(You, x)) \land (\exists x. Loves(x, You))\)

The variable \(x\) just lives here.

A different variable, also named \(x\), just lives here.
Operator Precedence (Again)

When writing out a formula in first-order logic, quantifiers have precedence just below ¬.

The statement

\[\exists x. P(x) \land R(x) \land Q(x) \]

is parsed like this:

\[(\exists x. P(x)) \land (R(x) \land Q(x)) \]

This is syntactically invalid because the variable \(x \) is out of scope in the back half of the formula.

To ensure that \(x \) is properly quantified, explicitly put parentheses around the region you want to quantify:

\[\exists x. (P(x) \land R(x) \land Q(x)) \]
“For any natural number n, n is even if and only if n^2 is even”
"For any natural number n, n is even if and only if n^2 is even"

$\forall n. (n \in \mathbb{N} \rightarrow (\text{Even}(n) \leftrightarrow \text{Even}(n^2)))$
For any natural number n, n is even if and only if n^2 is even
The Universal Quantifier

A statement of the form

$$\forall x. \text{some-formula}$$

is true if, for every choice of x, the statement \text{some-formula} is true when x is plugged into it.

Examples:

$$\forall p. \ (\text{Puppy}(p) \rightarrow \text{Cute}(p))$$

$$\forall a. \ (\text{EatsPlants}(a) \lor \text{EatsAnimals}(a))$$

$$\text{Tallest}(\text{SultanKösen}) \rightarrow \forall x. \ (\text{SultanKösen} \neq x \rightarrow \text{ShorterThan}(x, \text{SultanKösen}))$$
The Universal Quantifier

∀x. Smiling(x)
The Universal Quantifier

\[\forall x. \text{Smiling}(x) \]
The Universal Quantifier

\[\forall x. \text{Smiling}(x) \]
The Universal Quantifier

∀x. Smiling(x)
The Universal Quantifier

∀x. Smiling(x)

Since $Smiling(x)$ is true for every choice of x, this statement evaluates to true.
The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) is true for every choice of x, this statement evaluates to true.
The Universal Quantifier

∀x. Smiling(x)
The Universal Quantifier

∀x. Smiling(x)
The Universal Quantifier

$$\forall x. \text{Smiling}(x)$$
The Universal Quantifier

∀x. Smiling(x)
The Universal Quantifier

\[\forall x. \text{Smiling}(x) \]

Since \(\text{Smiling}(x) \) is false for this choice of \(x \), this statement evaluates to false.
The Universal Quantifier

\[\forall x. \text{Smiling}(x) \]

Since \(\text{Smiling}(x) \) is false for this choice of \(x \), this statement evaluates to false.
The Universal Quantifier

\((\forall x. \text{Smiling}(x)) \rightarrow (\forall y. \text{WearingHat}(y))\)
The Universal Quantifier

\((\forall x. Smiling(x)) \rightarrow (\forall y. WearingHat(y))\)
Is this part of the statement true or false?

\((\forall x. Smiling(x)) \rightarrow (\forall y. WearingHat(y))\)
The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the statement true or false?
The Universal Quantifier

$(\forall x. \text{Smiling}(x)) \rightarrow (\forall y. \text{WearingHat}(y))$

Is this part of the statement true or false?
The Universal Quantifier

\[(\forall x. \text{Smiling}(x)) \rightarrow (\forall y. \text{WearingHat}(y))\]

Is this part of the statement true or false?
The Universal Quantifier

\((\forall x. \text{Smiling}(x)) \rightarrow (\forall y. \text{WearingHat}(y))\)

Is this overall statement true or false in this scenario?
The Universal Quantifier

\[(\forall x. \text{Smiling}(x)) \rightarrow (\forall y. \text{WearingHat}(y))\]

Is this overall statement true or false in this scenario?
Fun with Edge Cases

∀x. Smiling(x)
Fun with Edge Cases

Universally-quantified statements are *vacuously true* in empty worlds.

\[\forall x. \text{Smiling}(x) \]
Translating into First-Order Logic
Translating Into Logic

• First-order logic is an excellent tool for manipulating definitions and theorems to learn more about them.

• Need to take a negation? Translate your statement into FOL, negate it, then translate it back.

• Want to prove something by contrapositive? Translate your implication into FOL, take the contrapositive, then translate it back.
Translating statements into first-order logic is a lot more difficult than it looks.

There are a lot of nuances that come up when translating into first-order logic.

We'll cover examples of both good and bad translations into logic so that you can learn what to watch for.

We'll also show lots of examples of translations so that you can see the process that goes into it.
Using the predicates

- \textit{Puppy}(p), which states that \(p \) is a puppy, and
- \textit{Cute}(x), which states that \(x \) is cute,

write a sentence in first-order logic that means “all puppies are cute.”
An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))
An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work for any choice of x, including things that aren't puppies.
An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work for any choice of x, including things that aren't puppies.
An Incorrect Translation

All puppies are cute!

\[\forall x. \ (\text{Puppy}(x) \land \text{Cute}(x)) \]

This should work for any choice of \(x \), including things that aren't puppies.
An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work for any choice of x, including things that aren't puppies.
An Incorrect Translation

All puppies are cute!

\[\forall x. (Puppy(x) \land Cute(x)) \]

This should work for any choice of \(x \), including things that aren't puppies.
An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work for any choice of x, including things that aren't puppies.
An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

A statement of the form ∀x. something is true only when something is true for every choice of x.
An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

A statement of the form

∀x. something

is true only when something is true for every choice of x.
An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))
An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This first-order statement is false even though the English statement is true. Therefore, it can't be a correct translation.
An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

The issue here is that this statement asserts that everything is a puppy. That's too strong of a claim to make.
A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))
A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work for any choice of x, including things that aren't puppies.
A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work for any choice of x, including things that aren't puppies.
A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work for any choice of x, including things that aren't puppies.
A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work for any choice of x, including things that aren't puppies.
A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work for any choice of x, including things that aren't puppies.
A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work for any choice of x, including things that aren't puppies.
A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work for any choice of x, including things that aren't puppies.
A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work for any choice of x, including things that aren't puppies.
A Better Translation

All puppies are cute!

\[\forall x. (\text{Puppy}(x) \rightarrow \text{Cute}(x)) \]

This should work for any choice of \(x \), including things that aren't puppies.
A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work for any choice of x, including things that aren't puppies.
A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work for any choice of x, including things that aren't puppies.
A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work for any choice of x, including things that aren't puppies.
A Better Translation

All puppies are cute!

\[\forall x. (\text{Puppy}(x) \rightarrow \text{Cute}(x)) \]

This should work for any choice of \(x \), including things that aren't puppies.
A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work for any choice of x, including things that aren't puppies.
A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work for any choice of x, including things that aren't puppies.
A Better Translation

All puppies are cute!

\(\forall x. \ (Puppy(x) \rightarrow Cute(x)) \)

This should work for any choice of \(x \), including things that aren't puppies.
A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work for any choice of x, including things that aren't puppies.
A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work for any choice of x, including things that aren't puppies.
A Better Translation

All puppies are cute!

\(\forall x. (\text{Puppy}(x) \rightarrow \text{Cute}(x)) \)

This should work for any choice of \(x \), including things that aren't puppies.
A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work for any choice of x, including things that aren't puppies.
A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work for any choice of x, including things that aren't puppies.
A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work for *any* choice of x, including things that aren't puppies.
A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))
A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

A statement of the form

∀x. something

is true only when something is true for every choice of x.
A Better Translation

All puppies are cute!

\(\forall x. (\text{Puppy}(x) \rightarrow \text{Cute}(x)) \)

A statement of the form \(\forall x. \text{something} \) is true only when \textit{something} is true for every choice of \(x \).
“All P's are Q's”

translates as

\[\forall x. \ (P(x) \rightarrow Q(x)) \]
Useful Intuition:

Universally-quantified statements are true unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it must have property P but not have property Q.
Time-Out for Announcements!
Checkpoints Graded

The Problem Set One checkpoint problem has been graded. Feedback is now available in GradeScope.

You need to look over our feedback as soon as possible.

The purpose of the checkpoint is to help you see where to focus and how to improve.

If you don’t review the feedback you received, you risk making the same mistakes in the future.
Back to CS103!
Using the predicates

- \texttt{Blobfish}(b), which states that \textit{b} is a blobfish, and
- \texttt{Cute}(x), which states that \textit{x} is cute,

write a sentence in first-order logic that means “some blobfish is cute.”
Using the predicates

- \textit{Blobfish}(b), which states that \(b \) is a blobfish, and
- \textit{Cute}(x), which states that \(x \) is cute,

write a sentence in first-order logic that means “some blobfish is cute.”
An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))
An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))
An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))
An Incorrect Translation

Some blobfish is cute.

$\exists x. (\text{Blobfish}(x) \rightarrow \text{Cute}(x))$
An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))
An Incorrect Translation

Some blobfish is cute.

\[\exists x. \ (\text{Blobfish}(x) \rightarrow \text{Cute}(x)) \]
An Incorrect Translation

Some blobfish is cute.

\(\exists x. (Blobfish(x) \rightarrow Cute(x)) \)

A statement of the form

\(\exists x. \textit{something} \)

is true only when \textit{something} is true for

\textit{at least one} choice of \(x \).
An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))
An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

This first-order statement is true even though the English statement is false. Therefore, it can't be a correct translation.
An Incorrect Translation

Some blobfish is cute.

$$\exists x. \ (\text{Blobfish}(x) \rightarrow \text{Cute}(x))$$

The issue here is that implications are true whenever the antecedent is false. This statement “accidentally” is true because of what happens when x isn't a blobfish.
A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))
A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))
A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))
A Correct Translation

Some blobfish is cute.

\[\exists x. (\text{Blobfish}(x) \land \text{Cute}(x)) \]
A Correct Translation

Some blobfish is cute.

\[\exists x. (\text{Blobfish}(x) \land \text{Cute}(x)) \]
A Correct Translation

Some blobfish is cute.

$$\exists x. \ (\text{Blobfish}(x) \land \text{Cute}(x))$$
A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))
A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))
A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))
A Correct Translation

Some blobfish is cute.

$$\exists x. \ (\text{Blobfish}(x) \land \text{Cute}(x))$$
A Correct Translation

Some blobfish is cute.

\[\exists x. \ (\text{Blobfish}(x) \land \text{Cute}(x)) \]
A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))
A Correct Translation

Some blobfish is cute.

$$\exists x. (\text{Blobfish}(x) \land \text{Cute}(x))$$
A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))
A Correct Translation

Some blobfish is cute.

∃ x. (Blobfish(x) ∧ Cute(x))
A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))
A Correct Translation

Some blobfish is cute.

\(\exists x. (\text{Blobfish}(x) \land \text{Cute}(x)) \)
A Correct Translation

Some blobfish is cute.

\(\exists x. (Blobfish(x) \land Cute(x)) \)
A Correct Translation

Some blobfish is cute.

\[\exists x. (Blobfish(x) \land Cute(x)) \]
A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))
A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))
A Correct Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

A statement of the form

∃x. something

is true only when something is true for

at least one choice of x.
A Correct Translation

Some blobfish is cute.

$$\exists x. (\text{Blobfish}(x) \land \text{Cute}(x))$$

A statement of the form

$$\exists x. \text{something}$$

is true only when \text{something} is true for

\text{at least one} choice of $$x$$.
“Some P is a Q” translates as

$\exists x. (P(x) \land Q(x))$
Useful Intuition:

Existentially-quantified statements are false unless there's a positive example.

$$\exists x. (P(x) \land Q(x))$$

If x is an example, it must have property P on top of property Q.
A Correct Translation

Some blobfish is cute.

$\exists x. (\text{Blobfish}(x) \land \text{Cute}(x))$

Slight aside: blobfish actually look totally normal underwater!
A Correct Translation

Some blobfish is cute.

\[\exists x. (\textit{Blobfish}(x) \land \textit{Cute}(x)) \]

Slight aside: blobfish actually look totally normal underwater!
A Correct Translation

Some blobfish is cute.

\[\exists x. (\text{Blobfish}(x) \land \text{Cute}(x)) \quad ??? \]

Your call :)

Slight aside: blobfish actually look totally normal underwater!
Good Pairings

The \forall quantifier *usually* is paired with \rightarrow.
\[\forall x. \ (P(x) \rightarrow Q(x)) \]

The \exists quantifier *usually* is paired with \land.
\[\exists x. \ (P(x) \land Q(x)) \]

• In the case of \forall, the \rightarrow connective prevents the statement from being *false* when speaking about some object you don't care about.

• In the case of \exists, the \land connective prevents the statement from being *true* when speaking about some object you don't care about.
The Aristotelian Forms

“All As are Bs”
\[\forall x. (A(x) \rightarrow B(x)) \]

“Some As are Bs”
\[\exists x. (A(x) \land B(x)) \]

“No As are Bs”
\[\forall x. (A(x) \rightarrow \neg B(x)) \]

“Some As aren’t Bs”
\[\exists x. (A(x) \land \neg B(x)) \]

It is worth committing these patterns to memory. We’ll be using them throughout the day and they form the backbone of many first-order logic translations.
What we’ve covered:

• Set theory
• Element of, subset of
• Combining sets (union, intersection, etc.)
• Power set
• Cardinality
• Mathematical proofs
• Direct proofs
• Indirect proofs
Why?

• Set theory is a language we can use to pin down abstract concepts

• Largely, discrete math is a set of tools to help us answer really interesting questions

• Broadly applicable approach to problem solving
Let’s do a proof together!
Theorem: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

Theorem: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When confronted with a theorem to prove, the first step is to make sure you understand where you’re starting and where you’re going.
Theorem: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>A and B are sets.</td>
<td>$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.</td>
</tr>
</tbody>
</table>
Theorem: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>A and B are sets.</td>
<td>$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.</td>
</tr>
</tbody>
</table>

Let’s unpack this!
Theorem: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>A and B are sets.</td>
<td>$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.</td>
</tr>
</tbody>
</table>

Let’s unpack this!

Talk with your neighbors and figure out:
- What is the definition of $\mathcal{P}(S)$?
- What is the definition of $S \cap T$?
- How do you show two sets are equal to one another?
Theorem: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>A and B are sets.</td>
<td>$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.</td>
</tr>
</tbody>
</table>

Relevant Definitions

$\mathcal{P}(S) = \{ T \mid T \subseteq S \}$

For all x in $S \cap T$, $x \in S$ and $x \in T$

In general to show that $S = T$,
show that $S \subseteq T$ and $T \subseteq S$
Theorem: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>A and B are sets.</td>
<td>$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.</td>
</tr>
</tbody>
</table>

Relevant Definitions

- $\mathcal{P}(S) = \{ T \mid T \subseteq S \}$
- For all x in $S \cap T$, $x \in S$ and $x \in T$
- In general to show that $S = T$, show that $S \subseteq T$ and $T \subseteq S$

A great proofwriting strategy is to **write down relevant definitions**. This gives you a better sense of what you need to prove and what tools you have at hand.
Theorem: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>A and B are sets.</td>
<td>$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.</td>
</tr>
</tbody>
</table>

Relevant Definitions

- $\mathcal{P}(S) = \{ T \mid T \subseteq S \}$
- For all x in $S \cap T$, $x \in S$ and $x \in T$
- In general to show that $S = T$, show that $S \subseteq T$ and $T \subseteq S$
Theorem: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>A and B are sets.</td>
<td>$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.</td>
</tr>
</tbody>
</table>

Relevant Definitions

$\mathcal{P}(S) = \{ T | T \subseteq S \}$

For all x in $S \cap T$, $x \in S$ and $x \in T$

In general to show that $S = T$, show that $S \subseteq T$ and $T \subseteq S$

S and T are placeholder variables here – what is S and what is T?

How can we apply this general template to our specific problem?
Theorem: If A and B are sets, then $\wp(A) \cap \wp(B) = \wp(A \cap B)$.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>A and B are sets.</td>
<td>$\wp(A) \cap \wp(B) = \wp(A \cap B)$.</td>
</tr>
<tr>
<td></td>
<td>$\wp(A) \cap \wp(B) \subseteq \wp(A \cap B)$.</td>
</tr>
<tr>
<td></td>
<td>$\wp(A \cap B) \subseteq \wp(A) \cap \wp(B)$.</td>
</tr>
</tbody>
</table>

Relevant Definitions

$\wp(S) = \{ T | T \subseteq S \}$

For all x in $S \cap T$, $x \in S$ and $x \in T$

In general to show that $S = T$, show that $S \subseteq T$ and $T \subseteq S$
Theorem: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

What We’re Assuming

- A and B are sets.

What We Need To Show

- $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.
- $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.
- $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$.

Relevant Definitions

- $\mathcal{P}(S) = \{ T | T \subseteq S \}$
- For all x in $S \cap T$, $x \in S$ and $x \in T$.
- In general to show that $S = T$, show that $S \subseteq T$ and $T \subseteq S$.

How do we show that one set is a subset of another?
Theorem: If A and B are sets, then \(\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B) \).

What We’re Assuming

- A and B are sets.

What We Need To Show

- \(\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B) \).
- \(\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B) \).
- \(\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B) \).

Relevant Definitions

- \(\mathcal{P}(S) = \{ T \mid T \subseteq S \} \)
- For all \(x \) in \(S \cap T \), \(x \in S \) and \(x \in T \)
- In general to show that \(S = T \), show that \(S \subseteq T \) and \(T \subseteq S \)
- In general to show that \(S \subseteq T \), pick an arbitrary \(x \in S \), show that \(x \in T \)
Theorem: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>A and B are sets.</td>
<td>$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.</td>
</tr>
<tr>
<td></td>
<td>$\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.</td>
</tr>
<tr>
<td></td>
<td>$\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$.</td>
</tr>
</tbody>
</table>

Relevant Definitions

$\mathcal{P}(S) = \{ T \mid T \subseteq S \}$

For all x in $S \cap T$, $x \in S$ and $x \in T$

In general to show that $S = T$, show that $S \subseteq T$ and $T \subseteq S$

In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$
Theorem: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>A and B are sets.</td>
<td>$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.</td>
</tr>
</tbody>
</table>
| $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$. | $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.
| | $-S \in \mathcal{P}(A \cap B)$. |

Relevant Definitions

$\mathcal{P}(S) = \{ T | T \subseteq S \}$

For all x in $S \cap T$, $x \in S$ and $x \in T$

In general to show that $S = T$, show that $S \subseteq T$ and $T \subseteq S$

In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$
Theorem: If A and B are sets, then \(\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B) \).

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>A and B are sets.</td>
<td>(\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)).</td>
</tr>
<tr>
<td>(S \in \mathcal{P}(A) \cap \mathcal{P}(B)).</td>
<td>(\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)).</td>
</tr>
</tbody>
</table>

Relevant Definitions

\(\mathcal{P}(S) = \{ T \mid T \subseteq S \} \)

For all \(x \) in \(S \cap T \), \(x \in S \) and \(x \in T \)

In general to show that \(S \subseteq T \), show that \(S \subseteq T \) and \(T \subseteq S \)

In general to show that \(S \subseteq T \), pick an arbitrary \(x \in S \), show that \(x \in T \)

Notice how we took the theorem we’re trying to prove and unpacked it into simpler statements. Let’s go and try to prove \(\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B) \) using the starting and ending points we identified here.
Lemma: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Rough Outline

Pick $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$.

$S \in \mathcal{P}(A \cap B)$.

Relevant Definitions

$\mathcal{P}(S) = \{ T \mid T \subseteq S \}$

For all x in $S \cap T$, $x \in S$ and $x \in T$

In general to show that $S = T$, show that $S \subseteq T$ and $T \subseteq S$

In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$
Lemma: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Rough Outline

Pick $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$.

Relevant Definitions

$\mathcal{P}(S) = \{T \mid T \subseteq S\}$

For all x in $S \cap T$, $x \in S$ and $x \in T$

In general to show that $S = T$, show that $S \subseteq T$ and $T \subseteq S$

In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$

Right now, we have no idea how to get from the start to our goal. It can be helpful at this point to just start writing down anything we know and apply any relevant definitions.
Lemma: If \(A \) and \(B \) are sets, then \(\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B) \).

Rough Outline

<table>
<thead>
<tr>
<th>Rough Outline</th>
<th>Relevant Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick (S \in \mathcal{P}(A) \cap \mathcal{P}(B)).</td>
<td>(\mathcal{P}(S) = { T \mid T \subseteq S })</td>
</tr>
<tr>
<td>(S \in \mathcal{P}(A)) and (S \in \mathcal{P}(B)).</td>
<td>For all (x) in (S \cap T), (x \in S) and (x \in T)</td>
</tr>
<tr>
<td>What do we know about (S) based on this?</td>
<td>In general to show that (S = T), show that (S \subseteq T) and (T \subseteq S)</td>
</tr>
<tr>
<td>(S \in \mathcal{P}(A \cap B)).</td>
<td>In general to show that (S \subseteq T), pick an arbitrary (x \in S), show that (x \in T)</td>
</tr>
</tbody>
</table>
Lemma: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Rough Outline

Pick $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$.

$S \in \mathcal{P}(A)$ and $S \in \mathcal{P}(B)$.

$S \in \mathcal{P}(A \cap B)$.

Relevant Definitions

$\mathcal{P}(S) = \{ T \mid T \subseteq S \}$

For all x in $S \cap T$, $x \in S$ and $x \in T$

In general to show that $S = T$, show that $S \subseteq T$ and $T \subseteq S$

In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$
Lemma: If A and B are sets, then $\varphi(A) \cap \varphi(B) \subseteq \varphi(A \cap B)$.

Rough Outline

- Pick $S \in \varphi(A) \cap \varphi(B)$.
- $S \in \varphi(A)$ and $S \in \varphi(B)$.

Relevant Definitions

- $\varphi(S) = \{ T | T \subseteq S \}$
- For all x in $S \cap T$, $x \in S$ and $x \in T$
- In general to show that $S = T$, show that $S \subseteq T$ and $T \subseteq S$
- In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$
Rough Outline

Pick \(S \in \mathcal{P}(A) \cap \mathcal{P}(B) \).

\(S \in \mathcal{P}(A) \) and \(S \in \mathcal{P}(B) \).

\(S \subseteq A \) and \(S \subseteq B \).

\(x \in S \) so \(x \in A \).

\(x \in S \) so \(x \in B \).

\(x \in A \cap B \).

\(S \subseteq A \cap B \).

\(S \in \mathcal{P}(A \cap B) \).

Relevant Definitions

\[\mathcal{P}(S) = \{ T \mid T \subseteq S \} \]

For all \(x \) in \(S \cap T \), \(x \in S \) and \(x \in T \)

In general to show that \(S = T \), show that \(S \subseteq T \) and \(T \subseteq S \)

In general to show that \(S \subseteq T \), pick an arbitrary \(x \in S \), show that \(x \in T \)

Another strategy we can try is to **work backwards**. That is, given where we want to end up, what would we have to show first in order to make that conclusion?
Lemma: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Rough Outline

Pick $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$.

$S \in \mathcal{P}(A)$ and $S \in \mathcal{P}(B)$.

What would we have to show in order to conclude that $S \in \mathcal{P}(A \cap B)$?

Relevant Definitions

$\mathcal{P}(S) = \{ T \mid T \subseteq S \}$

For all x in $S \cap T$, $x \in S$ and $x \in T$

In general to show that $S = T$, show that $S \subseteq T$ and $T \subseteq S$

In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$
Lemma: If A and B are sets, then \(\wp(A) \cap \wp(B) \subseteq \wp(A \cap B) \).

Rough Outline

Pick \(S \in \wp(A) \cap \wp(B) \).

S \in \wp(A) and S \in \wp(B).

What would we have to show in order to conclude that \(S \in \wp(A \cap B) \)?

\[
S \subseteq A \cap B.
\]

S \in \wp(A \cap B).

Relevant Definitions

\(\wp(S) = \{ T \mid T \subseteq S \} \)

For all \(x \) in \(S \cap T \), \(x \in S \) and \(x \in T \)

In general to show that \(S = T \), show that \(S \subseteq T \) and \(T \subseteq S \)

In general to show that \(S \subseteq T \), arbitrary \(x \in S \), show that...
Lemma: If A and B are sets, then $\wp(A) \cap \wp(B) \subseteq \wp(A \cap B)$.

Rough Outline

Pick $S \in \wp(A) \cap \wp(B)$.

$S \in \wp(A)$ and $S \in \wp(B)$.

$S \subseteq A \cap B$.

$S \in \wp(A \cap B)$.

Relevant Definitions

$\wp(S) = \{ \, T \mid T \subseteq S \, \}$

For all x in $S \cap T$, $x \in S$ and $x \in T$

In general to show that $S = T$, show that $S \subseteq T$ and $T \subseteq S$

In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$

Take a few minutes and try to fill in the rest of these steps. Think about:

- How do you show a set is a subset of another?
- What can you say about S relative to A and B?
Lemma: If A and B are sets, then $\wp(A) \cap \wp(B) \subseteq \wp(A \cap B)$.

Rough Outline

Pick $S \in \wp(A) \cap \wp(B)$.

$S \in \wp(A)$ and $S \in \wp(B)$.

$S \subseteq A$ and $S \subseteq B$.

$S \subseteq A \cap B$.

$S \in \wp(A \cap B)$.

Relevant Definitions

$\wp(S) = \{ T \mid T \subseteq S \}$

For all x in $S \cap T$, $x \in S$ and $x \in T$.

In general to show that $S = T$, show that $S \subseteq T$ and $T \subseteq S$.

In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$.

Lemma: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Rough Outline

- Pick $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$.
- $S \in \mathcal{P}(A)$ and $S \in \mathcal{P}(B)$.
- $S \subseteq A$ and $S \subseteq B$.

Relevant Definitions

- $\mathcal{P}(S) = \{ T \mid T \subseteq S \}$
- For all x in $S \cap T$, $x \in S$ and $x \in T$
- In general to show that $S = T$, show that $S \subseteq T$ and $T \subseteq S$
- In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$

We want to show that $S \subseteq A \cap B$ so we’ll pick an $x \in S$ and show that $x \in A \cap B$.

- $S \subseteq A \cap B$.
- $S \in \mathcal{P}(A \cap B)$.

Lemma: If A and B are sets, then $\wp(A) \cap \wp(B) \subseteq \wp(A \cap B)$.

Rough Outline

Pick $S \in \wp(A) \cap \wp(B)$.

$S \in \wp(A)$ and $S \in \wp(B)$.

$S \subseteq A$ and $S \subseteq B$.

Pick $x \in S$ so $x \in A$.

$x \in S$ so $x \in B$.

$S \subseteq A \cap B$.

$S \in \wp(A \cap B)$.

Relevant Definitions

$\wp(S) = \{ T \mid T \subseteq S \}$

For all x in $S \cap T$, $x \in S$ and $x \in T$

In general to show that $S = T$, show that $S \subseteq T$ and $T \subseteq S$

In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$

We want to show that $S \subseteq A \cap B$ so we’ll pick an $x \in S$ and show that $x \in A \cap B$.
Lemma: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Rough Outline

Pick $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$.

$S \in \mathcal{P}(A)$ and $S \in \mathcal{P}(B)$.

$S \subseteq A$ and $S \subseteq B$.

Pick $x \in S$ so $x \in A$.

$x \in S$ so $x \in B$.

$x \in A \cap B$.

$S \subseteq A \cap B$.

$S \in \mathcal{P}(A \cap B)$.

We want to show that $S \subseteq A \cap B$ so we’ll pick an $x \in S$ and show that $x \in A \cap B$.

Relevant Definitions

$\mathcal{P}(S) = \{ T | T \subseteq S \}$

For all x in $S \cap T$, $x \in S$ and $x \in T$

In general to show that $S = T$, show that $S \subseteq T$ and $T \subseteq S$

In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$
Lemma: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Rough Outline

- Pick $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$.
- $S \in \mathcal{P}(A)$ and $S \in \mathcal{P}(B)$.
- $S \subseteq A$ and $S \subseteq B$.
- Pick $x \in S$ so $x \in A$.
- $x \in S$ so $x \in B$.
- $x \in A \cap B$.
- $S \subseteq A \cap B$.
- $S \in \mathcal{P}(A \cap B)$.

Take a few minutes and write up a proof for $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$ using this outline.

Then swap proofs with a neighbor and critique each other!
Lemma: If A and B are sets, then $\varnothing(A) \cap \varnothing(B) \subseteq \varnothing(A \cap B)$.

Proof: Let A and B be sets. We need to show that $\varnothing(A) \cap \varnothing(B) \subseteq \varnothing(A \cap B)$.

Consider an arbitrary $S \in \varnothing(A) \cap \varnothing(B)$. This means that $S \in \varnothing(A)$ and $S \in \varnothing(B)$, so $S \subseteq A$ and $S \subseteq B$. We need to prove that $S \in \varnothing(A \cap B)$, meaning that we need to prove that $S \subseteq A \cap B$.

To prove that $S \subseteq A \cap B$, consider any $x \in S$. Since $x \in S$ and $S \subseteq A$, we know that $x \in A$. Similarly, since $x \in S$ and $S \subseteq B$, we know that $x \in B$. Collectively, we've shown that $x \in A$ and $x \in B$, so we see that $x \in A \cap B$. This means that every $x \in S$ satisfies $x \in A \cap B$, so $S \subseteq A \cap B$, which is what we needed to show. \blacksquare
Lemma: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Proof: Let A and B be sets. We need to show that $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

To prove that $S \subseteq A \cap B$, consider any $x \in S$. Since $x \in S$ and $S \subseteq A$, we know that $x \in A$. Similarly, since $x \in S$ and $S \subseteq B$, we know that $x \in B$. Collectively, we've shown that $x \in A$ and $x \in B$, so we see that $x \in A \cap B$. This means that every $x \in S$ satisfies $x \in A \cap B$, so $S \subseteq A \cap B$, which is what we needed to show. ■
Lemma: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Proof: Let A and B be sets. We need to show that $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Consider an arbitrary $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$. This means that $S \in \mathcal{P}(A)$ and $S \in \mathcal{P}(B)$, so $S \subseteq A$ and $S \subseteq B$. We need to prove that $S \in \mathcal{P}(A \cap B)$, meaning that we need to prove that $S \subseteq A \cap B$.

To prove that $S \subseteq A \cap B$, consider any $x \in S$. Since $x \in S$ and $S \subseteq A$, we know that $x \in A$. Similarly, since $x \in S$ and $S \subseteq B$, we know that $x \in B$. Collectively, we've shown that $x \in A \cap B$, so we have $x \in S$. This shows that $S \subseteq A \cap B$, which is what we needed to show. ■

Are you making specific claims about specific variables? Your proof should NOT have statements of the form “every element of S” or “every subset of S”.
Lemma: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Proof: Let A and B be sets. We need to show that $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Consider an arbitrary $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$. This means that $S \in \mathcal{P}(A)$ and $S \in \mathcal{P}(B)$, so $S \subseteq A$ and $S \subseteq B$. We need to prove that $S \in \mathcal{P}(A \cap B)$, meaning that we need to prove that $S \subseteq A \cap B$.

To prove that $S \subseteq A \cap B$, consider any $x \in S$. Since $x \in S$ and $S \subseteq A$, we know that $x \in A$. Similarly, since $x \in S$ and $S \subseteq B$, we know that $x \in B$. Collectively, we have shown that $x \in A \cap B$.

Are all variables properly introduced and scoped? You should be able to point at every variable and say that it is either:

1) an arbitrarily chosen value
2) an existentially instantiated value
3) an explicitly chosen value
Lemma: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Proof: Let A and B be sets. We need to show that $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Consider an arbitrary $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$. This means that $S \in \mathcal{P}(A)$ and $S \in \mathcal{P}(B)$, so $S \subseteq A$ and $S \subseteq B$. We need to prove that $S \in \mathcal{P}(A \cap B)$, meaning that we need to prove that $S \subseteq A \cap B$.

To prove that $S \subseteq A \cap B$, consider any $x \in S$. Since $x \in S$ and $S \subseteq A$, we know that $x \in A$. Similarly, since $x \in S$ and $S \subseteq B$, we know that $x \in B$. Collectively, we've shown that $x \in A$ and $x \in B$, so we see that $x \in A \cap B$. This means that every $x \in S$ satisfies $x \in A \cap B$, so $S \subseteq A \cap B$, which is what we needed to show. \blacksquare

Are you applying definitions appropriately?

Example: $S \in \mathcal{P}(A)$ and the power set is the set of all subsets so $S \subseteq A$.
Lemma: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Proof: Let A and B be sets. We need to show that $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Consider an arbitrary $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$. This means that $S \in \mathcal{P}(A)$ and $S \in \mathcal{P}(B)$, so $S \subseteq A$ and $S \subseteq B$. We need to prove that $S \in \mathcal{P}(A \cap B)$, meaning that we need to prove that $S \subseteq A \cap B$.

To prove that $S \subseteq A \cap B$, consider any $x \in S$. Since $x \in S$ and $S \subseteq A$, we know that $x \in A$. Similarly, since $x \in S$ and $S \subseteq B$, we know that $x \in B$. Collectively, we've shown that $x \in A$ and $x \in B$, so $x \in A \cap B$. This means that every $x \in S$ satisfies $x \in A \cap B$, so $S \subseteq A \cap B$, which is what we needed to show. \square

Are you applying definitions appropriately?

Example: $S \in \mathcal{P}(A)$ and the power set is the set of all subsets so $S \subseteq A$.

Example: $S \in \mathcal{P}(A)$ and the power set is the set of all subsets so $S \subseteq A$.

Proofwriting Strategies

Articulate a Clear Start and End Point

- What are you assuming? What are you trying to prove?

Write Down Relevant Terms and Definitions

- Identify existing tools to help you get from your starting point to your ending point

Work Backwards

- Use your end goal to figure out intermediate steps
Theorem: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

<table>
<thead>
<tr>
<th>What We’re Assuming</th>
<th>What We Need To Show</th>
</tr>
</thead>
<tbody>
<tr>
<td>A and B are sets.</td>
<td>$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.</td>
</tr>
<tr>
<td></td>
<td>$\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.</td>
</tr>
<tr>
<td></td>
<td>$\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$.</td>
</tr>
</tbody>
</table>

Relevant Definitions

$\mathcal{P}(S) = \{ T \mid T \subseteq S \}$

For all x in $S \cap T$, $x \in S$ and $x \in T$

In general to show that $S = T$, show that $S \subseteq T$ and $T \subseteq S$

In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$
Theorem: If A and B are sets, then $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

What We’re Assuming

A and B are sets.

What We Need To Show

$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

$\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$. ✓

$\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$.

Relevant Definitions

$\mathcal{P}(S) = \{ T \mid T \subseteq S \}$

For all x in $S \cap T$, $x \in S$ and $x \in T$

In general to show that $S = T$, show that $S \subseteq T$ and $T \subseteq S$

In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show $x \in T$

Good exercise: Try doing the other half of this proof!
Next Time

First-Order Translations
• How do we translate from English into first-order logic?

Quantifier Orderings
• How do you select the order of quantifiers in first-order logic formulas?

Negating Formulas
• How do you mechanically determine the negation of a first-order formula?

Expressing Uniqueness
• How do we say there’s just one object of a certain type?
Thought for the Weekend

Being Wrong