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What's in Common

Each of these structures consists of

a collection of objects and

links between those objects.

Goal: find a general framework for 
describing these objects and their 
properties.



A graph is a mathematical structure

for representing relationships.

A graph consists of a set of nodes (or vertices) 
connected by edges (or arcs)
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A graph is a mathematical structure

for representing relationships.

A graph consists of a set of nodes (or vertices)
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Edges



Some graphs are directed.
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Some graphs are undirected.



Going forward, we're primarily going to 
focus on undirected graphs.

The term “graph” generally refers to 
undirected graphs with a finite number of 

nodes, unless specified otherwise.



Formalizing Graphs

How might we define a graph 
mathematically?

We need to specify

• what the nodes in the graph are, and

• which edges are in the graph.

The nodes can be pretty much anything.

What about the edges?



Formalizing Graphs

An unordered pair is a set {a, b} of two elements 
a ≠ b. (Remember that sets are unordered).

{0, 1} = {1, 0}

An undirected graph is an ordered pair 
G = (V, E), where

V is a set of nodes, which can be anything, and

E is a set of edges, which are unordered pairs of 
nodes drawn from V.

A directed graph is an ordered pair G = (V, E), 
where

V is a set of nodes, which can be anything, and

E is a set of edges, which are ordered pairs of 
nodes drawn from V.



Self-Loops

An edge from a node to itself is called a self-loop.

In undirected graphs, self-loops are generally not 
allowed.

Can you see how this follows from the definition?

In directed graphs, self-loops are generally allowed 
unless specified otherwise.

✓×



Standard Graph Terminology
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Two nodes are called adjacent if there is an edge 
between them.
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Using our Formalisms

Let G = (V, E) be a graph.

Intuitively, two nodes are adjacent if 
they're linked by an edge.

Formally speaking, we say that two nodes 
u, v ∈ V are adjacent if {u, v} ∈ E.
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A path in a graph G = (V, E) is 
a sequence of one or more 
nodes v₁, v₂, v₃, …, vₙ such that 
any two consecutive nodes in 
the sequence are adjacent.
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A path in a graph G = (V, E) is 
a sequence of one or more 
nodes v₁, v₂, v₃, …, vₙ such that 
any two consecutive nodes in 
the sequence are adjacent.

The length of the path v₁, …,vₙ
is n – 1.
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A path in a graph G = (V, E) is 
a sequence of one or more 
nodes v₁, v₂, v₃, …, vₙ such that 
any two consecutive nodes in 
the sequence are adjacent.

The length of the path v₁, …,vₙ
is n – 1.

SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea

(This path has length 
10, but visits 11 cities.)
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any two consecutive nodes in 
the sequence are adjacent.
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a sequence of one or more 
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any two consecutive nodes in 
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A path in a graph G = (V, E) is 
a sequence of one or more 
nodes v₁, v₂, v₃, …, vₙ such that 
any two consecutive nodes in 
the sequence are adjacent.

The length of the path v₁, …,vₙ
is n – 1.

SLC

A cycle in a graph is a path 
from a node back to itself. (By 
convention, a cycle cannot have 
length zero.)
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A path in a graph G = (V, E) is 
a sequence of one or more 
nodes v₁, v₂, v₃, …, vₙ such that 
any two consecutive nodes in 
the sequence are adjacent.

The length of the path v₁, …,vₙ
is n – 1.

SLC

A cycle in a graph is a path 
from a node back to itself. (By 
convention, a cycle cannot have 
length zero.)

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac

(This cycle has length nine 
and visits nine different 

cities.)
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cycle that does not repeat any 
nodes or edges except the 
first/last node.Sac, SLC, Port, Sac, SLC, Port, Sac

(This cycle has length 
6.)
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connected if there is a path 
between them.

(These nodes are not 
connected. No Grand 

Canyon for you.)
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Two nodes in a graph are 
called connected if there is a 
path between them.

A graph G as a whole is called 
connected if all pairs of nodes 
in G are connected.

(This graph is not 
connected.)
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Connected Components

Let G = (V, E) be a graph. For each v ∈ V, the 
connected component containing v is the set

[v] = { x ∈ V | v is connected to x }

Intuitively, a connected component is a “piece” of a 
graph in the sense we just talked about.

Question: How do we know that this particular 
definition of a “piece” of a graph is a good one?

Goal: Prove that any graph can be broken apart 
into different connected components.



We’re trying to reason about some way of 
partitioning the nodes in a graph into 

different groups.

What structure have we studied that 
captures the idea of a partition?



Connectivity

Claim: For any graph G, the “is connected 
to” relation is an equivalence relation.

Is it reflexive?

Is it symmetric?

Is it transitive?
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Is it transitive?

∀v ∈ V. Conn(v, v)
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connected if there is a path 
between them
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Connectivity

Claim: For any graph G, the “is connected 
to” relation is an equivalence relation.

Is it reflexive?

Is it symmetric?

Is it transitive?

∀x ∈ V. ∀y ∈ V. ∀z ∈ V. (Conn(x, y) ∧ Conn(y, z) → Conn(x, z))
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Connectivity

Claim: For any graph G, the “is connected 
to” relation is an equivalence relation.

Is it reflexive?

Is it symmetric?

Is it transitive?

∀x ∈ V. ∀y ∈ V. ∀z ∈ V. (Conn(x, y) ∧ Conn(y, z) → Conn(x, z))
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Theorem: Let G = (V, E) be a graph. Then the connectivity relation
over V is an equivalence relation.

Proof: Consider an arbitrary graph G = (V, E). We will prove that
the connectivity relation over V is reflexive, symmetric, and
transitive.

To show that connectivity is reflexive, consider any v ∈ V. Then the 
singleton path v is a path from v to itself. Therefore, v is connected to 
itself, as required.

To show that connectivity is symmetric, consider any x, y ∈ V where x
is connected to y. We need to show that y is connected to x. Since x is 
connected to y, there is some path x, v₁, …, vₙ, y from x to y. Then y, 
vₙ, …, v₁, x is a path from y back to x, so y is connected to x.

Finally, to show that connectivity is transitive, let x, y, z ∈ V be 
arbitrary nodes where x is connected to y and y is connected to z. We 
will prove that x is connected to z. Since x is connected to y, there is a 
path x, u₁, …, uₙ, y from x to y. Since y is connected to z, there is a 
path y, v₁, …, vₖ, z from y to z. Then the path
x, u₁, …, uₙ, y, v₁, …, vₖ, z goes from x to z. Thus x is connected to z, as 
required. ■



Putting Things Together

Earlier, we defined the connected component 
of a node v to be

[v] = { x ∈ V | v is connected to x }

Connectivity is an equivalence relation! So 
what’s the equivalence class of a node v with 
respect to connectivity?

[v]conn = { x ∈ V | v is connected to x }

Connected components are equivalence 
classes of the connectivity relation!



Theorem: If G = (V, E) is a graph, then every node in G
belongs to exactly one connected component of G.

Proof: Let G = (V, E) be an arbitrary graph and let v ∈ V be
any node in G. The connected components of G are just
the equivalence classes of the connectivity relation in G.
The Fundamental Theorem of Equivalence Relations
guarantees that v belongs to exactly one equivalence
class of the connectivity relation. Therefore, v belongs to
exactly one connected component in G. ■



Time out for announcements!



Problem Set 3

• Due tomorrow (Thursday) at 11:59pm PDT.

• Use a late period to extend this to Saturday at 
11:59pm PDT.

• Any last questions? Come to office hours or ask 
on Campuswire.



Midterm

• Thursday July 23rd

• Will cover material up to Monday’s lecture 
(psets 1, 2, 3).

• 24-hour window to start the exam. Begins at 
9:30AM PDT on Thursday July 23rd.

• Once you click start on Gradscope, Gradescope
will give you access to the exam. You’ll have 3 
hours to complete the exam, plus 15 minutes to 
upload your exam to Gradescope.

• Please make sure any OAE letters get sent to 
the staff mailing list as soon as possible.


