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m = 4, n = 3



Some Simple Applications
• Any group of 367 people must have a pair of 

people that share a birthday.

• 366 possible birthdays (pigeonholes)

• 367 people (pigeons)

• Two people in San Francisco have the exact 
same number of hairs on their head.

• Maximum number of hairs ever found on a 
human head is no greater than 500,000.

• There are over 800,000 people in San 
Francisco.



Proving the Pigeonhole Principle



Theorem: If m objects are distributed into n bins and m > n,
then there must be some bin that contains at least two 

objects.

Proof: Suppose for the sake of contradiction that, for some m and
n where m > n, there is a way to distribute m objects into n
bins such that each bin contains at most one object.

Number the bins 1, 2, 3, …, n and let xᵢ denote the number of objects 
in bin i. There are m objects in total, so we know that

m = x₁ + x₂ + … + xₙ.

Since each bin has at most one object in it, we know xᵢ ≤ 1 for each 
i. This means that

m = x₁ + x₂ + … + xₙ
≤ 1  +  1 + … + 1   (n times)
= n.

This means that m ≤ n, contradicting that m > n. We’ve reached a 
contradiction, so our assumption must have been wrong. Therefore, 
if m objects are distributed into n bins with m > n, some bin must 
contain at least two objects. ■



Pigeonhole Principle Party Tricks









Degrees

The degree of a node v in a graph is the 
number of nodes that v is adjacent to.

Theorem: Every graph with at least two 
nodes has at least two nodes with the same 
degree.

Equivalently: at any party with at least two 
people, there are at least two people with the 
same number of friends at the party.
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are n possible 

degrees
(0, 1, 2, …, n – 1)
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Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 1: Let G be a graph with n ≥ 2 nodes. There are n
possible choices for the degrees of nodes in G, namely,
0, 1, 2, …, and n – 1.

We claim that G cannot simultaneously have a node u of 
degree 0 and a node v of degree n – 1: if there were such 
nodes, then node u would be adjacent to no other nodes and 
node v would be adjacent to all other nodes, including u. 
(Note that u and v must be different nodes, since v has degree 
at least 1 and u has degree 0.)

We therefore see that the possible options for degrees of 
nodes in G are either drawn from 0, 1, …, n – 2 or from
1, 2, …, n – 1. In either case, there are n nodes and n – 1 
possible degrees, so by the pigeonhole principle two nodes in 
G must have the same degree. ■
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Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 2: Assume for the sake of contradiction that there
is a graph G with n ≥ 2 nodes where no two nodes
have the same degree. There are n possible choices
for the degrees of nodes in G, namely 0, 1, 2, …, n – 1,
so this means that G must have exactly one node of
each degree. However, this means that G has a node
of degree 0 and a node of degree n – 1. (These can't
be the same node, since n ≥ 2.) This first node is
adjacent to no other nodes, but this second node is
adjacent to every other node, which is impossible.

We have reached a contradiction, so our assumption must 
have been wrong. Thus if G is a graph with at least two 
nodes, G must have at least two nodes of the same degree. ■



The Generalized Pigeonhole Principle



The Pigeonhole Principle



The Pigeonhole Principle

? ? ? ?

?

?



The Pigeonhole Principle



The Pigeonhole Principle



The Pigeonhole Principle



The Pigeonhole Principle

11

5
= 2

1

5



The generalized pigeonhole principle says that 
if you distribute m objects into n bins, then

some bin will have at least ⌈m/ₙ⌉ objects in it, and

some bin will have at most ⌊m/ₙ⌋ objects in it.

A More General Version

⌈m/ₙ⌉ means “m/ₙ, rounded up.”
⌊m/ₙ⌋ means “m/ₙ, rounded down.”

m = 11
n = 5

⌈m / n⌉ = 3
⌊m / n⌋ = 2
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A More General Version
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×11



m = 8, n = 3



Theorem: If m objects are distributed into n > 0 bins, then some
bin will contain at least ⌈m/ₙ⌉ objects.

Proof: We will prove that if m objects are distributed into n bins, then
some bin contains at least m/ₙ objects. Since the number of objects in
each bin is an integer, this will prove that some bin must contain at
least ⌈m/ₙ⌉ objects.

To do this, we proceed by contradiction. Suppose that, for some m and n, 
there is a way to distribute m objects into n bins such that each bin 
contains fewer than m/ₙ objects.

Number the bins 1, 2, 3, …, n and let xᵢ denote the number of objects in bin 
i. Since there are m objects in total, we know that

m = x₁  +  x₂  + … + xₙ.

Since each bin contains fewer than m/ₙ objects, we see that
xᵢ < m/ₙ for each i. Therefore, we have that

m = x₁  +  x₂  + … + xₙ
< m/ₙ + m/ₙ  + … + m/ₙ (n 

times)
= m.

But this means that m < m, which is impossible. We have reached a 
contradiction, so our initial assumption must have been wrong. Therefore, 
if m objects are distributed into n bins, some bin must contain at least ⌈m/ₙ⌉ 
objects. ■



An Application: Friends and Strangers



Friends and Strangers

Suppose you have a party of six people. 
Each pair of people are either friends (they 
know each other) or strangers (they do 
not).

Theorem: Any such party must have a 
group of three mutual friends (three people 
who all know one another) or three mutual 
strangers (three people, none of whom 
know any of the others).















This graph is called a 6-
clique, by the way.











Friends and Strangers Restated

From a graph-theoretic perspective, the 
Theorem on Friends and Strangers can be 
restated as follows:

Theorem: Any 6-clique whose edges are 
colored red and blue contains a red 
triangle or a blue triangle (or both).

How can we prove this?















Observation 1: If 
we pick any node in 
the graph, that node 

will have at least 
⌈5/2⌉ = 3 edges of 

the same color 
incident to it.



















Theorem: Consider a 6-clique in which every edge is colored
either red or blue. Then there must be a triangle of red
edges, a triangle of blue edges, or both.

Proof: Color the edges of the 6-clique either red or blue
arbitrarily. Let x be any node in the 6-clique. It is incident
to five edges and there are two possible colors for those
edges. Therefore, by the generalized pigeonhole principle,
at least ⌈⁵/₂⌉ = 3 of those edges must be the same color.
Call that color c₁ and let the other color be c₂.

Let r, s, and t be three of the nodes adjacent to node x along an 
edge of color c₁. If any of the edges {r, s}, {r, t}, or {s, t} are of 
color c₁, then one of those edges plus the two edges connecting 
back to node x form a triangle of color c₁. Otherwise, all three 
of those edges are of color c₂, and they form a triangle of color 
c₂. Overall, this gives a red triangle or a blue triangle, as 
required. ■



Ramsey Theory

The proof we did is a special case of a broader 
result.

Theorem (Ramsey’s Theorem): For any natural 
number n, there is a smallest natural number R(n) 
such that if the edges of an R(n)-clique are colored 
red or blue, the resulting graph will contain either 
a red n-clique or a blue n-clique.

Our proof was that R(3) ≤ 6.

A more philosophical take on this theorem: true 
disorder is impossible at a large scale, since no 
matter how you organize things, you’re guaranteed 
to find some interesting substructure.



A Little Math Puzzle



“In a group of n > 0 people …

· 90% of those people enjoyed Get Out,
· 80% of those people enjoyed Lady Bird,

· 70% of those people enjoyed Arrival, and

· 60% of those people enjoyed Zootopia.

No one enjoyed all four movies. How many people

enjoyed at least one of Get Out and Arrival?”

(Adapted from here.)

https://math.stackexchange.com/questions/2874859/drinking-habits-riddle-the-village-is-90807060-300-saturat


Other Pigeonhole-Type Results



If m objects are distributed into n 
boxes, then [condition] holds.



If m objects are distributed into n 
boxes, then some box is loaded to at 

least the average ᵐ/ₙ, and some box is 
loaded to at most the average ᵐ/ₙ.



If m objects are distributed into n 
boxes, then [condition] holds.













Theorem: If m objects are distributed into 
n bins, then there is a bin containing more 
than ᵐ/ₙ objects if and only if there is a bin 

containing fewer than ᵐ/ₙ objects.



Lemma: If m objects are distributed into n bins and there are no bins
containing more than ᵐ/ₙ objects, then there are no bins containing
fewer than ᵐ/ₙ objects.

Proof: Assume for the sake of contradiction that m objects are distributed
into n bins such that no bin contains more than ᵐ/ₙ objects, yet some
bin has fewer than ᵐ/ₙ objects.

For simplicity, denote by xᵢ the number of objects in bin i. Without loss of 
generality, assume that bin 1 has fewer than ᵐ/ₙ objects, meaning that x₁ < 
ᵐ/ₙ. Adding up the number of objects in each bin tells us that

m =  x₁ + x₂ + x₃ + … + xₙ

<  ᵐ/ₙ + x₂ + x₃ + … 
+ xₙ

≤ ᵐ/ₙ + ᵐ/ₙ + ᵐ/ₙ + 
… + ᵐ/ₙ.

This third step follows because each remaining bin has at most ᵐ/ₙ objects. 
Grouping the n copies of the ᵐ/ₙ term here tells us that

m <  ᵐ/ₙ + ᵐ/ₙ + ᵐ/ₙ + 
… + ᵐ/ₙ

=  m.

But this means m < m, which is impossible. We’ve reached a contradiction, so 
our assumption was wrong, so if m objects are distributed into n bins and no 
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This magic phrase means “we get to pick how we’re 
labeling things anyway, so if it doesn’t work out, just 

relabel things.”
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“In a group of n > 0 people …

· 90% of those people enjoyed Get Out,
· 80% of those people enjoyed Lady Bird,

· 70% of those people enjoyed Arrival, and

· 60% of those people enjoyed Zootopia.

No one enjoyed all four movies. How many people

enjoyed at least one of Get Out and Arrival?”
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Insight 1: Model movie preferences 
as balls (movies) in bins (people).

Insight 2: There are n total 
bins, one for each person.
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· 60% of those people enjoyed Zootopia.

No one enjoyed all four movies. How many people

enjoyed at least one of Get Out and Arrival?”

.9n + .8n + .7n + .6n

= 3n

Insight 3: There are 3n balls being 
distributed into n bins.

Insight 4: The average number of 
balls in each bin is 3.
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· 60% of those people enjoyed Zootopia.

No one enjoyed all four movies. How many people

enjoyed at least one of Get Out and Arrival?”

Insight 5: No one enjoyed more 
than three movies…

Insight 6: … so no one enjoyed 
fewer than three movies …

Insight 7: … so everyone enjoyed 
exactly three movies.



“In a group of n > 0 people …

· 90% of those people enjoyed Get Out,
· 80% of those people enjoyed Lady Bird,

· 70% of those people enjoyed Arrival, and

· 60% of those people enjoyed Zootopia.

No one enjoyed all four movies. How many people

enjoyed at least one of Get Out and Arrival?”

Insight 8: You have to enjoy at 
least one of these movies to enjoy 

three of the four movies.
Conclusion: Everyone liked at 

least one of these two movies!



Theorem: In the scenario described here, all n people enjoyed at least
one of Get Out and Arrival.

Proof: Suppose there is a group of n people meeting these criteria. We 
can model this problem by representing each person as a bin and
each time a person enjoys a movie as a ball. The number of balls is

.9n + .8n + .7n + .6n = 3n,

and since there are n people, there are n bins. Since no person liked all four 
movies, no bin contains more than 3 = ³ⁿ/ₙ balls, so by our earlier theorem we 
see that no bin contains fewer than three balls. Therefore, each bin contains 
exactly three balls.

Now suppose for the sake of contradiction that someone didn’t enjoy Get Out
and didn’t enjoy Arrival. This means they could enjoy at most two of the four 
movies, contradicting that each person enjoys exactly three.

We’ve reached a
contradiction, so our
assumption was
wrong and each
person enjoyed at
least one of Get Out
and Arrival. ■
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Going Further

• The pigeonhole principle can be used to prove a ton of 
amazing theorems. Here’s a sampler:

• There is always a way to fairly split rent among multiple 
people, even if different people want different rooms. 
(Sperner’s lemma)

• You and a friend can climb any mountain from two different 
starting points so that the two of you maintain the same 
altitude at each point in time. (Mountain-climbing theorem)

• If you model coffee in a cup as a collection of infinitely many 
points and then stir the coffee, some point is always where 
it initially started. (Brower’s fixed-point theorem)

• A complex process that doesn’t parallelize well must contain 
a large serial subprocess. (Mirksy’s theorem)

• Any positive integer n has a nonzero multiple that can be 
written purely using the digits 1 and 0. (Doesn’t have a 
name, but still cool!)



Next Time

Mathematical Induction

• Reasoning about stepwise processes

Applications of Induction

• To numbers!

• To anticounterfeiting!

• To puzzles!


