
Mathematical Induction
Part One



Everybody – do the wave!



The Wave

If done properly, everyone will eventually 
end up joining in.

Why is that?

Someone (me!) started everyone off.

Once the person before you did the wave, 
you did the wave.



If it starts true…
…and it stays true…

…then it's always true.

Let P be some predicate. The principle of mathematical 
induction states that if

P(0) is true

and

∀k ∈ ℕ. (P(k) → P(k+1))

then

∀n ∈ ℕ. P(n)



Induction, Intuitively

P(0)

∀k ∈ ℕ. (P(k) → P(k+1))

It's true for 0.

Since it's true for 0, it's true for 1.

Since it's true for 1, it's true for 2.

Since it's true for 2, it's true for 3.

Since it's true for 3, it's true for 4.

Since it's true for 4, it's true for 5.

Since it's true for 5, it's true for 6.

…



Why Induction Works

P(k) → P(k + 1)

P(0)
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Why Induction Works
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Why Induction Works

P(k) → P(k + 1) P(3)



Proof by Induction

A proof by induction is a way to use the principle 
of mathematical induction to show that some result 
is true for all natural numbers n.

In a proof by induction, there are three steps:

• Prove that P(0) is true.

• This is called the basis or the base case.

• Prove that if P(k) is true, then P(k+1) is true.

• This is called the inductive step.

• The assumption that P(k) is true is called the 
inductive hypothesis.

• Conclude, by induction, that P(n) is true for all   
n ∈ ℕ.



Some Sums



20 = 1      = 21 – 1

20 + 21 = 1 + 2 = 3 = 22 – 1

20 + 21 + 22 = 1 + 2 + 4 = 7 = 23 – 1

20 + 21 + 22 + 23 = 1 + 2 + 4 + 8 = 15 = 24 – 1

20 + 21 + 22 + 23 + 24 = 1 + 2 + 4 + 8 + 16 = 31 = 25 – 1
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Theorem: The sum of the first n powers of two is 2n – 1.

Proof: Lt P(n) be the statement “the sum of the first n powers
of two is 2n – 1.” We will prove, by induction, that P(n) is
true for all n ∈ ℕ, from which the theorem follows.

For our base case, we need to show P(0) is true, meaning
that the sum of the first zero powers of two is 20 – 1. Since
the sum of the first zero powers of two is zero and 20 – 1
is zero as well, we see that P(0) is true.

For the inductive step, assume that for some k ∈ ℕ that 
P(k) holds, meaning that

20 + 21 + … + 2k-1 = 2k – 1. (1)

We need to show that P(k + 1) holds, meaning that the sum
of the first k + 1 powers of two is 2k+1 – 1. To see this,
notice that

20 + 21 + … + 2k-1 + 2k = (20 + 21 + … + 2k-1) + 2k

= 2k –
1 + 2k (via (1))

= 
2(2k) – 1

= 2k+1

– 1.

Therefore, P(k + 1) is true, completing the induction. ■
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At the start of the proof, we tell the reader what predicate 
we're going to show is true for all natural numbers n, then tell 

them we're going to prove it by induction.
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In a proof by induction, we need to prove that

◻ P(0) is true

◻ If P(k) is true, then P(k+1) is true.
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Here, we state what P(0) actually says. Now, can go prove this using 
any proof techniques we'd like!
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The goal of this step is to prove

“If P(k) is true, then P(k+1) is true.”

To do this, we'll choose an arbitrary k, assume that P(k) is true, then 
try to prove P(k+1).
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Here, we explicitly state P(k+1), which is what we want to 
prove. Now, we can use any proof technique we want to 

prove it.
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Here, we’ll use our inductive hypothesis (the 
assumption that P(k) is true) to simplify a complex 

expression. This is a common theme in inductive proofs.
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is zero as well, we see that P(0) is true.

For the inductive step, assume that for some arbitrary
k ∈ ℕ that P(k) holds, meaning that

20 + 21 + … + 2k-1 = 2k – 1. (1)

We need to show that P(k + 1) holds, meaning that the sum
of the first k + 1 powers of two is 2k+1 – 1. To see this,
notice that

20 + 21 + … + 2k-1 + 2k = (20 + 21 + … + 2k-1) + 2k

= 2k – 1 + 2k (via (1))

= 2(2k) – 1

= 2k+1 – 1.

Therefore, P(k + 1) is true, completing the induction. 
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In a proof by induction, we need to prove that

✓ P(0) is true

◻ If P(k) is true, then P(k+1) is true.
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A Quick Aside

• This result helps explain the range of 
numbers that can be stored in an int.

• If you have an unsigned 32-bit integer, 
the largest value you can store is given 
by 1 + 2 + 4 + 8 + … + 231 = 232 – 1.

• This formula for sums of powers of two 
has many other uses as well. If we have 
time, we’ll see one today.



Structuring a Proof by Induction
• Define some predicate P that you'll show, by 

induction, is true for all natural numbers.

• Prove the base case:

• State that you're going to prove that P(0) is true, then go 
prove it.

• Prove the inductive step:

• Say that you're assuming P(k) for some arbitrary natural 
number k, then write out exactly what that means.

• Say that you're going to prove P(k+1), then write out 
exactly what that means.

• Prove that P(k+1) using any proof technique you’d like!

• This is a rather verbose way of writing inductive 
proofs. As we get more experience with induction, 
we'll start leaving out some details from our proofs.



The Counterfeit Coin Problem



Problem Statement

• You are given a set of three seemingly 
identical coins, two of which are real and 
one of which is counterfeit.

• The counterfeit coin weighs more than 
the rest of the coins.

• You are given a balance. Using only one 
weighing on the balance, find the 
counterfeit coin.
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A Harder Problem

You are given a set of nine seemingly 
identical coins, eight of which are real and 
one of which is counterfeit.

The counterfeit coin weighs more than the 
rest of the coins.

You are given a balance. Using only two
weighings on the balance, find the 
counterfeit coin.
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Finding the Counterfeit Coin
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Now we have one weighing to find the 
counterfeit out of these three coins.
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Now we have one weighing to find the 
counterfeit out of these three coins.



Can we generalize this?



A Pattern

Assume out of the coins that are given, exactly 
one is counterfeit and weighs more than the 
other coins.

If we have no weighings, how many coins can 
we have while still being able to find the 
counterfeit?

One coin, since that coin has to be the 
counterfeit!

If we have one weighing, we can find the 
counterfeit out of three coins.

If we have two weighings, we can find the 
counterfeit out of nine coins.



So far, we have

1, 3, 9 = 30, 31, 32

Does this pattern continue?



Theorem: If exactly one coin in a group of 3n coins is heavier than the
rest, that coin can be found using only n weighings on a balance.

Proof: Let P(n) be the following statement:

If exactly one coin in a group of 3n coins is heavier than the rest,
that coin can be found using only n weighings on a balance.

We'll use induction to prove that P(n) holds for every n ∈ ℕ, from which
the theorem follows.

As our base case, we'll prove that P(0) is true, meaning that if we have
a set of 30=1 coins with one coin heavier than the rest, we can find that
coin with zero weighings. This is true because if we have just one coin,
it's vacuously heavier than all the others, and no weighings are needed.

For the inductive step, suppose that P(k) is true for some k ∈ ℕ, so we
can find the heavier of 3k coins in k weighings. We'll prove P(k+1): that
we can find the heavier of 3k+1 coins in k+1 weighings.

Suppose we have 3k+1 coins with one heavier than the others. Split the
coins into three groups of 3k coins each. Weigh two of the groups
against one another. If one group is heavier than the other, the coins in
that group must contain the heavier coin. Otherwise, the heavier coin
must be in the group we didn't put on the scale. Therefore, with one
weighing, we can find a group of 3k coins containing the heavy coin. We
can then use k more weighings to find the heavy coin in that group.

We've given a way to use k+1 weighings and find the heavy coin out of
a group of 3k+1 coins. Thus P(k+1) is true, completing the induction. ■
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At the start of the proof, we tell the reader what predicate 
we're going to show is true for all natural numbers n, then tell 

them we're going to prove it by induction.
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Here, we state what P(0) actually says. Now, can go prove this using 
any proof techniques we'd like!
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Here, we use our inductive hypothesis (the assumption 
that P(k) is true) to solve this simpler version of the 

overall problem.
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In a proof by induction, we need to prove that

✓ P(0) is true

◻ If P(k) is true, then P(k+1) is true.
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Some Fun Problems

Here's some nifty variants of this problem that you can 
work through:

• Suppose that you have a group of coins where 
there's either exactly one heavier coin, or all coins 
weigh the same amount. If you only get k weighings, 
what's the largest number of coins where you can 
find the counterfeit or determine none exists?

• What happens if the counterfeit can be either 
heavier or lighter than the other coins? What's the 
maximum number of coins where you can find the 
counterfeit if you have k weighings?

• Can you find the counterfeit out of a group of more 
than 3k coins with k weighings?

• Can you find the counterfeit out of any group of at 
most 3k coins with k weighings?



Time-Out for Announcements!



Problem Sets

PS3 due last night. Use a late period to 
extend this to Saturday at 11:59pm. 

Great question to ponder: Why isn’t this 
relation transitive?

x y

z



Problem Set 4 and Midterm

• Problem Set Four is due two weeks from 
now on Thursday, July 30th at 11:59pm.

• This is because of the midterm next 
week.

• Full details going on Campuswire after 
lecture.

• Practice midterms will be posted to the 
website: look for them after the lecture.



Back to CS103!



How Not To Induct



Something's Wrong...

Theorem: The sum of the first n powers of two is 2n.

Proof: Let P(n) be the statement “the sum of the first n 
powers of two is 2n.” We will prove, by induction, that 
P(n) is true for all n ∈ ℕ, from which the theorem 
follows. For the inductive step, assume that for some 
arbitrary k ∈ ℕ that P(k) holds, meaning that

20 + 21 + … + 2k-1 = 2k. (1)

We need to show that P(k + 1) holds, meaning that the 
sum of the first k + 1 powers of two is 2k+1. To see this, 
notice that

20 + 21 + … + 2k-1 + 2k = (20 + 21 + … + 2k-1) + 2k

= 2k + 2k (via (1))
= 2(2k)
= 2k+1.

Therefore, P(k + 1) is true, completing the induction. ■
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Where did we prove the 
base case?
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When writing a proof by induction,

make sure to prove the base case!

Otherwise, your argument is invalid!



Why did this work?



Something's Wrong...

Theorem: The sum of the first n powers of two is 2n.

Proof: Let P(n) be the statement “the sum of the first n 
powers of two is 2n.” We will prove, by induction, that 
P(n) is true for all n ∈ ℕ, from which the theorem 
follows. For the inductive step, assume that for some 
arbitrary k ∈ ℕ that P(k) holds, meaning that

20 + 21 + … + 2k-1 = 2k. (1)

We need to show that P(k + 1) holds, meaning that the 
sum of the first k + 1 powers of two is 2k+1. To see this, 
notice that

20 + 21 + … + 2k-1 + 2k = (20 + 21 + … + 2k-1) + 2k

= 2k + 2k (via (1))
= 2(2k)
= 2k+1.

Therefore, P(k + 1) is true, completing the induction. ■



Something's Wrong...

Theorem: The sum of the first n powers of two is 2n.

Proof: Let P(n) be the statement “the sum of the first n 
powers of two is 2n.” We will prove, by induction, that 
P(n) is true for all n ∈ ℕ, from which the theorem 
follows. For the inductive step, assume that for some 
arbitrary k ∈ ℕ that P(k) holds, meaning that

20 + 21 + … + 2k-1 = 2k. (1)

We need to show that P(k + 1) holds, meaning that the 
sum of the first k + 1 powers of two is 2k+1. To see this, 
notice that

20 + 21 + … + 2k-1 + 2k = (20 + 21 + … + 2k-1) + 2k

= 2k + 2k (via (1))
= 2(2k)
= 2k+1.

Therefore, P(k + 1) is true, completing the induction. ■



Something's Wrong...

Theorem: The sum of the first n powers of two is 2n.

Proof: Let P(n) be the statement “the sum of the first n 
powers of two is 2n.” We will prove, by induction, that 
P(n) is true for all n ∈ ℕ, from which the theorem 
follows. For the inductive step, assume that for some 
arbitrary k ∈ ℕ that P(k) holds, meaning that

20 + 21 + … + 2k-1 = 2k. (1)

We need to show that P(k + 1) holds, meaning that the 
sum of the first k + 1 powers of two is 2k+1. To see this, 
notice that

20 + 21 + … + 2k-1 + 2k = (20 + 21 + … + 2k-1) + 2k

= 2k + 2k (via (1))
= 2(2k)
= 2k+1.

Therefore, P(k + 1) is true, completing the induction. ■

You can prove anything from a faulty assumption. This is called the principle of 
explosion. To see why, read 

“Animal, Vegetable, or Minister” for a silly example.

https://books.google.com/books?id=obJ70nxVYFUC&pg=PA217&lpg=PA217&dq=%22animal+vegetable+or+minister%22&source=bl&ots=JPaA0PXe7k&sig=klP1bhbUG58cVT1qBkQLI-FM2RU&hl=en&sa=X&ved=0ahUKEwj0sa_GiqnYAhWCxVQKHfypAPYQ6AEILDAB#v=onepage&q=%22animal%20vegetable%20or%20minister%22&f=false


The MU Puzzle



Gödel, Escher Bach:
An Eternal Golden Braid

Douglas Hofstadter, 
cognitive scientist at the 
University of Indiana, 
wrote this Pulitzer-Prize-
winning mind trip of a 
book.

It’s a great read after 
you’ve finished CS103 –
you’ll see so many of the 
ideas we’ll cover 
presented in a totally 
different way!



The MU Puzzle

Begin with the string MI.

Repeatedly apply one of the following 
operations:

Double the contents of the string after the M: 
for example, MIIU becomes MIIUIIU, or MI
becomes MII.

Replace III with U: MIIII becomes MUI or MIU.

Append U to the string if it ends in I: MI
becomes MIU.

Remove any UU: MUUU becomes MU.

Question: How do you transform MI to MU?



MI

MII

MIIII

MIIIIU

MUIU

MUIUUIU

MUIIU

(a) Double the string after an M.

(b) Replace III with U.

(c) Append U, if the string ends in I.

(d) Delete UU from the string.



Try It!

Starting with MI, apply these

operations to make MU:

(a) Double the string after an M.

(b) Replace III with U.

(c) Append U, if the string ends in I.

(d) Delete UU from the string.



Not a single person in this room

was able to solve this puzzle.

Are we even sure that there is a solution?
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MI

MII

MIIII

MIIIIU

MIIIIUIIIIU

MIIIIUUIU

MIIIIUUIUIIIIUUIU

1

2

4

4

8

5

10

MUIUUIUIIIIUUIU

Counting I's



The Key Insight

• Initially, the number of I's is not a 
multiple of three.

• To make MU, the number of I's must end 
up as a multiple of three.

• Can we ever make the number of I's a 
multiple of three?



Lemma 1: If n is an integer that is not a multiple of three,
then n – 3 is not a multiple of three.

Proof: By contrapositive; we'll prove that if n – 3 is a multiple
of three, then n is also a multiple of three. Because n – 3 is
a multiple of three, we can write n – 3 = 3k for some
integer k. Then n = 3(k+1), so n is also a multiple of three,
as required. ■

Lemma 2: If n is an integer that is not a multiple of three,
then 2n is not a multiple of three.

Proof: Let n be a number that isn't a multiple of three. If n is
congruent to one modulo three, then n = 3k + 1 for some
integer k. This means 2n = 2(3k+1) = 6k + 2 = 3(3k) + 2,
so 2n is not a multiple of three. Otherwise, n must be
congruent to two modulo three, so n = 3k + 2 for some
integer k. Then 2n = 2(3k+2) = 6k+4 = 3(2k+1) + 1, and
so 2n is not a multiple of three. ■
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Lemma: No matter which moves are made, the number of I's in the string
never becomes multiple of three.

Proof: Let P(n) be the statement “After any n moves, the number of I's in
the string will not be multiple of three.” We will prove, by induction, that
P(n) is true for all n ∈ ℕ, from which the theorem follows.

As a base case, we'll prove P(0), that the number of I's after 0 moves is not a 
multiple of three. After no moves, the string is MI, which has one I in it. Since 
one isn't a multiple of three, P(0) is true.

For our inductive step, suppose that P(k) is true for some k ∈ ℕ. We'll
prove P(k+1) is also true. Consider any sequence of k+1 moves. Let r be the 
number of I's in the string after the kth move. By our inductive hypothesis 
(that is, P(k)), we know that r is not a multiple of three. Now, consider the 
four possible choices for the k+1st move:

Case 1: Double the string after the M. After this, we will have 2r I's
in the string, and from our lemma 2r isn't a multiple of three.

Case 2: Delete III from the string. After this, we will have r – 3 I's
in the string, and by our lemma r – 3 is not a multiple of three.

Case 3: Either append U or delete UU. This preserves the number of
I's in the string, so we don't have a multiple of three I's at this point.

Therefore, no sequence of k+1 moves ends with a multiple of three I's. Thus 
P(k) is true when n=k+1, completing the induction. ■
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Theorem: The MU puzzle has no solution.

Proof: Assume for the sake of contradiction that the MU
puzzle has a solution and that we can convert MI to

MU. This would mean that at the very end, the number

of I's in the string must be zero, which is a multiple of
three. However, we've just proven that the number of

I's in the string can never be a multiple of three.

We have reached a contradiction, so our assumption

must have been wrong. Thus the MU puzzle has no
solution. ■



Algorithms and Loop Invariants

The proof we just made had the form

“If P is true before we perform an action, it is 
true after we perform an action.”

We could therefore conclude that after any 
series of actions of any length, if P was true 
beforehand, it is true now.

In algorithmic analysis, this is called a loop 
invariant.

Proofs on algorithms often use loop invariants 
to reason about the behavior of algorithms.

Take CS161 for more details!



Let’s take a five minute break!



Variations on Induction: Starting Later



Induction Starting at 0

• To prove that P(n) is true for all natural 
numbers greater than or equal to 0:

• Show that P(0) is true.

• Show that for any k ≥ 0, that
if P(k) is true, then P(k+1) is true.

• Conclude P(n) holds for all natural 
numbers greater than or equal to 0.



Induction Starting at m

• To prove that P(n) is true for all natural 
numbers greater than or equal to m:

• Show that P(m) is true.

• Show that for any k ≥ m, that
if P(k) is true, then P(k+1) is true.

• Conclude P(n) holds for all natural 
numbers greater than or equal to m.



Variations on Induction: Bigger Steps



Subdividing a Square
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Subdividing a Square



For what values of n can a square be 
subdivided into n squares?
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Each of the original 
corners needs to be 
covered by a corner 
of the new smaller 
squares.

By the pigeonhole 
principle, at least 
one smaller square 
needs to cover at 
least two of the 
original square’s 
corners.
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The Key Insight

• If we can subdivide a square into n squares, we 
can also subdivide it into n + 3 squares.

• Since we can subdivide a bigger square into 6, 7, 
and 8 squares, we can subdivide a square into n
squares for any n ≥ 6:

• For multiples of three, start with 6 and keep adding 
three squares until n is reached.

• For numbers congruent to one modulo three, start with 
7 and keep adding three squares until n is reached.

• For numbers congruent to two modulo three, start with 
8 and keep adding three squares until n is reached.



Theorem: For any n ≥ 6, it is possible to subdivide a square into n
smaller squares.

Proof: Let P(n) be the statement “a square can be subdivided into
n smaller squares.” We will prove by induction that P(n) holds
for all n ≥ 6, from which the theorem follows.

As our base cases, we prove P(6), P(7), and P(8), that a square can be 
subdivided into 6, 7, and 8 squares. This is shown here:

For the inductive step, assume that for some arbitrary k ≥ 6 that P(k) 
is true and that a square can be subdivided into k squares. We prove 
P(k+3), that a square can be subdivided into k+3 squares. To see this, 
start by obtaining (via the inductive hypothesis) a subdivision of a 
square into k squares. Then, choose any of the squares and split it 
into four equal squares. This removes one of the k squares and adds 
four more, so there will be a net total of k+3 squares. Thus P(k+3) 
holds, completing the induction. ■
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Fun and totally optional exercise: you 
can also prove this directly!



Why This Works

This induction has three consecutive base cases and 
takes steps of size three.

Thinking back to our “induction machine” analogy:

P(k) → P(k+3)

P(6) P(8)P(7)
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This induction has three consecutive base cases and 
takes steps of size three.

Thinking back to our “induction machine” analogy:
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Why This Works

This induction has three consecutive base cases and 
takes steps of size three.

Thinking back to our “induction machine” analogy:

P(k) → P(k+3)

P(9)

P(11)

P(10)



Why This Works

This induction has three consecutive base cases and 
takes steps of size three.

Thinking back to our “induction machine” analogy:

P(k) → P(k+3)

P(9) P(11)P(10)



Generalizing Induction

When doing a proof by induction,

• feel free to use multiple base cases, and

• feel free to take steps of sizes other than one.

• Just be sure you actually need more than one 
base case!

• And be careful to make sure you cover all the 
numbers you think that you're covering!

We won't require that you prove you've covered 
everything, but it doesn't hurt to double-check!



More on Square Subdivisions

There are a ton of interesting questions 
that come up when trying to subdivide a 
rectangle or square into smaller squares.

In fact, one of the major players in early 
graph theory (William Tutte) got his start 
playing around with these problems.

Good starting resource: this Numberphile
video on Squaring the Square.

https://www.youtube.com/watch?v=NoRjwZomUK0&feature=youtu.be


How Not To Induct, Part 2



All Horses are the Same Color

P(n) = “All groups of n horses always 
have the same color”



Base case: n = 0

All Horses are the Same Color

P(0) = “All groups of 0 horses always 
have the same color”

Vacuously true!



Inductive hypothesis: n = k

All Horses are the Same Color

Assume P(k) = “All groups of k horses 
always have the same color”



Inductive hypothesis: n = k+1

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses 
always have the same color”
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Inductive hypothesis: n = k+1
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always have the same color”
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Inductive hypothesis: n = k+1

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses always have the same color”

These horses in the middle were in both sets

And we said that both horses on the ends are the same color as these overlapping horses



Inductive hypothesis: n = k+1

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses 
always have the same color”

So all k+1 horses have the same color!



Theorem: All horses are the same color.

Proof: Let P(n) be the statement “all groups of n horses are the same 
color.” We will prove by induction that P(n) holds for all natural 
numbers n, from which the theorem follows.

As our base case, we prove P(0), that all groups of 0 horses are the 
same color. This statement is vacuously true because there are no 
horses.

For the inductive step, assume that for an arbitrary natural number k 
that P(k) is true and that all groups of k horses are the same color. 
Now consider a group of k+1 horses. Exclude the last horse and look 
only at the first k horses. By the inductive hypothesis, these horses 
are the same color. Next, exclude the first horse and look only at the 
last k horses. Again we see by the inductive hypothesis that these 
horses are the same color.

Therefore, the first horse is the same color as the non-excluded 
horses, who in turn are the same color as the last horse. Hence the 
first horse excluded, the non-excluded horses, and last horse excluded 
are all of the same color. Thus P(k+1) holds, completing the induction. 
■



Theorem: All horses are the same color.

Proof: Let P(n) be the statement “all groups of n horses are the same 
color.” We will prove by induction that P(n) holds for all natural 
numbers n, from which the theorem follows.

As our base case, we prove P(0), that all groups of 0 horses are the 
same color. This statement is vacuously true because there are no 
horses.

For the inductive step, assume that for an arbitrary natural number k 
that P(k) is true and that all groups of k horses are the same color. 
Now consider a group of k+1 horses. Exclude the last horse and look 
only at the first k horses. By the inductive hypothesis, these horses 
are the same color. Next, exclude the first horse and look only at the 
last k horses. Again we see by the inductive hypothesis that these 
horses are the same color.

Therefore, the first horse is the same color as the non-excluded 
horses, who in turn are the same color as the last horse. Hence the 
first horse excluded, the non-excluded horses, and last horse excluded 
are all of the same color. Thus P(k+1) holds, completing the induction. 
■

What’s wrong with this proof?



Next Time

Variations on Induction

• Complete induction



Thought for the Weekend:

If you don’t know what the 
problem was, you haven’t fixed it.


