Context-Free Grammars

A Motivating Question

How does my computer know what this sequence of characters means? How can it determine whether or not this expression is even syntactically valid?

An Analogy: Mad Libs

THE MAGIC COMPUTERS

Today, every student has a computer small enough to fit into his

When you're filling out Mad Libs, you have these placeholders for different parts of speech.

Mad Libs for Arithmetic Expressions

Imagine I have a template like this:

Mad Libs for Arithmetic Expressions

Here's one way I could fill it out:

$$
\left(\frac{26}{\text { Int }} \frac{+}{\text { Op }} \frac{42}{\text { Int }}\right) \frac{\star}{\text { OP }} \frac{2}{\text { Int }} \frac{+}{\text { Op }} \frac{1}{\text { Int }}
$$

Mad Libs for Arithmetic Expressions

Here's another:

Imagine you have a computer that's pre-programmed with this template.
You could then enter a string and be able to check whether it is valid. You can also understand what individual pieces of the string mean based on which part of the template they're filling in.

Mad Libs for Arithmetic Expressions

This is nice but I can only make expressions of the form (Int Op Int) Op Int Op Int

But there are many valid arithmetic expressions that don't follow this pattern!

Mad Libs for Arithmetic Expressions

Idea: could we come up with a set of rules for generating valid arithmetic Mad Libs templates?

Eg. Int Op Int, (Int Op (Int Op Int)) , (Int Op Int) Op (Int Op Int) ...

Describing Languages

We've seen two models for the regular languages:
Finite automata accept precisely the strings in the language.
Regular expressions describe precisely the strings in the language.
Finite automata recognize strings in the language. Perform a computation to determine whether a specific string is in the language.
Regular expressions match strings in the language.
Describe the general shape of all strings in the language.

Context-Free Grammars

A context-free grammar (or CFG) is an entirely different formalism for defining a class of languages.
Goal: Give a description of a language by recursively describing the structure of the strings in the language.
CFGs are best explained by example...

Arithmetic Expressions

Suppose we want to describe all legal arithmetic expressions using addition, subtraction, multiplication, and division.
Here is one possible CFG:

	E
\Rightarrow	EOp E
\Rightarrow	EOp (E)
\Rightarrow	EOp (EOp E)
\Rightarrow	E $\times($ EOp E)
\Rightarrow	int $\times(E O p E)$
\Rightarrow	int \times (int Op E)
\Rightarrow	int \times (int Op int)
\Rightarrow	int \times (int + int)

Arithmetic Expressions

Suppose we want to describe all legal arithmetic expressions using addition, subtraction, multiplication, and division.
Here is one possible CFG:

$\mathrm{E} \rightarrow$ int
$\mathrm{E} \rightarrow \mathrm{E} \mathbf{O p} \mathrm{E}$
$\mathrm{E} \rightarrow(\mathbb{})$
$\mathrm{Op} \rightarrow+$
$\mathrm{Op} \rightarrow-$
$\mathrm{Op} \rightarrow \times$
$\mathrm{Op} \rightarrow /$

$$
\begin{array}{ll}
& \text { E } \\
\Rightarrow & \text { EOp E } \\
\Rightarrow & \text { EOp int } \\
\Rightarrow & \text { int Op int } \\
\Rightarrow & \text { int / int }
\end{array}
$$

Context-Free Grammars

Formally, a context-free grammar is a collection of four items:
a set of nonterminal symbols (also called variables),
a set of terminal symbols (the alphabet of the CFG),
a set of production rules saying how each nonterminal can be replaced by a string of terminals and nonterminals, and
a start symbol (which must be a nonterminal) that begins the derivation. By convention, the start symbol is the one on the left-hand side of the first production.

Some CFG Notation

In today's slides, capital letters in Bold Red Uppercase will represent nonterminals.
e.g. A, B, C, D

Lowercase letters in blue monospace will represent terminals.
e.g. t, u, v, w

Lowercase Greek letters in gray italics will represent arbitrary strings of terminals and nonterminals.
e.g. $\alpha, \boldsymbol{\nu}, \omega$

You don't need to use these conventions on your own; just make sure whatever you do is readable. ©

A Notational Shorthand

$$
\begin{array}{|l|}
\hline \mathrm{E} \rightarrow \text { int } \\
\mathrm{E} \rightarrow \mathbf{E} \mathbf{O p} \mathrm{E} \\
\mathrm{E} \rightarrow \text { (E) } \\
\mathrm{Op} \rightarrow+ \\
\mathrm{Op} \rightarrow- \\
\mathrm{Op} \rightarrow \times \\
\mathrm{Op} \rightarrow / \\
\hline
\end{array}
$$

A Notational Shorthand

$$
\begin{array}{|l|}
\hline \text { E } \rightarrow \text { int | E Op E | (E) } \\
\text { Op } \rightarrow+|-|\times| / \\
\hline
\end{array}
$$

Derivations

$\begin{array}{\|l} \hline \mathbf{E} \rightarrow \text { E Op E } \mid \text { int } \mid(\mathbf{E}) \\ \mathbf{O p} \rightarrow+\|\times\|-\| / \\ \hline \end{array}$		A sequence of steps where nonterminals are replaced by the
	E	
$=$	E Op E	call
$=$	E Op (E)	If
\Rightarrow	E Op (E Op	wri
\Rightarrow	E×(EOp	In
	int $\times(E$ Op	$E=$
	int \times (int	
\Rightarrow	int \times (int	int)
	int \times (int	$n t)$

The Language of a Grammar

If G is a CFG with alphabet Σ and start symbol \mathbf{S}, then the language of \boldsymbol{G} is the set

$$
\mathscr{L}(G)=\left\{\omega \in \Sigma^{*} \mid \mathbf{S}=^{*} \omega\right\}
$$

That is, $\mathscr{L}(G)$ is the set of strings of terminals derivable from the start symbol.

If G is a CFG with alphabet Σ and start symbol S, then the language of \boldsymbol{G} is the set

$$
\mathscr{L}(G)=\left\{\omega \in \Sigma^{*} \mid \mathbf{S} \Rightarrow^{*} \omega\right\}
$$

Consider the following CFG G over $\Sigma=\{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\}$:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{Sa} \mid \mathrm{dT} \\
& \mathrm{~T} \rightarrow \mathrm{bTb} \mid \mathrm{C}
\end{aligned}
$$

How many of the following strings are in $\mathscr{L}(G)$?
dca
cad
bcb
dTaa

Context-Free Languages

A language L is called a context-free language (or CFL) if there is a CFG G such that $L=\mathscr{L}(G)$.
Questions:
What languages are context-free?
How are context-free and regular languages related?

From Regexes to CFGs

CFGs consist purely of production rules of the form $\mathbf{A} \rightarrow \omega$. They do not have the regular expression operators * or U.
However, we can convert regular expressions to CFGs as follows:

$$
\mathrm{S} \rightarrow \mathrm{a} * \mathrm{~b}
$$

From Regexes to CFGs

CFGs consist purely of production rules of the form $\mathbf{A} \rightarrow \omega$. They do not have the regular expression operators * or U.
However, we can convert regular expressions to CFGs as follows:

$$
S \rightarrow a * b
$$

From Regexes to CFGs

CFGs consist purely of production rules of the form $\mathbf{A} \rightarrow \omega$. They do not have the regular expression operators * or U.
However, we can convert regular expressions to CFGs as follows:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathbf{a} * \mathrm{~b} \\
& \mathbf{A} \rightarrow \mathbf{A a} \mid \varepsilon
\end{aligned}
$$

From Regexes to CFGs

CFGs consist purely of production rules of the form $\mathbf{A} \rightarrow \omega$. They do not have the regular expression operators * or U.
However, we can convert regular expressions to CFGs as follows:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{a} * \mathrm{~b} \\
& \mathrm{~A} \rightarrow \mathrm{Aa} \mid \varepsilon
\end{aligned}
$$

From Regexes to CFGs

CFGs consist purely of production rules of the form $\mathbf{A} \rightarrow \omega$. They do not have the regular expression operators * or U.
However, we can convert regular expressions to CFGs as follows:

$$
\begin{aligned}
& \mathbf{S} \rightarrow \mathbf{A b} \\
& \mathbf{A} \rightarrow \mathbf{A a} \mid \varepsilon
\end{aligned}
$$

From Regexes to CFGs

CFGs consist purely of production rules of the form $\mathbf{A} \rightarrow \omega$. They do not have the regular expression operators * or U.
However, we can convert regular expressions to CFGs as follows:

$$
S \rightarrow a\left(b \cup c^{*}\right)
$$

From Regexes to CFGs

CFGs consist purely of production rules of the form $\mathbf{A} \rightarrow \omega$. They do not have the regular expression operators * or U.
However, we can convert regular expressions to CFGs as follows:

$$
S \rightarrow a\left(b \cup c^{*}\right)
$$

From Regexes to CFGs

CFGs consist purely of production rules of the form $\mathbf{A} \rightarrow \omega$. They do not have the regular expression operators * or U.
However, we can convert regular expressions to CFGs as follows:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{a}\left(\mathrm{~b} \cup \mathrm{c}^{\star}\right) \\
& \mathbf{X} \rightarrow \mathrm{b} \mid \mathrm{c}^{\star}
\end{aligned}
$$

From Regexes to CFGs

CFGs consist purely of production rules of the form $\mathbf{A} \rightarrow \omega$. They do not have the regular expression operators * or U.
However, we can convert regular expressions to CFGs as follows:

$$
\begin{aligned}
& S \rightarrow a\left(b \cup c^{*}\right) \\
& \mathbf{X} \rightarrow \mathrm{b} \mid \mathrm{c}^{*}
\end{aligned}
$$

From Regexes to CFGs

CFGs consist purely of production rules of the form $\mathbf{A} \rightarrow \omega$. They do not have the regular expression operators * or U.
However, we can convert regular expressions to CFGs as follows:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aX} \\
& \mathbf{X} \rightarrow \mathrm{~b} \mid \mathrm{c}^{*}
\end{aligned}
$$

From Regexes to CFGs

CFGs consist purely of production rules of the form $\mathbf{A} \rightarrow \omega$. They do not have the regular expression operators * or U.
However, we can convert regular expressions to CFGs as follows:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aX} \\
& \mathbf{X} \rightarrow \mathrm{~b} \mid \mathrm{c}^{*}
\end{aligned}
$$

From Regexes to CFGs

CFGs consist purely of production rules of the form $\mathbf{A} \rightarrow \omega$. They do not have the regular expression operators * or U.
However, we can convert regular expressions to CFGs as follows:

$$
\begin{aligned}
& S \rightarrow a X \\
& X \rightarrow b \mid c^{*} \\
& C \rightarrow C c \mid \varepsilon
\end{aligned}
$$

From Regexes to CFGs

CFGs consist purely of production rules of the form $\mathbf{A} \rightarrow \omega$. They do not have the regular expression operators * or U.
However, we can convert regular expressions to CFGs as follows:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aX} \\
& \mathrm{X} \rightarrow \mathrm{~b} \mid \mathrm{c}^{*} \\
& \mathrm{C} \rightarrow \mathrm{Cc} \mid \varepsilon
\end{aligned}
$$

From Regexes to CFGs

CFGs consist purely of production rules of the form $\mathbf{A} \rightarrow \omega$. They do not have the regular expression operators * or U.
However, we can convert regular expressions to CFGs as follows:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aX} \\
& \mathrm{X} \rightarrow \mathrm{~b} \mid \mathrm{C} \\
& \mathrm{C} \rightarrow \mathrm{C} \mid \varepsilon
\end{aligned}
$$

Regular Languages and CFLs

Theorem: Every regular language is context-free.
Proof Idea: Use the construction from the previous slides to convert a regular expression for L into a CFG for L. \square
Great Exercise: Instead, show how to convert a DFA/NFA into a CFG.

The Language of a Grammar

Consider the following CFG G :

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

What strings can this generate?

The Language of a Grammar

Consider the following CFG G :

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

What strings can this generate?
\square

The Language of a Grammar

Consider the following CFG G :

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

What strings can this generate?

The Language of a Grammar

Consider the following CFG G :

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

What strings can this generate?

The Language of a Grammar

Consider the following CFG G :

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

What strings can this generate?

The Language of a Grammar

Consider the following CFG G :

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

What strings can this generate?

The Language of a Grammar

Consider the following CFG G :

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

What strings can this generate?

The Language of a Grammar

Consider the following CFG G :

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

What strings can this generate?

The Language of a Grammar

Consider the following CFG G :

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

What strings can this generate?

The Language of a Grammar

Consider the following CFG G :

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

What strings can this generate?

The Language of a Grammar

Consider the following CFG G :

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

What strings can this generate?

The Language of a Grammar

Consider the following CFG G :

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

What strings can this generate?

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline \mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{~b} & \mathrm{~b} \\
\hline
\end{array} \\
& \mathscr{L}(G)=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N}\right\}
\end{aligned}
$$

All Languages

Why the Extra Power?

Why do CFGs have more power than regular expressions?
Intuition: Derivations of strings have unbounded "memory."

Why the Extra Power?

Why do CFGs have more power than regular expressions?
Intuition: Derivations of strings have unbounded "memory."

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

Why the Extra Power?

Why do CFGs have more power than regular expressions?
Intuition: Derivations of strings have unbounded "memory."

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

```
S
```


Why the Extra Power?

Why do CFGs have more power than regular expressions?
Intuition: Derivations of strings have unbounded "memory."

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

Why the Extra Power?

Why do CFGs have more power than regular expressions?
Intuition: Derivations of strings have unbounded "memory."
$\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon$

Why the Extra Power?

Why do CFGs have more power than regular expressions?
Intuition: Derivations of strings have unbounded "memory."

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

a	a	S	b	b

Why the Extra Power?

Why do CFGs have more power than regular expressions?
Intuition: Derivations of strings have unbounded "memory."

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

Why the Extra Power?

Why do CFGs have more power than regular expressions?
Intuition: Derivations of strings have unbounded "memory."

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

\mathbf{a}	\mathbf{a}	a	\mathbf{S}	b	b	b

Why the Extra Power?

Why do CFGs have more power than regular expressions?
Intuition: Derivations of strings have unbounded "memory."

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

Why the Extra Power?

Why do CFGs have more power than regular expressions?
Intuition: Derivations of strings have unbounded "memory."

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

Why the Extra Power?

Why do CFGs have more power than regular expressions?
Intuition: Derivations of strings have unbounded "memory."

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

Why the Extra Power?

Why do CFGs have more power than regular expressions?
Intuition: Derivations of strings have unbounded "memory."

$$
\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon
$$

Your Questions

What is the next hot thing in CS/software (fad or otherwise)? In the past decade, things like AI/ML, IOT, and blockchain have become buzzwords - what's next?

Staff recommendations for favorite CS or math books?

Favorite video game?

Let's take a five minute break!

Designing CFGs

Like designing DFAs, NFAs, and regular expressions, designing CFGs is a craft. When thinking about CFGs:
Think recursively: Build up bigger structures from smaller ones.
Have a construction plan: Know in what order you will build up the string. Store information in nonterminals: Have each nonterminal correspond to some useful piece of information.

Designing CFGs

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*} \mid w\right.$ is a palindrome \}
We can design a CFG for L by thinking inductively:
Base case: ε, \mathbf{a}, and \mathbf{b} are palindromes. If ω is a palindrome, then awa and bwb are palindromes.
No other strings are palindromes.

$$
\mathrm{S} \rightarrow \varepsilon|\mathrm{a}| \mathrm{b}|\mathrm{aSa}| \mathrm{bSb}
$$

Designing CFGs

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*} \mid w\right.$ is a palindrome \}
We can design a CFG for L by thinking inductively:

$$
\mathrm{S} \rightarrow \varepsilon|\mathrm{a}| \mathrm{b}|\mathrm{aSa}| \mathrm{bSb}
$$

Designing CFGs

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*} \mid w\right.$ is a palindrome $\}$
We can design a CFG for L by thinking inductively:

a	b	b	a

$$
\mathrm{S} \rightarrow \varepsilon|\mathrm{a}| \mathrm{b}|\mathrm{aSa}| \mathrm{bSb}
$$

Designing CFGs

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*} \mid w\right.$ is a palindrome $\}$
We can design a CFG for L by thinking inductively:

$\mathrm{S} \rightarrow \boldsymbol{\varepsilon}|\mathrm{a}| \mathrm{b}|\mathrm{aSa}| \mathrm{bSb}$

Designing CFGs

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*} \mid w\right.$ is a palindrome $\}$
We can design a CFG for L by thinking inductively:

$\mathrm{S} \rightarrow \boldsymbol{\varepsilon}|\mathrm{a}| \mathrm{b}|\mathrm{aSa}| \mathrm{bSb}$

Designing CFGs

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*} \mid w\right.$ is a palindrome $\}$
 We can design a CFG for L by thinking inductively:

$$
\mathrm{S} \rightarrow \varepsilon|\mathrm{a}| \mathrm{b}|\mathrm{aSa}| \mathrm{bSb}
$$

Designing CFGs

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*} \mid w\right.$ is a palindrome $\}$
We can design a CFG for L by thinking recursively:

$\mathrm{S} \rightarrow \boldsymbol{\varepsilon}|\mathrm{a}| \mathrm{b}|\mathrm{aSa}| \mathrm{bSb}$

Designing CFGs

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*} \mid w\right.$ is a palindrome \}
We can design a CFG for L by thinking recursively:

$\mathrm{S} \rightarrow \boldsymbol{\varepsilon}|\mathrm{a}| \mathrm{b}|\mathrm{aSa}| \mathrm{bSb}$

Designing CFGs

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*} \mid w\right.$ is a palindrome $\}$
We can design a CFG for L by thinking recursively:

$\mathrm{S} \rightarrow \boldsymbol{\varepsilon}|\mathrm{a}| \mathrm{b}|\mathrm{aSa}| \mathrm{bSb}$

Designing CFGs

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*} \mid w\right.$ is a palindrome \}
We can design a CFG for L by thinking recursively:

$\mathrm{S} \rightarrow \boldsymbol{\varepsilon}|\mathrm{a}| \mathrm{b}|\mathrm{aSa}| \mathrm{bSb}$

Designing CFGs

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*} \mid w\right.$ is a palindrome \}
We can design a CFG for L by thinking recursively:

a	b	b	a

$$
\mathrm{S} \rightarrow \varepsilon|\mathrm{a}| \mathrm{b}|\mathrm{aSa}| \mathrm{bSb}
$$

Designing CFGs

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*} \mid w\right.$ is a palindrome $\}$
 We can design a CFG for L by thinking recursively:

Recursive (building down) perspective: you can take any palindrome and repeatedly remove the same character from both ends, leaving behind a palindrome.

$$
\mathbf{S} \rightarrow \varepsilon|\mathrm{a}| \mathrm{b}|\mathrm{aSa}| \mathrm{bSb}
$$

Designing CFGs

Let $\Sigma=\{\{\}$,$\} and let L=\left\{w \in \Sigma^{*} \mid w\right.$ is a string of balanced braces \}
Some sample strings in L :
\{\{\{\}\}\}
\{\{\}\}\}\}
\{\{\}\}\}\{\{\}\}\}
\{\{\{\{\{\}\}\}\{\}\}\}\}

ε

$\}\}$

Designing CFGs

Let $\Sigma=\{\{\}$,$\} and let L=\left\{w \in \Sigma^{*} \mid w\right.$ is a string of balanced braces \}
Let's think about this recursively.
Base case: the empty string is a string of balanced braces.

Recursive step: Look at the closing brace that matches the first open brace.

Designing CFGs

Let $\Sigma=\{\{\}$,$\} and let L=\left\{w \in \Sigma^{*} \mid w\right.$ is a string of balanced braces \}
Let's think about this recursively.
Base case: the empty string is a string of balanced braces.

Recursive step: Look at the closing brace that matches the first open brace.

$$
\{\{\}\{1\}\}\}\{\}\}\}\{\}\}\{\{1\}\}\}
$$

Designing CFGs

Let $\Sigma=\{\{\}$,$\} and let L=\left\{w \in \Sigma^{*} \mid w\right.$ is a string of balanced braces \}

Let's think about this recursively.
Base case: the empty string is a string of balanced braces.

Recursive step: Look at the closing brace that matches the first open brace.

$$
\{\{\}\{\}\}\}\{\}\}\}\{\}\}\{\{\}\}\}
$$

Designing CFGs

Let $\Sigma=\{\{\}$,$\} and let L=\left\{w \in \Sigma^{*} \mid w\right.$ is a string of balanced braces \}
Let's think about this recursively.
Base case: the empty string is a string of balanced braces.

Recursive step: Look at the closing brace that matches the first open brace.

$$
\{\}\{\}\}\}\{\}\} ;\{\{ \}\}\{\{\{ \}\}\}
$$

Designing CFGs

Let $\Sigma=\{\{\}$,$\} and let L=\left\{w \in \Sigma^{*} \mid w\right.$ is a string of balanced braces \}
Let's think about this recursively.
Base case: the empty string is a string of balanced braces.

Recursive step: Look at the closing brace that matches the first open brace. Removing the first brace and the matching brace forms two new strings of balanced braces.

$$
\mathrm{S} \rightarrow\{\mathrm{~S}\} \mathrm{S} \mid \varepsilon
$$

Designing CFGs

Here's the derivation from class today:
S
$\Rightarrow\{\mathrm{S}\} \mathrm{S}$
$\Rightarrow\{\{S\} S\} S$
= \{\{\{S\}S\}S\}S
$\Rightarrow\{\{\{S\} S\} S\} S\} S$
= \{\{\{x\}\{S\}S\}S\}S
$\Rightarrow\{\{\{\varepsilon\}\{\varepsilon\} \mathrm{S}\} \mathrm{S}\} \mathrm{S}$
$\Rightarrow\{\{\{\varepsilon\} \varepsilon\} \varepsilon\}$ S\}S
$\Rightarrow\{\{\{\varepsilon\}\{\varepsilon\} \varepsilon\} \varepsilon\} S$
$\Rightarrow\{\{\{\varepsilon\}\{\varepsilon\} \varepsilon\} \varepsilon\} \varepsilon$

Designing CFGs

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*} \mid w\right.$ has the same number of a's and b's \}

How many of the following CFGs have language L ?
$\mathrm{S} \rightarrow \mathrm{aSb}|\mathrm{bSa}| \varepsilon$

$\mathrm{S} \rightarrow \mathrm{abS}|\mathrm{baS}| \varepsilon$

S \rightarrow abSba | baSab | ε

Designing CFGs

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*} \mid w\right.$ has the same number of a's and b's \}

How many of the following CFGs have language L ?
$\mathrm{S} \rightarrow \mathrm{aSb}|\mathrm{bSa}| \varepsilon$

$\mathrm{S} \rightarrow \mathrm{abS}|\mathrm{baS}| \varepsilon$

S \rightarrow SbaS \mid SabS $\mid \varepsilon$

Designing CFGs

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*} \mid w\right.$ has the same number of a's and b's \}

How many of the following CFGs have language L ?
$\mathrm{S} \rightarrow \mathrm{aSb}|\mathrm{bSa}| \varepsilon$

$\mathrm{S} \rightarrow \mathrm{abS}|\mathrm{baS}| \varepsilon$

S \rightarrow abSba | baSab | ε

Designing CFGs

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*} \mid w\right.$ has the same number of a's and b's \}

How many of the following CFGs have language L ?
$\mathrm{S} \rightarrow \mathrm{aSb}|\mathrm{bSa}| \varepsilon$

$$
\mathrm{S} \rightarrow \mathrm{abS}|\mathrm{baS}| \varepsilon
$$

S \rightarrow abSba | baSab | ε

Designing CFGs

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*} \mid w\right.$ has the same number of a's and b's \}

How many of the following CFGs have language L ?
$\mathrm{S} \rightarrow \mathrm{aSb}|\mathrm{bSa}| \varepsilon$

$S \rightarrow$ abS | baS | ε

S \rightarrow abSba | baSab | ε

Designing CFGs: A Caveat

When designing a CFG for a language, make sure that it

- generates all the strings in the language and
- never generates a string outside the language.
The first of these can be tricky - make sure to test your grammars!
You'll design your own CFG for this language on Problem Set 5.

CFG Caveats II

Is the following grammar a CFG for the language $\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \in \mathbb{N}\right\}$?

$$
S \rightarrow a S b
$$

What strings in $\{\mathbf{a}, \mathbf{b}\}^{*}$ can you derive? Answer: None!
What is the language of the grammar? Answer: Ø

When designing CFGs, make sure your recursion actually terminates!

Designing CFGs

When designing CFGs, remember that each nonterminal can be expanded out independently of the others.
Let $\Sigma=\{a, \stackrel{?}{\underline{=}}\}$ and let $L=\left\{a^{n} \underline{\underline{?}} a^{n} \mid n \in \mathbb{N}\right\}$.
Is the following a CFG for L ?
$\mathbf{S} \rightarrow \mathbf{X} \stackrel{?}{\underline{?}} \mathbf{X}$
$\mathbf{X} \rightarrow \mathbf{a X} \mid \varepsilon$

$$
\begin{aligned}
& \mathrm{S}=\mathrm{X} \stackrel{?}{\underline{\underline{2}}} \mathbf{X} \\
& \Rightarrow \mathrm{aX} \text { ? } \mathrm{X} \\
& \Rightarrow \mathrm{aaX} \text { ? } \mathrm{X} \\
& \Rightarrow \mathrm{aa} \stackrel{?}{\underline{\underline{2}}} \mathbf{X} \\
& \Rightarrow a a ? a X
\end{aligned}
$$

Finding a Build Order

Let $\Sigma=\{a, \stackrel{?}{\underline{-}}\}$ and let $L=\left\{a^{n} \underline{\underline{?}} \mathrm{a}^{n} \mid n \in \mathbb{N}\right\}$.
To build a CFG for L, we need to be more clever with how we construct the string.
If we build the strings of a's independently of one another, then we can't enforce that they have the same length.
Idea: Build both strings of a's at the same time.
Here's one possible grammar based on that idea:

$$
\mathbf{S \rightarrow \xrightarrow [2] { = } | \mathrm { aSa }} \begin{array}{|ll}
& \mathbf{S} \\
\Rightarrow & \text { aSa } \\
\Rightarrow & \text { aaSaa } \\
\Rightarrow & \text { aaaSaaa } \\
\Rightarrow & \text { aaa? ? aaaa }
\end{array}
$$

Storing Information in Nonterminals

Keyidea: Different non-terminals should represent different states or different types of strings.
For example, different phases of the build, or different possible structures for the string.
Think like the same ideas from DFA/NFA design where states in your automata represent pieces of information.

Storing Information in Nonterminals

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all the characters in the first third of w are the same $\}$.
Examples:
$\varepsilon \in L$
abb $\in L$
bab $\in L$
aababa $\in L$
bbbbbb $\in L$

a $\notin L$
b $\notin L$
ababab $\notin L$
aabaaaaaa $\notin L$
bbbb $\notin L$

Storing Information in Nonterminals

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*}| | w \mid \equiv \equiv_{3} 0\right.$ and all the characters in the first third of w are the same $\}$.
Examples:
$\varepsilon \in L$
a $: b b \in L$
b:ab $\in L$
aa'baba $\in L$
bb; bbbb $\in L$
a $\notin L$
b $\notin L$
ab'abab $\notin L$
aab:aaaaaa $\notin L$
bbbb $\notin L$

Storing Information in Nonterminals

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*}| | w \mid \equiv{ }_{3} 0\right.$ and all the characters in the first third of w are the same \}.
One approach:
aaa
abb
aaabab
Observation 1:
Strings in this language
bab are either:
bbb the first third is as or
bbabbb the first third is bs.
aababa
aaaaaaaaa
bbbaaaaaa
bbbbbabaa

Storing Information in Nonterminals

> Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*}| | w \mid \equiv \equiv_{3} 0\right.$ and all the characters in the first third of w are the same $\}$.

One approach:
aaa
abb
aaabab
aababa
aaaaaaaaa

Storing Information in Nonterminals

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*}| | w \mid \equiv{ }_{3} 0\right.$ and all the characters in the first third of w are the same \}.
One approach:
aaa
abb
aaabab
aababa

Observation 2:
Amongst these strings,
for every a I have in the
first third, I need two
other characters in the
last two thirds.
aaaaaaaaa

Storing Information in Nonterminals

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*}| | w \mid \equiv{ }_{3} 0\right.$ and all the characters in the first third of w are the same \}.
One approach:
aaa
abb
aaabab
aababa
This pattern of "for every x I see here, I need a
y somewhere else in the string" is very common in CFGs!

Observation 2:
Amongst these strings,
for every a I have in the
first third, I need two
other characters in the
last two thirds.

Storing Information in Nonterminals

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all the characters in the first third of w are the same \}.

One approach:
aaa
abb
aaabab
aababa
Observation 2:
Amongst these strings,
for every a I have in the
first third, I need two
other characters in the last two thirds.
aaaaaaaaa
$\mathrm{A} \rightarrow \mathrm{aAXX} \mid \varepsilon$
$\mathbf{X} \rightarrow \mathbf{a} \mid \mathbf{b}$

Storing Information in Nonterminals

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all the characters in the first third of w are the same \}.
One approach:
aaa
abb
aaabab
aababa
Here the nonterminal \mathbf{A} represents "a string where the first third is \mathbf{a} 's" and the nonterminal \mathbf{X} represents "any character"
aaaaaaaaa
$\mathbf{A} \rightarrow \mathbf{a A X X} \mid \varepsilon$
$\mathbf{X} \rightarrow \mathbf{a} \mid \mathbf{b}$

Storing Information in Nonterminals

> Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*}| | w \mid \equiv{ }_{3} 0\right.$ and all the characters in the first third of w are the same $\}$.

One approach:
aaa
abb
aaabab
aababa
aaaaaaaaa
$\mathbf{A} \rightarrow \operatorname{aAXX} \mid \varepsilon$
bbbbabaa
$\mathbf{X} \rightarrow \mathbf{a} \mid \mathbf{b}$

Storing Information in Nonterminals

> Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*}| | w \mid \equiv \equiv_{3} 0\right.$ and all the characters in the first third of w are the same $\}$.

One approach:
aababa
aaaaaaaaa
$\mathrm{B} \rightarrow \mathrm{bBXX} \mid \varepsilon$

bab
bbb
bbabbb

bbbaaaaaa
bbbbbabaa
$\mathbf{X} \rightarrow \mathbf{a} \mid \mathbf{b}$

Storing Information in Nonterminals

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*}| | w \mid \equiv{ }_{3} 0\right.$ and all the characters in the first third of w are the same \}.
Tying everything together:
$\mathbf{S} \rightarrow \mathbf{A} \mid \mathbf{B}$
$\mathrm{A} \rightarrow \mathrm{aAXX} \mid \varepsilon$
$\mathrm{B} \rightarrow \mathrm{bBXX} \mid \varepsilon$
$X \rightarrow a \mid b$

Storing Information in Nonterminals

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all the characters in the first third of w are the same \}.
Tying everything together:
$\mathbf{S} \rightarrow \mathbf{A} \mid \mathbf{B}$
$\mathbf{A} \rightarrow \mathrm{aAXX} \mid \varepsilon$
Overall strings in this language either follow the pattern of \mathbf{A} or \mathbf{B}.
B
$\mathbf{X} \rightarrow a \mid b$

Storing Information in Nonterminals

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all the characters in the first third of w are the same \}.
Tying everything together:
S $\rightarrow \mathrm{A} \mid \mathrm{B}$
$\mathrm{A} \rightarrow \mathrm{aAXX} \mid \varepsilon$
B
A represents "strings where the first third is $\mathbf{a}^{\prime} \mathrm{s}$ "

Storing Information in Nonterminals

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all the characters in the first third of w are the same \}.
Tying everything together:
S
$\mathbf{A} \rightarrow \mathrm{aAXX} \mid \varepsilon$
B $\rightarrow \mathbf{b B X X} \mid \boldsymbol{\varepsilon}$
$\mathbf{X} \rightarrow a \mid b$
B represents "strings where the first third is \mathbf{b} 's"

Storing Information in Nonterminals

Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$ and let $L=\left\{w \in \Sigma^{*}| | w \mid \equiv_{3} 0\right.$ and all the characters in the first third of w are the same \}.
Tying everything together:
S $\rightarrow \mathbf{A} \mid$ B
$\mathbf{A} \rightarrow \mathrm{aAXX} \mid \varepsilon$
B
$\mathbf{X} \rightarrow \mathbf{a} \mid \mathbf{b}$

Function Prototypes

Let $\Sigma=\{$ void, int, double, name, (,), , ; \} .
Let's write a CFG for C-style function prototypes!
Examples:

- void name(int name, double name);
- int name();
- int name(double name);
- int name(int, int name, int);
- void name(void);

Function Prototypes

Here's one possible grammar:
$\mathrm{S} \rightarrow$ Ret name (Args);
Ret \rightarrow Type | void
Type \rightarrow int | double
Args $\rightarrow \varepsilon \mid$ void \mid ArgList
ArgList \rightarrow OneArg | ArgList, OneArg
OneArg \rightarrow Type | Type name

Summary of CFG Design Tips

Look for recursive structures where they exist: they can help guide you toward a solution.
Keep the build order in mind - often, you'll build two totally different parts of the string concurrently.
Usually, those parts are built in opposite directions: one's built left-to-right, the other right-to-left.
Use different nonterminals to represent different structures.

Applications of Context-Free Grammars

How does my computer know what this sequence of characters means? How can it determine whether or not this expression is even syntactically valid?

Applications of CFGs

E \rightarrow E Op E | int $\mid(E)$
$\mathbf{O p} \rightarrow+|\times|-| /$

E
$\Rightarrow \quad$ E Op E
$\Rightarrow \quad$ E Op (E)
$\Rightarrow \quad$ E Op (E Op E)
$\Rightarrow \quad \mathrm{E} \times(\mathrm{E} \mathbf{O p} \mathrm{E})$
$\Rightarrow \quad$ int $\times(\mathbb{E} \mathbf{O p}$)
$\Rightarrow \quad$ int $\times($ int $O p$ E)
$\Rightarrow \quad$ int \times (int $O p$ int)
$\Rightarrow \quad$ int \times (int + int)

Given a set of production rules and an expression,

If I can somehow reverse engineer the derivation, I can ascribe meaning to the pieces of my string.

Exact details of how to do this are beyond the scope of this class - Take CS143!

CFGs for Programming Languages

Grammars in Compilers

- One of the key steps in a compiler is figuring out what a program "means."
- This is usually done by defining a grammar showing the high-level structure of a programming language.
- There are certain classes of grammars (LL(1) grammars, LR(1) grammars, LALR(1) grammars, etc.) for which it's easy to figure out how a particular string was derived.
- Tools like yacc or bison automatically generate parsers from these grammars.
- Curious to learn more? Take CS143!

Natural Language Processing

- By building context-free grammars for actual languages and applying statistical inference, it's possible for a computer to recover the likely meaning of a sentence.
- In fact, CFGs were first called phrase-structure grammars and were introduced by Noam Chomsky in his seminal work Syntactic Structures.
- They were then adapted for use in the context of programming languages, where they were called Backus-Naur forms.
- Stanford's CoreNLP project is one place to look for an example of this.
- Want to learn more? Take CS124 or CS224N!

Next Time

Turing Machines

What does a computer with unbounded memory look like?
How would you program it?

Thought for the Weekend:

Being right is not enough

