
Context-Free Grammars

A Motivating Question

How does my computer know what this sequence of characters means? How can it
determine whether or not this expression is even syntactically valid?

An Analogy: Mad Libs

When you’re filling out Mad Libs, you have these

placeholders for different parts of speech.

Imagine I have a template like this:

Mad Libs for Arithmetic
Expressions

()
Int Op Int OP Int Op Int

Here’s one way I could fill it out:

Mad Libs for Arithmetic
Expressions

(26 + 42) * 2 + 1(
Int Op Int OP Int Op Int

Mad Libs for Arithmetic
Expressions

(7 * 5) / 5 - 49

Here’s another:

Imagine you have a computer that’s pre-programmed with this template.

You could then enter a string and be able to check whether it is valid. You can also
understand what individual pieces of the string mean based on which part of the

template they’re filling in.

Int Op Int OP Int Op Int

Mad Libs for Arithmetic
Expressions

This is nice but I can only make expressions of
the form (Int Op Int) Op Int Op Int

But there are many valid arithmetic
expressions that don’t follow this pattern!

()
Int Op Int OP Int Op Int

Mad Libs for Arithmetic
Expressions

Idea: could we come up with a set of rules for
generating valid arithmetic Mad Libs
templates?

Eg. Int Op Int, (Int Op(Int Op Int)),

(Int Op Int)Op(Int Op Int)...

Describing Languages

We've seen two models for the regular languages:

Finite automata accept precisely the strings in the
language.

Regular expressions describe precisely the strings in the
language.

Finite automata recognize strings in the language.

Perform a computation to determine whether a specific
string is in the language.

Regular expressions match strings in the language.

Describe the general shape of all strings in the language.

Context-Free Grammars

A context-free grammar (or CFG) is an
entirely different formalism for defining a
class of languages.

Goal: Give a description of a language by
recursively describing the structure of the
strings in the language.

CFGs are best explained by example...

Suppose we want to describe all legal arithmetic
expressions using addition, subtraction,
multiplication, and division.

Here is one possible CFG:

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → ×

Op → /

Arithmetic Expressions

E
⇒ E Op E
⇒ E Op (E)
⇒ E Op (E Op E)

⇒ E × (E Op E)

⇒ int × (E Op E)

⇒ int × (int Op E)

⇒ int × (int Op int)

⇒ int × (int + int)

Arithmetic Expressions

Suppose we want to describe all legal arithmetic
expressions using addition, subtraction,
multiplication, and division.

Here is one possible CFG:

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → ×

Op → /

E
⇒ E Op E
⇒ E Op int

⇒ int Op int

⇒ int / int

Context-Free Grammars

Formally, a context-free grammar is a
collection of four items:

a set of nonterminal symbols
(also called variables),

a set of terminal symbols (the
alphabet of the CFG),

a set of production rules saying how
each nonterminal can be replaced by a
string of terminals and nonterminals,
and

a start symbol (which must be a
nonterminal) that begins the derivation.
By convention, the start symbol is the
one on the left-hand side of the first
production.

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → ×

Op → /

Some CFG Notation

In today’s slides, capital letters in Bold Red
Uppercase will represent nonterminals.

e.g. A, B, C, D

Lowercase letters in blue monospace will represent
terminals.

e.g. t, u, v, w

Lowercase Greek letters in gray italics will
represent arbitrary strings of terminals and
nonterminals.

e.g. α, γ, ω

You don't need to use these conventions on your
own; just make sure whatever you do is readable. ☺

A Notational Shorthand

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → ×

Op → /

A Notational Shorthand

E → int | E Op E | (E)

Op → + | - | × | /

Derivations

⇒ E

⇒ E Op E

⇒ E Op (E)

⇒ E Op (E Op E)

⇒ E × (E Op E)

⇒ int × (E Op E)

⇒ int × (int Op E)

⇒ int × (int Op int)

⇒ int × (int + int)

A sequence of steps where
nonterminals are replaced by the
right-hand side of a production is
called a derivation.

If string α derives string ω, we
write α ⇒* ω.

In the example on the left, we see
E ⇒* int × (int + int).

E → E Op E | int | (E)

Op → + | × | - | /

The Language of a Grammar

If G is a CFG with alphabet Σ and start
symbol S, then the language of G is the
set

ℒ(G) = { ω ∈ Σ* | S ⇒* ω }

That is, ℒ(G) is the set of strings of
terminals derivable from the start symbol.

Consider the following CFG G over Σ = {a, b, c, d}:

S → Sa | dT

T → bTb | c

How many of the following strings are in ℒ(G)?

dca
cad
bcb

dTaa

If G is a CFG with alphabet Σ and start symbol S,
then the language of G is the set

ℒ(G) = { ω ∈ Σ* | S ⇒* ω }

Context-Free Languages

A language L is called a context-free
language (or CFL) if there is a CFG G such
that L = ℒ(G).

Questions:

What languages are context-free?

How are context-free and regular
languages related?

From Regexes to CFGs

CFGs consist purely of production rules of
the form A → ω. They do not have the
regular expression operators * or ∪.

However, we can convert regular
expressions to CFGs as follows:

S → a*b

From Regexes to CFGs

CFGs consist purely of production rules of
the form A → ω. They do not have the
regular expression operators * or ∪.

However, we can convert regular
expressions to CFGs as follows:

S → a*b

From Regexes to CFGs

CFGs consist purely of production rules of
the form A → ω. They do not have the
regular expression operators * or ∪.

However, we can convert regular
expressions to CFGs as follows:

S → a*b
A → Aa | ε

From Regexes to CFGs

CFGs consist purely of production rules of
the form A → ω. They do not have the
regular expression operators * or ∪.

However, we can convert regular
expressions to CFGs as follows:

S → a*b
A → Aa | ε

From Regexes to CFGs

CFGs consist purely of production rules of
the form A → ω. They do not have the
regular expression operators * or ∪.

However, we can convert regular
expressions to CFGs as follows:

S → Ab
A → Aa | ε

From Regexes to CFGs

CFGs consist purely of production rules of
the form A → ω. They do not have the
regular expression operators * or ∪.

However, we can convert regular
expressions to CFGs as follows:

S → a(b ∪ c*)

From Regexes to CFGs

CFGs consist purely of production rules of
the form A → ω. They do not have the
regular expression operators * or ∪.

However, we can convert regular
expressions to CFGs as follows:

S → a(b ∪ c*)

From Regexes to CFGs

CFGs consist purely of production rules of
the form A → ω. They do not have the
regular expression operators * or ∪.

However, we can convert regular
expressions to CFGs as follows:

S → a(b ∪ c*)

X → b | c*

From Regexes to CFGs

CFGs consist purely of production rules of
the form A → ω. They do not have the
regular expression operators * or ∪.

However, we can convert regular
expressions to CFGs as follows:

S → a(b ∪ c*)

X → b | c*

From Regexes to CFGs

CFGs consist purely of production rules of
the form A → ω. They do not have the
regular expression operators * or ∪.

However, we can convert regular
expressions to CFGs as follows:

S → aX
X → b | c*

From Regexes to CFGs

CFGs consist purely of production rules of
the form A → ω. They do not have the
regular expression operators * or ∪.

However, we can convert regular
expressions to CFGs as follows:

S → aX
X → b | c*

From Regexes to CFGs

CFGs consist purely of production rules of
the form A → ω. They do not have the
regular expression operators * or ∪.

However, we can convert regular
expressions to CFGs as follows:

S → aX
X → b | c*
C → Cc | ε

From Regexes to CFGs

CFGs consist purely of production rules of
the form A → ω. They do not have the
regular expression operators * or ∪.

However, we can convert regular
expressions to CFGs as follows:

S → aX
X → b | c*
C → Cc | ε

From Regexes to CFGs

CFGs consist purely of production rules of
the form A → ω. They do not have the
regular expression operators * or ∪.

However, we can convert regular
expressions to CFGs as follows:

S → aX
X → b | C
C → Cc | ε

Regular Languages and CFLs

Theorem: Every regular language is
context-free.

Proof Idea: Use the construction from the
previous slides to convert a regular
expression for L into a CFG for L. ■

Great Exercise: Instead, show how to
convert a DFA/NFA into a CFG.

The Language of a Grammar

Consider the following CFG G:

S → aSb | ε

What strings can this generate?

The Language of a Grammar

Consider the following CFG G:

S → aSb | ε

What strings can this generate?

S

The Language of a Grammar

Consider the following CFG G:

S → aSb | ε

What strings can this generate?

Sa b

The Language of a Grammar

Consider the following CFG G:

S → aSb | ε

What strings can this generate?

Sa b

The Language of a Grammar

Consider the following CFG G:

S → aSb | ε

What strings can this generate?

Sa ba b

The Language of a Grammar

Consider the following CFG G:

S → aSb | ε

What strings can this generate?

Sa ba b

The Language of a Grammar

Consider the following CFG G:

S → aSb | ε

What strings can this generate?

Sa ba ba b

The Language of a Grammar

Consider the following CFG G:

S → aSb | ε

What strings can this generate?

Sa ba ba b

The Language of a Grammar

Consider the following CFG G:

S → aSb | ε

What strings can this generate?

Sa ba ba ba b

The Language of a Grammar

Consider the following CFG G:

S → aSb | ε

What strings can this generate?

a ba ba ba b

The Language of a Grammar

Consider the following CFG G:

S → aSb | ε

What strings can this generate?

a ba ba ba b

The Language of a Grammar

Consider the following CFG G:

S → aSb | ε

What strings can this generate?

ℒ(G) = { anbn | n ∈ ℕ }

a ba ba ba b

Regular
Languages CFLs

All Languages

Why the Extra Power?

Why do CFGs have more power than
regular expressions?

Intuition: Derivations of strings have
unbounded “memory.”

S → aSb | ε

Why the Extra Power?

Why do CFGs have more power than
regular expressions?

Intuition: Derivations of strings have
unbounded “memory.”

S → aSb | ε

Why the Extra Power?

Why do CFGs have more power than
regular expressions?

Intuition: Derivations of strings have
unbounded “memory.”

S → aSb | ε

S

Why the Extra Power?

Why do CFGs have more power than
regular expressions?

Intuition: Derivations of strings have
unbounded “memory.”

S → aSb | ε

Sa b

Why the Extra Power?

Why do CFGs have more power than
regular expressions?

Intuition: Derivations of strings have
unbounded “memory.”

S → aSb | ε

Sa b

Why the Extra Power?

Why do CFGs have more power than
regular expressions?

Intuition: Derivations of strings have
unbounded “memory.”

S → aSb | ε

Sa ba b

Why the Extra Power?

Why do CFGs have more power than
regular expressions?

Intuition: Derivations of strings have
unbounded “memory.”

S → aSb | ε

Sa ba b

Why the Extra Power?

Why do CFGs have more power than
regular expressions?

Intuition: Derivations of strings have
unbounded “memory.”

S → aSb | ε

Sa ba ba b

Why the Extra Power?

Why do CFGs have more power than
regular expressions?

Intuition: Derivations of strings have
unbounded “memory.”

S → aSb | ε

Sa ba ba b

Why the Extra Power?

Why do CFGs have more power than
regular expressions?

Intuition: Derivations of strings have
unbounded “memory.”

S → aSb | ε

Sa ba ba ba b

Why the Extra Power?

Why do CFGs have more power than
regular expressions?

Intuition: Derivations of strings have
unbounded “memory.”

S → aSb | ε

a ba ba ba b

Why the Extra Power?

Why do CFGs have more power than
regular expressions?

Intuition: Derivations of strings have
unbounded “memory.”

S → aSb | ε

a ba ba ba b

Your Questions

What is the next hot thing in
CS/software (fad or otherwise)? In the

past decade, things like AI/ML, IOT,
and blockchain have become

buzzwords – what’s next?

Staff recommendations for favorite CS
or math books?

Favorite video game?

Let’s take a five minute break!

Designing CFGs

Like designing DFAs, NFAs, and regular
expressions, designing CFGs is a craft.

When thinking about CFGs:

Think recursively: Build up bigger
structures from smaller ones.

Have a construction plan: Know in what
order you will build up the string.

Store information in nonterminals:
Have each nonterminal correspond to some
useful piece of information.

Designing CFGs

Let Σ = {a, b} and let L = {w ∈ Σ* | w is a
palindrome }

We can design a CFG for L by thinking
inductively:

Base case: ε, a, and b are palindromes.

If ω is a palindrome, then aωa and bωb are
palindromes.

No other strings are palindromes.

S → ε | a | b | aSa | bSb

Designing CFGs

Let Σ = {a, b} and let L = {w ∈ Σ* | w is a
palindrome }

We can design a CFG for L by thinking
inductively:

S → ε | a | b | aSa | bSb

Designing CFGs

Let Σ = {a, b} and let L = {w ∈ Σ* | w is a
palindrome }

We can design a CFG for L by thinking
inductively:

S → ε | a | b | aSa | bSb

aba b

Designing CFGs

Let Σ = {a, b} and let L = {w ∈ Σ* | w is a
palindrome }

We can design a CFG for L by thinking
inductively:

S → ε | a | b | aSa | bSb

aba bb b

Designing CFGs

Let Σ = {a, b} and let L = {w ∈ Σ* | w is a
palindrome }

We can design a CFG for L by thinking
inductively:

S → ε | a | b | aSa | bSb

aba bb ba a

Designing CFGs

Let Σ = {a, b} and let L = {w ∈ Σ* | w is a
palindrome }

We can design a CFG for L by thinking
inductively:

S → ε | a | b | aSa | bSb

Inductive (building up) perspective: you can take any palindrome and build a
larger one by adding the same character to both ends.

Designing CFGs

Let Σ = {a, b} and let L = {w ∈ Σ* | w is a
palindrome }

We can design a CFG for L by thinking
recursively:

S → ε | a | b | aSa | bSb

aba bb ba a

Designing CFGs

Let Σ = {a, b} and let L = {w ∈ Σ* | w is a
palindrome }

We can design a CFG for L by thinking
recursively:

S → ε | a | b | aSa | bSb

aba bb b
a a

Designing CFGs

Let Σ = {a, b} and let L = {w ∈ Σ* | w is a
palindrome }

We can design a CFG for L by thinking
recursively:

S → ε | a | b | aSa | bSb

aba bb b

Designing CFGs

Let Σ = {a, b} and let L = {w ∈ Σ* | w is a
palindrome }

We can design a CFG for L by thinking
recursively:

S → ε | a | b | aSa | bSb

aba b
b b

Designing CFGs

Let Σ = {a, b} and let L = {w ∈ Σ* | w is a
palindrome }

We can design a CFG for L by thinking
recursively:

S → ε | a | b | aSa | bSb

aba b

Designing CFGs

Let Σ = {a, b} and let L = {w ∈ Σ* | w is a
palindrome }

We can design a CFG for L by thinking
recursively:

S → ε | a | b | aSa | bSb

Recursive (building down) perspective: you can take any palindrome and repeatedly
remove the same character from both ends, leaving behind a palindrome.

Designing CFGs

Let Σ = {{, }} and let L = {w ∈ Σ* | w is a string
of balanced braces }

Some sample strings in L:

{{{}}}

{{}}{}

{{}{}}{{}{}}

{{{{{}}}{{}}}}

ε

{}{}

{

Designing CFGs

Let Σ = {{, }} and let L = {w ∈ Σ* | w is a string
of balanced braces }

Let's think about this recursively.

Base case: the empty string is a string of balanced
braces.

Recursive step: Look at the closing brace that
matches the first open brace.

{ { { { { { { { { { {} } } } } } } } } }} }

Designing CFGs

Let Σ = {{, }} and let L = {w ∈ Σ* | w is a string
of balanced braces }

Let's think about this recursively.

Base case: the empty string is a string of balanced
braces.

Recursive step: Look at the closing brace that
matches the first open brace.

{ { { { { { { { { { { {} } } } } } } } } }} }

Designing CFGs

Let Σ = {{, }} and let L = {w ∈ Σ* | w is a string
of balanced braces }

Let's think about this recursively.

Base case: the empty string is a string of balanced
braces.

Recursive step: Look at the closing brace that
matches the first open brace.

{ { { { { { { { { { { {} } } } } } } } } }} }

Designing CFGs

Let Σ = {{, }} and let L = {w ∈ Σ* | w is a string
of balanced braces }

Let's think about this recursively.

Base case: the empty string is a string of balanced
braces.

Recursive step: Look at the closing brace that
matches the first open brace.

{ { { { { { { { { { {} } } } } } } } }} }

Designing CFGs

Let Σ = {{, }} and let L = {w ∈ Σ* | w is a string
of balanced braces }

Let's think about this recursively.

Base case: the empty string is a string of balanced
braces.

Recursive step: Look at the closing brace that
matches the first open brace. Removing the first
brace and the matching brace forms two new strings
of balanced braces.

S → {S}S | ε

Designing CFGs

Here’s the derivation from class today:

S

⇒ {S}S

⇒ {{S}S}S

⇒ {{{S}S}S}S

⇒ {{{S}{S}S}S}S

⇒ {{{ε}{S}S}S}S

⇒ {{{ε}{ε}S}S}S

⇒ {{{ε}{ε}ε}S}S

⇒ {{{ε}{ε}ε}ε}S

⇒ {{{ε}{ε}ε}ε}ε

Designing CFGs

Let Σ = {a, b} and let L = {w ∈ Σ* | w has
the same number of a's and b's }

How many of the following CFGs have language L?

S → aSb | bSa | ε

S → abSba | baSab | ε S → SbaS | SabS | ε

S → abS | baS | ε

Designing CFGs

Let Σ = {a, b} and let L = {w ∈ Σ* | w has
the same number of a's and b's }

How many of the following CFGs have language L?

S → aSb | bSa | ε

S → abSba | baSab | ε S → SbaS | SabS | ε

S → abS | baS | ε

Designing CFGs

Let Σ = {a, b} and let L = {w ∈ Σ* | w has
the same number of a's and b's }

How many of the following CFGs have language L?

S → aSb | bSa | ε

S → abSba | baSab | ε S → SbaS | SabS | ε

S → abS | baS | ε

Designing CFGs

Let Σ = {a, b} and let L = {w ∈ Σ* | w has
the same number of a's and b's }

How many of the following CFGs have language L?

S → aSb | bSa | ε

S → abSba | baSab | ε S → SbaS | SabS | ε

S → abS | baS | ε

Designing CFGs

Let Σ = {a, b} and let L = {w ∈ Σ* | w has
the same number of a's and b's }

How many of the following CFGs have language L?

S → aSb | bSa | ε

S → abSba | baSab | ε S → SbaS | SabS | ε

S → abS | baS | ε

Designing CFGs: A Caveat

When designing a CFG for a language,
make sure that it

• generates all the strings in the language
and

• never generates a string outside the
language.

The first of these can be tricky – make sure
to test your grammars!

You'll design your own CFG for this
language on Problem Set 5.

CFG Caveats II

Is the following grammar a CFG for the
language { anbn | n ∈ ℕ }?

S → aSb

What strings in {a, b}* can you derive?

Answer: None!

What is the language of the grammar?

Answer: Ø

When designing CFGs, make sure your
recursion actually terminates!

Designing CFGs

When designing CFGs, remember that each
nonterminal can be expanded out independently
of the others.

Let Σ = {a, ≟} and let L = {an≟an | n ∈ ℕ }.

Is the following a CFG for L?

S → X≟X

X → aX | ε

S⇒X≟X

⇒aX≟X

⇒aaX≟X

⇒aa≟X

⇒aa≟aX

⇒aa≟a

Finding a Build Order

Let Σ = {a, ≟} and let L = {an≟an | n ∈ ℕ }.

To build a CFG for L, we need to be more clever with how
we construct the string.

If we build the strings of a's independently of one another,
then we can't enforce that they have the same length.

Idea: Build both strings of a's at the same time.

Here's one possible grammar based on that idea:

S → ≟ | aSa S

⇒ aSa
⇒ aaSaa
⇒ aaaSaaa
⇒ aaa≟aaa

Storing Information in
Nonterminals

Key idea: Different non-terminals should
represent different states or different types of
strings.

For example, different phases of the build, or
different possible structures for the string.

Think like the same ideas from DFA/NFA design
where states in your automata represent pieces
of information.

Storing Information in
Nonterminals

Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0 and
all the characters in the first third of w are the
same }.

Examples:

ε ∈ L a ∉ L

abb ∈ L b ∉ L

bab ∈ L ababab ∉ L

aababa ∈ L aabaaaaaa ∉ L

bbbbbb ∈ L bbbb ∉ L

Storing Information in
Nonterminals

Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0 and
all the characters in the first third of w are the
same }.

Examples:

ε ∈ L a ∉ L

a bb ∈ L b ∉ L

b ab ∈ L ab abab ∉ L

aa baba ∈ L aab aaaaaa ∉ L

bb bbbb ∈ L bbbb ∉ L

Storing Information in
Nonterminals

Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0 and
all the characters in the first third of w are the
same }.

One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Observation 1:

Strings in this language

are either:

the first third is as or

the first third is bs.

Storing Information in
Nonterminals

Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0 and
all the characters in the first third of w are the
same }.

One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Storing Information in
Nonterminals

Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0 and
all the characters in the first third of w are the
same }.

One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Observation 2:

Amongst these strings,

for every a I have in the

first third, I need two

other characters in the

last two thirds.

Storing Information in
Nonterminals

Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0 and
all the characters in the first third of w are the
same }.

One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

Observation 2:

Amongst these strings,

for every a I have in the

first third, I need two

other characters in the

last two thirds.

This pattern of “for every x I see here, I need a
y somewhere else in the string” is very

common in CFGs!

Storing Information in
Nonterminals

Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0 and
all the characters in the first third of w are the
same }.

One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

A → aAXX | ε X → a | b

Observation 2:

Amongst these strings,

for every a I have in the

first third, I need two

other characters in the

last two thirds.

Storing Information in
Nonterminals

Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0 and
all the characters in the first third of w are the
same }.

One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

A → aAXX | ε X → a | b

Here the nonterminal A represents “a string where the

first third is a’s” and the nonterminal X represents “any

character”

Storing Information in
Nonterminals

Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0 and
all the characters in the first third of w are the
same }.

One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

A → aAXX | ε X → a | b

Storing Information in
Nonterminals

Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0 and
all the characters in the first third of w are the
same }.

One approach:

aaa bab

abb bbb

aaabab bbabbb

aababa bbbaaaaaa

aaaaaaaaa bbbbbabaa

B → bBXX | ε X → a | b

Storing Information in
Nonterminals

Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0 and
all the characters in the first third of w are the
same }.

Tying everything together:

S → A | B

A → aAXX | ε

B → bBXX | ε

X → a | b

Storing Information in
Nonterminals

Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0 and
all the characters in the first third of w are the
same }.

Tying everything together:

S → A | B

A → aAXX | ε

B → bBXX | ε

X → a | b

Overall strings in this language either follow the pattern

of A or B.

Storing Information in
Nonterminals

Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0 and
all the characters in the first third of w are the
same }.

Tying everything together:

S → A | B

A → aAXX | ε

B → bBXX | ε

X → a | b

A represents “strings where the first third is a’s”

Storing Information in
Nonterminals

Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0 and
all the characters in the first third of w are the
same }.

Tying everything together:

S → A | B

A → aAXX | ε

B → bBXX | ε

X → a | b

B represents “strings where the first third is b’s”

Storing Information in
Nonterminals

Let Σ = {a, b} and let L = {w ∈ Σ* | |w| ≡3 0 and
all the characters in the first third of w are the
same }.

Tying everything together:

S → A | B

A → aAXX | ε

B → bBXX | ε

X → a | b X represents “either an a or a b”

Function Prototypes

Let Σ = {void, int, double, name, (,), ,, ;}.

Let's write a CFG for C-style function prototypes!

Examples:

• void name(int name, double name);

• int name();

• int name(double name);

• int name(int, int name, int);

• void name(void);

Function Prototypes

Here's one possible grammar:

S → Ret name (Args);

Ret → Type | void

Type → int | double

Args → ε | void | ArgList

ArgList → OneArg | ArgList, OneArg

OneArg → Type | Type name

Summary of CFG Design Tips

Look for recursive structures where they exist: they
can help guide you toward a solution.

Keep the build order in mind – often, you'll build
two totally different parts of the string
concurrently.

Usually, those parts are built in opposite directions:
one's built left-to-right, the other right-to-left.

Use different nonterminals to represent different
structures.

Applications of Context-Free Grammars

How does my computer know what this sequence of characters means? How can it
determine whether or not this expression is even syntactically valid?

Applications of CFGs

⇒ E

⇒ E Op E

⇒ E Op (E)

⇒ E Op (E Op E)

⇒ E × (E Op E)

⇒ int × (E Op E)

⇒ int × (int Op E)

⇒ int × (int Op int)

⇒ int × (int + int)

E → E Op E | int | (E)

Op → + | × | - | /

Given a set of production rules
and an expression,

If I can somehow reverse
engineer the derivation, I can
ascribe meaning to the pieces
of my string.

Exact details of how to do this
are beyond the scope of this
class – Take CS143!

CFGs for Programming Languages

BLOCK → STMT
| { STMTS }

STMTS → ε

| STMT STMTS

STMT → EXPR;
| if (EXPR) BLOCK
| while (EXPR) BLOCK
| do BLOCK while (EXPR);
| BLOCK
| …

EXPR → identifier

| constant

| EXPR + EXPR
| EXPR – EXPR
| EXPR * EXPR
| ...

Grammars in Compilers

• One of the key steps in a compiler is figuring out
what a program “means.”

• This is usually done by defining a grammar
showing the high-level structure of a
programming language.

• There are certain classes of grammars (LL(1)
grammars, LR(1) grammars, LALR(1) grammars,
etc.) for which it's easy to figure out how a
particular string was derived.

• Tools like yacc or bison automatically generate
parsers from these grammars.

• Curious to learn more? Take CS143!

Natural Language Processing

• By building context-free grammars for actual
languages and applying statistical inference, it's
possible for a computer to recover the likely
meaning of a sentence.

• In fact, CFGs were first called phrase-structure
grammars and were introduced by Noam
Chomsky in his seminal work Syntactic
Structures.

• They were then adapted for use in the context of
programming languages, where they were called
Backus-Naur forms.

• Stanford's CoreNLP project is one place to look
for an example of this.

• Want to learn more? Take CS124 or CS224N!

http://nlp.stanford.edu/software/lex-parser.shtml

Next Time

Turing Machines

What does a computer with unbounded
memory look like?

How would you program it?

Thought for the Weekend:

Being right is not enough

