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Problem Set 3

This third problem set explores binary relations, functions, and their properties. We've chosen these
problems to help you learn how to reason about these structures, how to write proofs using formal
mathematical definitions, and why all this matters in practice.

Before beginning this problem set, we strongly recommend reading over the following handouts:

• Handout #11, the “Guide to Proofs on Discrete Structures,” which explores how to write
proofs when definitions are rigorously specified in first-order logic. This handout contains
both general guiding principles to follow and some sample proof templates that you’re wel-
come to use here.

• Handout #12, the “Discrete Structures Proofwriting Checklist,” which contains some spe-
cific items to look for when proofreading your work. We will be applying the items on this
checklist when grading your work, so it’s worthwhile to apply this checklist to your work be-
fore submitting.

We recommend that you take a look at the proofs from this week’s lectures to get a sense of what
this looks like. The proofs on cyclic relations from Wednesday, or the proofs about injectivity and
surjectivity from Friday, are great examples of the style we’re looking for.

Good luck, and have fun!

Due Friday, October 9th at 12:00PM noon Pacific.
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Problem One: The Gallery
This question is autograded. Download the starter files for Problem Set Three and extract them some-
where convenient on your computer. To answer this question, run the bundled program and choose the
problem “The Gallery” from the top-level menu.

In this problem, you’ll be presented with six different binary relations. Your task is to determine which of
these relations are reflexive, symmetric, transitive, irreflexive, asymmetric, equivalence relations, and/or
strict orders. Check the appropriate boxes for each relation at the bottom of the screen.

Our provided starter code will record your answers and store them in the file res/TheGallery.answers.
Please don’t modify this file manually – the program will do it for you.  You can run local tests to check
your work, and once you’re done you can submit them online through GradeScope by uploading this file.

To help you check your answers, note that

• three of these six relations are transitive,

• at least one relation is both symmetric and asymmetric,

• at least one relation is both reflexive and irreflexive, and

• at least one relation is asymmetric and irreflexive but not transitive.

Problem Two: Redefining Equivalence Relations?
Below is a purported proof that every relation that is both symmetric and transitive is also reflexive.

⚠

(Incorrect!) Theorem: If R is a symmetric and transitive binary relation over a set
A, then R is also reflexive.

(Incorrect!) Proof: Let R be an arbitrary binary relation over a set A such that R
is both symmetric and transitive. We need to show that R is reflexive. To do
so, consider an arbitrary x, y ∈ A where xRy. Since R is symmetric and xRy,
we know that yRx. Then, since R is transitive, from xRy and yRx we learn that
xRx is true. Therefore, R is reflexive, as required. ■

⚠

This proof, unfortunately, is incorrect.

i. Run the starter files for PS3 and choose “Relation Editor.” Using the editor, open the relation
res/RedefiningEquivalence.relation and draw a picture the simplest binary relation that is
symmetric and transitive but not reflexive. By “simplest,” we mean “having the fewest elements in
its underlying set out of all the binary relations with this property, and, of those, having the fewest
arrows.” Do not manually edit the file  res/RedefiningEquivalence.relation; the program
will do that for you.

Your answer to part (i) shows that the proof has to be wrong. But why exactly is that?

ii. Look at the Guide to Proofs on Discrete Structures, and in particular the template proof that a bi -
nary relation is reflexive. How are you supposed to set up a proof that a binary relation is reflex-
ive? What does the above proof do? Are these the same as one another?

We wanted you to work through this problem so that you’d see an important class of errors that can arise
when writing proofs on discrete structures. It’s important to ensure that your proof makes the proper as-
sumptions at the beginning and arrives at the right goal. Otherwise, you risk writing a proof that “from the
inside” looks perfectly consistent, but which is wrong “from the outside” because what it  does prove
doesn’t match what it needs to prove.
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Problem Three: Power Plays
This question explores a concrete binary relation R over the set ℕ. Specifically, this binary relation R is
defined over ℕ as follows:

mRn        if        ∃a ∈ ℤ. m = 2a · n.

As is the convention (see the Guide to Proofs on Discrete Structures), the word “if” in the above state-
ment means “is defined as” and is not an implication. That is, if mRn is true it means that there’s an inte-
ger a where m = 2a · n, and conversely if there’s an integer a where m = 2a · n then mRn is true.

i. Find two different pairs of natural numbers m and n where mRn and m = n + 3. No justification is
required.

This is a warm-up to help you get a better sense of what the relation R looks like in practice. Any time you
discover a new binary relation, it’s worth taking a minute to try some concrete examples. You’ll get a much
better feel for how the relation works if you do!

ii. Prove that R is an equivalence relation.

Read the Guide to Proofs on Discrete Structures and review the proofs we did in lecture on equivalence rela-
tions for an example of how to structure this proof.

iii. Since R is an equivalence relation, it has at least one system of representatives. Fill in the blank
below to give a definition of one such system of representatives X. No justification is necessary.

X = { k  |  k ∈ ℕ and k ______________________________ }.

You’re not expected to be able to “eyeball” this one just by looking at the definition of R given above. In-
stead, write out a bunch of natural numbers and see if you spot any patterns.

Remember that a system of representatives needs to have these properties:

• Every element of ℕ needs to relate to at least one element of X.

• Every element of ℕ needs to relate to at most one element of X.

So, as a way of checking your work, take the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 and, for each of them,
confirm that it’s related by R to at least one element of your set X and to at most one element of your set X.
(Remember that we consider zero to be a natural number.)
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Problem Four: Building Binary Relations
This question explores ways of taking existing binary relations and building new relations from them.

We’ll begin by introducing an operation called squaring that turns one binary relation into another. The
definition of squaring is given here: if R is a binary relation over a set A, then the square of R, denoted
R2, is a binary relation over A defined as follows:

xR2y    if    ∃z ∈ A. (xRz ∧ zRy).

As a reminder, the word “if” here means “is defined as” and is not an implication.

To help you make sense of this definition, let’s work through a concrete example.

i. To the right is a picture of a binary relation R over a set A. Using the rela-
tion editor from the starter files, open res/RSquared.relation and draw
a picture of the binary relation R2. Do not manually edit this file; use the
program you downloaded to do this.

Does cR2a? If so, why? If not, why not? How about cR2b? How about dR2c?

Squares of relations play nicely with equivalence relations.

ii. Prove that if R is an equivalence relation over a set A, then so is R2. To do so, fill in the blanks in
the proof template given below.

Theorem: If R is an equivalence relation over a set A, then R2 is also an equivalence re-
lation over A.

Proof: Let R be an arbitrary equivalence relation over a set A. We will prove that R2 is
an equivalence relation by proving that it is _____, _____, and _____.

To prove  that  R2 is  ______,  consider  an  arbitrary  a ∈  A.  We will  prove  that
______. To do so, we need to show that there is a b ∈ A where _____ and _____.
Specifically, pick b = _____. Then ___________________________, as required.

To prove that R2 is _____, consider an arbitrary a ∈ A and b ∈ A where aR2b. We
will prove that _____. To do so, note that since aR2b is true, we know there is a
c ∈ A where _____. Then, since ____ and R is symmetric, we know that _____.
Similarly, since _____, we know that _____. Therefore, ____________________,
as required.

To prove that R2 is _____, ________________________________________. ■

As before, the relative sizes of the blanks do not indicate how much you need to write in each section. Feel
free to expand the final blank into as many sentences as are necessary.

Now, one last definition. If R is a binary relation over A, the undirected component of R, denoted ER, is a
binary relation over A defined as follows:

xERy    if    xRy ∧ yRx.

iii. Use the relation editor, open res/ER.relation and draw a picture of the relation ER, where R is
the binary relation given in the picture above.

iv. Prove that if R is a reflexive, transitive relation over a set A, then ER is an equivalence relation.

ER is defined in terms of R, but you can’t assume ER is reflexive and transitive just because R is. You need to
prove that. Go slowly. To prove ER is transitive, what would you assume, and what do you need to show?
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Problem Five: Properties of Functions
Below is a list of purported functions. For
each  of  those  purported  functions,  deter-
mine  where  in  Venn  diagram that  object
goes. To get you started, we’ve shown you
where functions 1 and 2 go.

To submit your answers, run the starter files
for  PS3  and  choose  the  “Properties  of
Functions” option. This program will write
your answers to  res/PropertiesOfFunc-
tions.answers. You can use the provided
test  cases  to  check your work,  and when
you’re  ready  you  can  submit  this  file  to
Gradescope.  Do  not  manually  edit  this
file; use the program instead.

1. f : ℕ → ℕ defined as f(n) = 137.

2. f : ℕ → ℕ defined as f(n) = -137.

Make sure you can explain why these first two items go where they do in this diagram!

3. f : ℕ → ℕ defined as f(n) = n+|n|
2 .  

The notation |n| means “the absolute value of n.” For example, |π| = |-π| = π.

4. f : ℤ → ℕ defined as f(n) = n+|n|
2 .

5. f : ℤ → ℤ defined as f(n) = n+|n|
2 .

6. f : ℝ → ℕ defined as f(n) = n+|n|
2 .

7. f : ℕ → ℝ defined as f(n) = n+|n|
2 .

8. f : ℝ → ℝ defined as f(n) = √n .

The notation √n denotes the principal square root of n, the nonnegative one.
9. f : ℝ → { x ∈ ℝ | x ≥ 0 } defined as f(n) = √n . 

10. f : { x ∈ ℝ | x ≥ 0 } → { x ∈ ℝ | x ≥ 0 } defined as f(n) = √n .

11. f : { x ∈ ℝ | x ≥ 0 } → ℝ defined as f(n) = √n .

12. f : ℕ → ℕ defined as follows:

f (n)= {n2
+2 if n<137

n2
−2 if n>137

13. f : ℕ → ℕ defined as follows:

f (n)= {2−n if n≤2
n−2 if n≥2

14. f : ℕ → ℕ defined as follows:

f (n)= {n
2−3 n+ 2 if n≤2

n if n≥2

15.  f : ℕ → ℤ defined as follows:

f (n)= { n /2 if n  is even 
−(n+1)/ 2 if n  is odd

Injections Surjections

Bijections

Functions
1

2



6 / 7

Problem Six: Odd and Even Functions
Let's suppose that we have a function f : ℝ → ℝ. We say that f is even if the following is true:

∀x ∈ ℝ. f(-x) = f(x).

i. Fill in the blank to give an example of an even function p : ℝ → ℝ. No justification is necessary.

p(x) = ________.

ii. Prove that if f is an even function, then f is not a bijection.

If f isn’t a bijection, then either it isn’t injective, or it isn’t surjective, or both. So write out the negations of the
statements “f is an injection” and “f is a surjection” in first-order logic and simplify them as much as possi-
ble. Then, see if you can prove that either of those statements are true.

When proving an existential statement of the form ∃x. [something], we prefer it if you give a concrete, spe-
cific choice of x (e.g. x = 137 or x = Ø) rather than giving a broad class of options that work for x. This
makes things easier for your proof – you can just verify that your one specific choice of x works – and it
makes it less likely that your proof has an error (if you say “pick any object meeting criteria A, B, and C,
you have to then prove why there even are objects meeting criteria A, B, and C).

A function f : ℝ → ℝ is called odd if the following is true:

∀x ∈ ℝ. f(-x) = -f(x).

iii. Fill in the blank to give an example of an odd function q : ℝ → ℝ. No justification is necessary.

q(x) = ________.

iv. Prove that if f and g are odd functions, then g ∘ f is also odd.

Every integer is either even or odd (but not both). This is not the case with functions.

v. Prove that there is a function from ℝ to ℝ that is neither odd nor even.

We are asking for a formal proof here. Is this a universal or an existential statement? Check the Guide to
Proofs on Discrete Structures for information about how to define functions inside of proofs.

vi. Prove that there is a function from ℝ to ℝ that is both even and odd.

Now, let’s define what it means to “add” two functions. Given two functions f : ℝ → ℝ and g  : ℝ → ℝ,
we can define the sum of f and g, denoted f + g, as a function f + g : ℝ → ℝ where

(f + g)(x) = f(x) + g(x).

Odd and even numbers behave in predictable ways when you add them. To what extent is that also true of
odd and even functions?

vii. Prove or disprove: for any functions f and g, if f and g are even, then f + g is even.

This is a prove-or-disprove problem, so your first task is to figure out whether this statement is true or false.
Notice that the statement here is a universally-quantified statement (“for any functions f and g, …”). To
prove this statement, you need to show the claim holds regardless of which f and g you pick.

This statement’s negation is an existentially-quantified statement (“there exist functions f and g where …”).
If you want to prove this statement is false, give concrete choices of f and g for which it’s not true, then
prove that your choices have all the right properties.

viii. Prove or disprove: for any functions f and g, if f and g are odd, then f + g is even.

ix. Prove or disprove: for any functions f and g, if f is odd and g is even, then f + g is odd.
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Problem Seven: Left, Right, and True Inverses
In lecture, we briefly touched on the idea of inverse functions. It turns out that the notion of what an in-
verse function is is a bit more nuanced than it appears. Specifically, there are several different notions of
what an inverse can be, each of which behaves in a slightly different way. This question explores three
different notions of inverse functions, along with their properties.

Let f : A → B be a function. A function g : B → A is called a left inverse of f if the following is true:

∀a ∈ A. g(f(a)) = a.

i. Find examples of a function f and two different functions g and h such that both g and h are left
inverses of  f. This shows that left inverses don't have to be unique. (Two functions  g and  h are
different if there is some x where g(x) ≠ h(x).) Express your answer by drawing pictures along the
lines of what we did in class: draw ovals representing the sets A and B, add dots to those ovals to
denote their elements, then express f, g, and h by drawing arrows between those dots.

If you draw A and B as sets, then arrows from A to B represent applying the function f, and arrows from B
back to A represent applying the function g. So look back at what you found when you expanded out the
definition. Can you express that in terms of arrows going left and right between these sets?

ii. Prove that if f is a function that has a left inverse, then f is injective.

As a hint on this problem, look back at the proofs we did with injections in lecture. To prove that a function
is an injection, what should you assume about that function, and what will you end up proving about it?
Let f : A → B be a function. A function g : B → A is called a right inverse of f if the following is true:

∀b ∈ B. f(g(b)) = b.

iii. Find examples of a function f and two different functions g and h such that both g and h are right
inverses of f. This shows that right inverses don't have to be unique. As in part (i), express your
answer by drawing pictures of f, g, and h along the lines of what we did in lecture.

iv. Prove that if f is a function that has a right inverse, then f is surjective.

If f : A → B is a function, then a true inverse (often just called an inverse) of f is a function g that's simul-
taneously a left and right inverse of f. In parts (i) and (iii) of this problem you saw that functions can have
several different left inverses or right inverses. However, a function can only have a single true inverse.

v. Prove that if f : A → B is a function and both g₁ : B → A and g₂ : B → A are inverses of f, then
g₁(b) = g₂(b) for all b ∈ B.

vi. Explain why your proof from part (v) doesn't work if g₁ and g₂ are just left inverses of f, not full
inverses. Be specific – you should point at a claim in your proof that is no longer true in this case.

vii. Explain why your proof from part (v) doesn't work if g₁ and g₂ are just right inverses of f, not full
inverses. Be specific – you should point at a claim in your proof that is no longer true in this case.

Left and right inverses have some surprising applications. We’ll see one of them next week!

Optional Fun Problem: Infinity Minus Two
Let [0, 1] denote the set { x ∈ ℝ | 0 ≤ x ≤ 1 } and (0, 1) denote the set { x ∈ ℝ | 0 < x < 1 }. That is, the
set [0, 1] is the set of all real numbers between 0 and 1, inclusive, and the set (0, 1) is the set of all real
numbers between 0 and 1, exclusive. These sets differ only in that the set [0, 1] includes 0 and 1 and the
set (0, 1) excludes 0 and 1.

Give the definition of bijection f : [0, 1] → (0, 1) via an explicit rule (i.e. writing out f(x) = __________
or defining f via a piecewise function), then prove that your function is a bijection.


