
CS103 Handout 21
Fall 2020 October 30, 2020

Problem Set 7

What can you do with regular expressions? What are the limits of regular languages? And how does
the material on discrete structures from the first half of this quarter come into play in this latter half
on automata and computation? In this problem set, you'll explore the answers to these questions
along with their practical consequences.

As always, please feel free to drop by office hours, ask on Piazza, or send us emails if you have any
questions. We'd be happy to help out.

Good luck, and have fun!

Due Friday, November 6th at 12:00PM noon Pacific

2 / 7

Problem One: Designing Regular Expressions
Below are a list of alphabets and languages over those alphabets. For each language, write a regular ex-
pression for that language. Provide your answers by downloading the starter files for Problem Set Seven
from Canvas and editing the file res/RegularExpressions.regexes. (Unlike the DFA/NFA editor
from last time, you’ll need to manually edit these files by opening them in Qt Creator.) Feel free to test
your answers locally, and submit your work on GradeScope.

i. Let Σ = {a, b, c, d, e}. Write a regular expression for the language L = { w ∈ Σ* | the letters in w
are sorted alphabetically }. For example, abcde ∈ L, bee ∈ L, a ∈ L and ε ∈ L, but decade ∉ L.

ii. Write a regular expression for the complement of the language from part (i) of this problem.

There’s no simple way to start with a regex for a language L and to turn it into a regex for L̅.
iii. On Unix-style operating systems like macOS or Linux, files are organized into directories. You

can reference a file by giving a path to the file, a series of directory names separated by slashes.
For example, the path /home/username/ might represent a user’s home directory, and a path like
/home/username/Documents/PS7.tex might represent that person’s solution to this problem
set. Paths that start with a slash character are called absolute paths and say exactly where the file is
on disk. Paths that don’t start with a slash are called relative paths and say where, relative to the
current folder, a file can be found. For example, if I’m logged into my computer and am in my
home folder, I could look up the file Documents/PS7.tex to find my solution to this problem set.

The general pattern here is that a file path consists of a series of directory or file names separated
by slashes. That path might optionally start with a slash, but isn’t required to, and it might option-
ally end with a slash, but isn’t required to. However, you can’t have two consecutive slashes.*

Let Σ = {a, /}. Write a regular expression for L = { w ∈ Σ* | w represents the name of a file path
on a Unix-style system }. For example, /aaa/a/aa ∈ L, / ∈ L, a ∈ L, /a/a/a/ ∈ L, and aaa/ ∈ L,
but //a// ∉ L, a//a ∉ L, and ε ∉ L.

Fun fact: this problem comes from former CS103 instructor Amy Liu, who fixed a bug in indus-
trial code that arose when someone wrote the wrong regex for this language. Oops.

iv. Suppose you are taking a walk with your dog on a leash of length two. Let Σ = {y, d} and let
L = { w ∈ Σ* | w represents a walk with your dog on a leash where you and your dog both end up
at the same location }. For example, we have yyddddyy ∈ L because you and your dog are never
more than two steps apart and both of you end up four steps ahead of where you started; similarly,
ddydyy ∈ L. However, yyyyddd ∉ L, since halfway through your walk you’re three steps ahead of
your dog; ddyd ∉ L, because your dog ends up two steps ahead of you; and ddyddyyy ∉ L, be-
cause at one point your dog is three steps ahead of you. Write a regular expression for L.

Note that, unlike Problem Set Six, you and your dog must end at the same position.
v. Let Σ = {M, D, C, L, X, V, I} and let L = { w ∈ Σ* | w is number less than 2,000 represented in Ro-

man numerals }. For example, CMXCIX ∈ L, since it represents the number 999, as are the strings
L (50), VIII (8), DCLXVI (666), CXXXVII (137), CDXII (412), and MDCXVIII (1,618). However,
we have that VIIII ∉ L (you'll never have four I's in a row; use IX or IV instead), that MM ∉ L (it's
a Roman numeral, but it's for 2,000, which is too large), that VX ∉ L (this isn't a valid Roman nu-
meral), and that IM ∉ L (the notation of using a smaller digit to subtract from a larger one only lets
you use I to prefix V and X, or X to prefix L and C, or C to prefix D and M). The Romans didn't have
a way of expressing 0, so to make your life easier we'll say that ε ∈ L and that the empty string
represents 0. (Oh, those silly Romans.) Write a regular expression for L.

(As a note, we’re using the “standard form” of Roman numerals. You can see a sample of num-
bers written out this way via this link.)

* In some cases you technically can have multiple consecutive slashes, but we’ll ignore that for now.

http://literacy.kent.edu/Minigrants/Cinci/romanchart.htm

3 / 7

Problem Two: Finite Languages
A language L is called finite if L contains finitely many strings (that is, |L| is a natural number). Given a fi-
nite language L, explain how to write a regular expression for L. Briefly justify your answer; no formal
proof is necessary. This shows that all finite languages are regular.

Watch for edge cases!

Problem Three: State Elimination
The state elimination algorithm gives a way to transform a DFA or NFA into a regular expression. It's a
beautiful algorithm once you get the hang of it. In this problem, you’ll use the state elimination algorithm
to produce a regular expression for a language.

Let Σ = {a, b} and let L = { w ∈ Σ* | w has an even number of a's and an even number of b's}. Below to
the left is a finite automaton for L that we've prepared for the state elimination algorithm by adding in a
new start state qstart and a new accept state qend. If you run two steps of the state elimination algorithm on
the above automaton, first eliminating state q₁, then eliminating state q₂, you will get an automaton whose
shape matches the diagram on the right.

Initial Automaton After Eliminating q₀ and q₁

Edit the file res/StateElimination.regexes to answer the following questions.

 i., ii., iii., iv. What regular expressions go at the indicated positions in the diagram?

Remember that to eliminate a state q, you should identify all pairs of states q in and qout where there’s a tran-
sition from qin to q and from q to qout, then add shortcut edges from qin to qout to bypass state q. Remember
that qin and qout may be the same state. To help you check your work: there are four such pairs for state q₁.

If you’ve done everything properly, at the end of this stage, neither transition should use the Kleene star.

Now, eliminate q₃ and then q₀. Your automaton should look like this:

The regular expression on this edge has the same language as the original automaton!

v. What regular expression goes at this spot in the above diagram?

This is where you’ll start seeing Kleene stars.

Optional but recommended activity: look at the regular expression you ended up with in part (v) of this
problem. How does it work? That is, how does that regular expression match all and only strings with an
even number of a’s and an even number of b’s?

4 / 7

Problem Four: Embracing the Braces
Let Σ be an alphabet containing two characters, the open curly brace character { and the close curly brace
character }. Consider the following language over Σ:

L₁ = { w ∈ Σ* | w is a string of balanced curly braces }

For example, we have {} ∈ L₁, {{}} ∈ L₁, {{}{}}{} ∈ L₁, ε ∈ L₁, and {{}}{{{}}} ∈ L₁, but }{ ∉ L₁,
{{} ∉ L₁, and {}}}} ∉ L₁. This question explores properties of this language.

i. Prove that L₁ is not a regular language. One consequence of this result – which you don't need to
prove – is that real-world languages that support some sort of nested structures, such as most pro-
gramming languages and HTML, aren't regular and so can't be parsed using regular expressions.

As a first step, ask yourself: if you were reading an input string from left to right, what information would
you have to keep track of? The Myhill-Nerode theorem asks you to find a distinguishing set of infinite size.
Based on that, find two distinguishable strings by finding two strings that have different “information” asso-
ciated with them, where, here, “information” corresponds to what you found in the first step.

Once you’ve done that, find a third string distinguishable from the previous two strings. It should corre-
spond to some different piece of “information.” Once you’ve done this, keep adding in more strings until
you’ve spotted a pattern that lets you define an infinite distinguishing set.

Let's say that the nesting depth of a string of balanced braces is the maximum number of unmatched
open braces at any point inside the string. For example, the string {{}{{}}} has nesting depth three, the
string {{}{}}{} has nesting depth two, and the string ε has nesting depth zero.

Consider the language L₂ = { w ∈ Σ* | w is a string of balanced curly braces with nesting depth at most 4 }.
For example, {} ∈ L₂, {{}{}} ∈ L₂, and {{{{}}}}{{}} ∈ L₂, but {{{{{}}}}} ∉ L₂ because although it's
a string of balanced curly braces, the nesting goes five levels deep.

ii. Write a regular expression for L₂ in the file res/EmbracingTheBraces.regexes. This shows
that L₂ is regular. A consequence of this result is that while you can't parse all programs or HTML
with regular expressions, you can parse programs with low nesting depth or HTML documents
without deeply-nested tags using regexes.

Could you write a regex for strings of braces with nesting depth at most one? At most two? See a pattern?

iii. Look back at your proof from part (i) of this problem. Imagine that you were to take that exact
proof and blindly replace every instance of “L₁” with “L₂.” This would give you a (incorrect) proof
that L₂ is nonregular (which we know has to be wrong because L₂ is indeed regular.) Where would
the error be in that proof? Be as specific as possible.

Again, you should be able to point at a specific spot in the proof that contains a logic error and explain ex-
actly why the statement in question is not true or not supported by the preceding statements. If you can’t do
this, it likely means you have an error in your proof from part (i)!

Intuitively, regular languages correspond to problems that can be solved using only finite memory. Make
sure you understand why, given that intuition, L₁ “ought to” be nonregular while L₂ “ought to be” regular.
This sort of intuition will be extremely helpful going forward.

5 / 7

Problem Five: State Lower Bounds
The Myhill-Nerode theorem we proved in lecture is actually a special case of a more general theorem
about regular languages. This problem explores how to generalize that result.

i. Let L be a language over Σ and let S be a distinguishing set for L. Prove that if S is finite (that is,
|S| is a natual number), then any DFA for L must have at least |S| states. (You sometimes hear this
referred to as lower-bounding the size of any DFA for L.)

A later problem on this problem set talks about writing proofs like these using the formal 5-tuple definition
of a DFA. We are not expecting you to do this here; feel free to structure your proof for this part of the
problem along the lines of the proofs on DFAs that you saw in lecture.

On Twitter, all tweets need to be 280 characters or fewer. Let Σ be the alphabet of characters that can
legally appear in a tweet (which includes most scripts from most parts of the world, plus things like emo-
jis, mathematical symbols, etc.). Then, consider the following language:

TWEETS = { w ∈ Σ* | |w| ≤ 280 }.

This is the language of all legal tweets. (We’ll count the empty string as a legal tweet for the purposes of
this problem. Many tweets would be improved by replacing them with the empty string.) The good news
is that this language is regular. The bad news is that any DFA for it has to be pretty large.

ii. Prove that any DFA for TWEETS must have at least 282 states.

Use your result from part (i) of this problem. It might be easier to tackle this problem if you consider re -
placing 280 and 282 with some smaller numbers (say, 2 and 4) to build up an intuition.

iii. Define a 282-state DFA for TWEETS using the formal 5-tuple definition of a DFA. Briefly explain
how your DFA works. No formal proof is necessary.

Again, this might be a lot easier to do if you first reduce 280 and 282 to 2 and 4, respectively, and see what
you come up with. Start by drawing out what the DFA would look like, then think about how you’d formal-
ize your idea as a 5-tuple.

Look back at PS6 for some examples of how to define a DFA as a 5-tuple.

Your results here show that the smallest possible DFA for TWEETS has exactly 282 states. This approach
to finding the smallest object of some type – using some theorem to prove a lower bound (“we need at
least this many states”) combined with a specific object of the given type (“we need at most this many
states”) is a common strategy in algorithm design and computational complexity theory. If you take
classes like CS161, CS254, etc., you’ll likely see similar sorts of approaches!

6 / 7

Problem Six: The Extended Transition Function
As you saw on Problem Set Six, formally speaking, a DFA is a 5-tuple (Q, Σ, δ, q₀, F). You used the 5-tu-
ple definition to pin down edge cases of DFAs. But we can also use this formal definition to rigorously de-
fine concepts about automata that, at this point, we’ve only discussed at a high-level.

Let D = (Q, Σ, δ, q₀, F) be a DFA. We’re going to define a function δ* : Q × Σ* → Q called the extended
transition function of D. Intuitively, the function δ* takes as input a state q and a string w, then outputs
what state you’d end up in if you started in state q and then read string w. The function δ* is defined, re-
cursively, as follows:

• Base case: δ*(q, ε) = q.

• Recursive case: If w ∈ Σ* and a ∈ Σ, then δ*(q, wa) = δ(δ*(q, w), a).

Here’s one way to think about this. We want δ*(q, w) to mean “the state you end up in if you begin in
state q and then read w.” The base case, δ*(q, ε) = q, says “if you start in state q and then read ε, you end
in state q.” The recursive case, δ*(q, wa) = δ(δ*(q, w), a), says “if you start in state q and want to see
where the string wa ends up, first see where you end up with when reading w (that’s δ*(q, w)), then fol-
low the transition at that state labeled a (which is done by computing δ(δ*(q, w), a)).”

The rest of this question explores properties of δ* and how to switch between higher-level concepts with
automata and formal notation.

i. Let D = (Q, Σ, δ, q₀, F) be a DFA and let q ∈ Q be a state in D. Prove that if x, y ∈ Σ*, then
δ*(δ*(q, x), y) = δ*(q, xy).

Intuitively, this says “if you start in state q and read xy, the state you end up in (δ*(q, xy)) is the state you
end up in if you first read just x (δ*(q, x)), then read y after that (δ*(δ*(q, x), y)).” Your goal is to prove
that the formal definition actually matches this intuition by making reference to that specific definition.
The δ* function is defined recursively, so prove this inductively. As a hint, use induction on the length of the
string y. Feel free to use the fact that any string u of length k+1 can be written as u = va for a string v of
length k and some a ∈ Σ.
Watch your types! You have two functions to work with, the transition function δ : Q × Σ → Q and the ex-
tended transition function δ* : Q × Σ* → Q. The first argument to each function is a state. The second ar -
gument to δ must be a single character, and the second argument to δ* is a string.

ii. Let D = (Q, Σ, δ, q₀, F) be a DFA. Fill in the blanks below with the symbolic notation equivalent
to the high-level intuitions we’ve been using. No justification is necessary. We’ve filled in one of
these for you.

“The character a is in the alphabet of the DFA.” a ∈ Σ

“The state that string w ends in when run through D.” ______

“D’s start state is an accepting state.” ______

“D accepts w.” ______

“Strings x and y end in the same state when run through D.” ______

“Strings xw and yw end in the same state when run through D.” ______

iii. Formally speaking, we define ℒ(D) = { w ∈ Σ* | δ*(q₀, w) ∈ F }. Explain how this mathematical
definition accords with the plain English one we’ve been using thus far.

7 / 7

Problem Seven: Formalizing Myhill-Nerode
In lecture, we wrote a proof of the Myhill-Nerode theorem. The proof from lecture is perfectly fine, but it
would be nice to tie up one loose end. The third paragraph references an earlier result:

 Theorem: Let x and y be strings where x ≢L y. Then x and y cannot end up
in the same state after being run through any DFA for the language L.

We never actually proved that this is true, and instead just sketched out a visual argument explaining it.
Now that we have the extended transition function δ*, we can write a rigorous, formal proof of the theo-
rem. The first step is to use our 5-tuple definition of DFAs to pin down, more specifically, what the theo-
rem says. Specifically, in the language of our 5-tuple notation, we have the following formalized version
of the theorem:

Theorem (Formalized): Let L be a language over Σ and let D = (Q, Σ, δ, q₀, F) be a DFA
where ℒ(D) = L. Then for any strings x, y ∈ Σ* where x ≢L y, we have δ*(q₀, x) ≠ δ*(q₀, y).

We’re aware that this is a lot of symbolic notation, so take a few minutes to read over it and convince
yourself that it indeed says the same thing as the (informal) first version of the theorem.

Prove the formalized theorem (the second one). Since the goal is to write a rigorous proof of the theorem,
you should not cite the informal one from lecture as part of your proof.

Use your intuition about DFAs to think through this one, but use 5-tuple definition of a DFA and the formal
definition of the extended transition function in your proof. The table from part (ii) of the previous problem
is there to help you figure out how to make your argument rigorous.

Once you’ve finished, take a minute to marvel at the fact that you’re able to read (and prove!) statements
like these. Not bad for seven weeks!

Optional Fun Problem: Generalized Fooling Sets
In Problem Five, you used distinguishability to lower-bound the size of DFAs for a particular language.
Unfortunately, distinguishability is not a powerful enough technique to lower-bound the sizes of NFAs. In
fact, it's in general quite hard to bound NFA sizes; there's a $1,000,000 prize for anyone who finds a effi-
cient algorithm (for some precise definition of “efficient”) that, given an arbitrary NFA, converts it to the
smallest possible equivalent NFA!

Although it's generally difficult to lower-bound the sizes of NFAs, there are some techniques we can use
to find lower bounds on the sizes of NFAs. Let L be a language over Σ. A generalized fooling set for L is
a set ℱ ⊆ Σ* × Σ* is a set with the following properties:

• For any (x, y) ∈ ℱ, we have xy ∈ L.

• For any distinct pairs (x₁, y₁), (x₂, y₂) ∈ ℱ, we have x₁y₂ ∉ L or x₂y₁ ∉ L (this is an inclusive OR.)

Prove that if L is a language and there is a generalized fooling set ℱ for L that contains n pairs of strings,
then any NFA for L must have at least n states.

