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Problem Set 8

In this problem set, you’ll transition away from the regular languages to the context-free languages
and to the realm of Turing machines. This will be your first foray beyond the limits of what comput-
ers can over hope to accomplish, and we hope that you find this as exciting as we do!

As always, please feel free to drop by office hours or ask on Ed if you have any questions. We'd be
happy to help out.

Good luck, and have fun!

Due Friday, November 13th  at 12:00PM noon Pacific.
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Problem One: Designing CFGs
For each of the following languages, design a CFG for that language. To do so, download the starter files
for Problem Set Eight and extract them somewhere convenient.  Write and save your answers in the file
res/Grammars.cfgs. Use the provided program to test and explore your CFG, and submit on Grade-
scope once you’re finished.

As a note – tests for CFGs take longer to run than tests for regular expressions, DFAs, etc. If the test
driver is running slowly on your system, set the project to build in Release rather than Debug mode. To do
this, go to the left side of the Qt Creator window and click the picture of a monitor with “Debug” written
below it. Then, choose the “Release” option. This disables debugging and turns on optimization, which
markedly speeds up the tests.

i. Given Σ = {a, b, c}, write a CFG for the language { w ∈ Σ* | w contains aa as a substring }. For
example, the strings aa, baac, and ccaabb are all in the language, but aba is not.

ii. In our lecture on regular expressions, we wrote the following regular expression that matched
email addresses:

a⁺(.a )*@a (.a )⁺ ⁺ ⁺ ⁺

Given Σ = {@, ., a}, write a CFG whose language is the same as the language of this regular ex-
pression.

iii. Given Σ = {a, b}, write a CFG for the language L = { w ∈ Σ* | w is not a palindrome }, the lan-
guage of strings that are not the same when read forwards and backwards. For example, aab ∈ L
and baabab ∈ L, but aba ∉ L, bb ∉ L, and ε ∉ L.

Don’t try solving this one by starting with the CFG for palindromes and making modifications to it. In gen-
eral, there’s no way to mechanically turn a CFG for a language L into a CFG for the language L, since the
context-free languages aren’t closed under complementation. However, the idea of looking at the first and
last characters of a given string might still be a good idea.

iv. Let Σ be an alphabet containing these symbols:
Ø        ℕ        {        }        ,        ∪

We can form strings from these symbols which represent sets. Here's some examples:
Ø
{{ℕ, Ø} ∪ {Ø}}
{Ø, {Ø, {Ø}}}

{Ø, ℕ} ∪  ℕ ∪ Ø
ℕ ∪ {ℕ, Ø}
{{{{ℕ}}}}

{Ø} ∪ ℕ ∪ {ℕ}
{}
ℕ

{Ø, Ø, Ø}
{ℕ}
{Ø, {}}

Notice that some of these sets, like {Ø, Ø} are syntactically valid but redundant, and others like
{} are syntactically valid but not the cleanest way of writing things. Here's some examples of
strings that don't represent sets or aren't syntactically valid:

ε
ℕ, Ø, {Ø}
{Ø

}Ø{
{, ℕ}
}}  ℕ

Ø{ℕ}
{ ℕ Ø },
{ Ø, Ø, Ø, }

{{}
{,}
{ℕ, , , Ø}

Write a CFG for the language {  w ∈ Σ* |  w is a syntactically valid string representing a set }.
Please use the letters n, u, and o in place of , ∪, and Ø, respectivelyℕ .
Fun fact: the starter files for Problem Set One contain a parser that’s designed to take as input a
string representing a set and to reconstruct what set that is. The logic we wrote to do that parsing
was based on a CFG we wrote for sets and set theory. Take CS143 if you’re curious how to go
from a grammar to a parser!

As a hint, as is often the case when writing CFGs, we recommend that you use different nonterminals to
represent different components of the string. For example, structure of a comma-separated list of sets is dif-
ferent than the structure of an expression representing a single set.
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Problem Two: The Complexity of Addition
This problem explores the following question:

How hard is it to add two numbers?

Suppose that we want to check whether x + y = z, where x, y, and z are all natural numbers. If we want to
phrase this as a problem as a question of strings and languages, we will need to find some way to stan-
dardize our notation. In this problem, we will be using the  unary number system, a number system in
which the number n is represented by writing out n 1's. For example, the number 5 would be written as
11111, the number 7 as 1111111, and the number 12 as 111111111111. 

Given the alphabet Σ = {1, +, =}, we can consider strings encoding x + y = z by writing out x, y, and z in
unary. For example:

4 + 3 = 7 would be encoded as 1111+111=1111111

7 + 1 = 8 would be encoded as 1111111+1=11111111

0 + 1 = 1 would be encoded as +1=1

Consider the alphabet Σ = {1, +, =} and the following language, which we’ll call ADD:

{ 1m+1n=1m+n | m, n ∈ ℕ }

For example, the strings 111+1=1111 and +1=1 are in the language, but 1+11=11 is not, nor is the string
1+1+1=111.

i. Prove or disprove: the language ADD defined above is regular.

ii. Write a context-free grammar for  ADD in  res/Grammars.cfgs, showing that  ADD is context-
free.

You may find it easier to solve this problem if you first build a CFG for this language where you’re allowed
to have as many numbers added together as you’d like. Once you have that working, think about how you’d
modify it so that you have exactly two numbers added together on the left-hand side of the equation.

Problem Three: The Complexity of Pet Ownership
This problem explores the following question:

How hard is it to walk your dog without a leash?

Let's imagine that you're going for a walk with your dog, but this time don't have a leash. As in Problem
Set Six and Problem Set Seven, let Σ = {y, d}, where y means that you take a step forward and d means
that your dog takes a step forward. A string in Σ* can be thought of as a series of events in which either
you or your dog moves forward one unit. For example, the string yydd means that you take two steps for-
ward, then your dog takes two steps forward.

Let  DOGWALK = {  w ∈ Σ* |  w describes a series of steps where you and your dog arrive at the same
point }. For example, the strings yyyddd, ydyd, and yyyddddddyyy are all in DOGWALK.

i. Prove or disprove: the language DOGWALK defined above is regular.

ii. Write a context-free grammar for DOGWALK in res/Grammars.cfgs, showing that DOGWALK
is context-free.

Check the lecture slides on CFGs for examples of grammars that don’t work, and make sure you can articu-
late why those grammars are incorrect.
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Problem Four: Equivalence Classes and Regular Languages
The Myhill-Nerode theorem is based on the distinguishability relation ≢L. A closely related binary rela-
tion is the indistinguishability relation for L, denoted ≡L. It’s also a binary relation over Σ*, and its defini-
tion is the negation of the one for distinguishability:

x ≡L y   if   ∀w ∈ Σ*. (xw ∈ L ↔ yw ∈ L).

Amazingly, this is always an equivalence relation, regardless of what L is!

i. Prove that if L is a language over Σ, then ≡L is an equivalence relation over Σ*.

This proof will look a lot like the ones from Problem Set 3, except with more strings. So proceed slowly and
methodically, don’t use first-order logic in your proofs, etc.

Let’s make this more concrete. Let Σ = {a, b} and consider the language M = { w ∈ Σ* | the number of
b’s in w is congruent to 1 modulo 5 or to 3 modulo 5 }. For example,  aba ∈ M,  baaabaaab ∈ M, and
bbbbbb ∈ M, but aa ∉ M and abba ∉ M.

ii. Fill in the blanks below to list all the equivalence classes of ≡M. We’ve given you exactly the num-
ber of blanks that you’ll need to do this. No justification is required.

[ _____ ]≡M   =   { w ∈ Σ* | _______________________________________________}

[ _____ ]≡M   =   { w ∈ Σ* | _______________________________________________}

[ _____ ]≡M   =   { w ∈ Σ* | _______________________________________________}

[ _____ ]≡M   =   { w ∈ Σ* | _______________________________________________}

[ _____ ]≡M   =   { w ∈ Σ* | _______________________________________________}

You might have noticed that each equivalence class of ≡M either consists of a bunch of strings not in M or
of a bunch of strings that are in M. That’s not a coincidence!

iii. Let L be a language over some alphabet Σ and let x ∈ Σ* be some string. Prove that either every
string in [x]≡L is in L or that no strings in [x]≡L are.

The index of an equivalence relation  R, denoted  I(R), is the number of equivalence classes of  R.  This
quantity might be finite, or it might be an infinite cardinality like ℵ₀, or even one of the infinities bigger
than that. Armed with the idea of an index, we can state a powerful theorem about finite automata:

Theorem: Let L be a language over Σ. Then if I(≡L) is infinite, L is not regular,
and if I(≡L) is finite, then every DFA for L has at least I(≡L) states.

In other words, there’s a connection between the number of equivalence classes of a particular binary re-
lation and the minimum sizes of DFAs for that language!

iv. Prove the above theorem. Feel free to use the axiom of choice, which says that every equivalence
relation has at least one system of representatives.

Proving this theorem is mostly an exercise in connecting together ideas you’ve seen used in other places.
Think about the relationship between indices and systems of representatives, between distinguishability and
indistinguishability, and between what you’re doing here and what you’ve done on the previous problem set.

There’s a lovely intuition for this theorem. You can think of the indistinguishability relation for a language
L as pinning down the idea “a DFA for L can’t tell the difference between these two strings.” If you think
back to our intuition behind DFA design – build a DFA where each state keeps track of some different
piece of information – then you can think of I(≡L) as capturing the number of different pieces of informa-
tion you’d need to remember. The theorem then says that if you want to build a DFA for a language L,
you’ll need at least one state per piece of information.
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Problem Five: What Does it Mean to Solve a Problem?
Let L be a language over Σ and M be a TM with input alphabet Σ. Here are three potential traits of M:

1. M halts on all inputs.
2. For any string w ∈ Σ*, if M accepts w, then w ∈ L.
3. For any string w ∈ Σ*, if M rejects w, then w ∉ L.

At some level, for a TM to claim to solve a problem, it should have at least some of these properties. In -
terestingly, though, just having two of these properties doesn't say much.

i. Prove that if L is any language over Σ, then there is a TM M that satisfies properties (1) and (2).

You can describe your TM in one of many ways. First, you could draw a picture of the TM, along the lines
of the ones we’ve done in class. Second, since we know that TMs are equivalent to computer programs, you
could write some short pseudocode showing off how the TM works.

The whole point of this problem is to show that you have to be extremely careful about how you define
“solving a problem,” since if you define it incorrectly then you can “solve” a problem in a way that bears lit -
tle resemblance to what we’d think of as solving a problem. Keep this in mind as you work through this one.

ii. Prove that if L is any language over Σ, then there is a TM M that satisfies properties (1) and (3).

iii. Prove that if L is any language over Σ, then there is a TM M that satisfies properties (2) and (3).

iv. Suppose L is a language over Σ for which there is a TM M that satisfies all of properties (1), (2),
and (3). What can you say about L? Prove it.

Optional Fun Problem: TMs and Regular Languages
Let M be a TM with the following property: there exists a natural number k such that after M is run on
any string w, M always halts after at most k steps. (One “step” corresponds to following a transition in the
TM, which consists of writing a symbol, moving the tape head, and changing state.)

Prove that ℒ(M) is regular.


