Recap from Last Time
NFAs

- An **NFA** is a
 - **N**ondeterministic
 - **F**inite
 - **A**utomaton
- NFAs have no restrictions on how many transitions are allowed per state.
- They can also use ε-transitions.
- An NFA accepts a string w if there is some sequence of choices that leads to an accepting state.
Massive Parallelism

• An NFA can be thought of as a DFA that can be in many states at once.

• At each point in time, when the NFA needs to follow a transition, it tries all the options at the same time.

• The NFA accepts if *any* of the states that are active at the end are accepting states. It rejects otherwise.
New Stuff!
Just how powerful are NFAs?
NFAs and DFAs

● Any language that can be accepted by a DFA can be accepted by an NFA.

● Why?
 ● Every DFA essentially already is an NFA!

● **Question**: Can any language accepted by an NFA also be accepted by a DFA?

● Surprisingly, the answer is **yes**!
Thought Experiment:
How would you simulate an NFA in software?
\[
\begin{align*}
\Sigma &
\end{align*}
\]

<table>
<thead>
<tr>
<th>State Set</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>a</td>
<td>{q_0, q_1}</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{array}{|c|c|}
\hline
q_0 & q_1 & q_2 & q_3 \\
\hline
\{q_0\} & \{q_0, q_1\} & & \\
\hline
\hline
\end{array}
\]
\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Transition table:

<table>
<thead>
<tr>
<th>State</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({q_0})</td>
<td>({q_0, q_1})</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>---</td>
</tr>
</tbody>
</table>
\[
\begin{array}{ccc}
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\end{array}
\]
<table>
<thead>
<tr>
<th>State Set</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Σ

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{array}{c|c|c}
\Sigma & a & b \\
\hline
\{ q_0 \} & \{ q_0, q_1 \} & \{ q_0 \} \\
\{ q_0, q_1 \} & & \\
\end{array}
\]
State transitions:
- Start state: q_0
- From q_0 on a: q_1
- From q_1 on b: q_2
- From q_2 on a: q_3

Transitions for symbols a and b:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The given DFA has the following states and transitions:

- States: q_0, q_1, q_2, q_3
- Start state: q_0
- Accept state: q_3

Transitions:
- From q_0: a goes to q_1
- From q_1: b goes to q_2
- From q_2: a goes to q_3

The table represents the transition function:

<table>
<thead>
<tr>
<th>Current State</th>
<th>a Transition</th>
<th>b Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td></td>
</tr>
</tbody>
</table>

The diagram shows a finite automaton with states q_0, q_1, q_2, and q_3. The transitions are as follows:
- From q_0 to q_1 on input a.
- From q_1 to q_2 on input b.
- From q_2 to q_1 on input a.
- From q_2 to q_3 on input a.
- The state q_3 is a sink state, meaning it loops back to itself on any input.

The table represents the transition function of the automaton.
<table>
<thead>
<tr>
<th>States</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
</tbody>
</table>
\begin{align*}
\begin{array}{|c|c|c|}
\hline
 & a & b \\
\hline
\{ q_0 \} & \{ q_0, q_1 \} & \{ q_0 \} \\
\{ q_0, q_1 \} & \{ q_0, q_1 \} & \{ q_0, q_2 \} \\
\hline
\end{array}
\end{align*}
\[
\begin{align*}
\Sigma & \quad a \quad b \\
\{q_0\} & \{q_0 \, q_1\} & \{q_0\} \\
\{q_0 \, q_1\} & \{q_0 \, q_1\} & \{q_0 \, q_2\} \\
\{q_0 \, q_2\} & & \\
\end{align*}
\]
<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The automaton starts in state q_0. From q_0, on input a, it transitions to q_1, and on input b, it transitions to q_2. From q_2, on input a, it loops back to q_3. The table below shows the transitions for inputs a and b.

<table>
<thead>
<tr>
<th>Current State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \(q_0\) is the start state.
- \(q_3\) is the accepting state.
- Transitions:
 - \(\Sigma\) from \(q_0\) to \(q_1\) on any input.
 - \(a\) from \(q_0\) to \(q_1\) and from \(q_2\) to \(q_3\).
 - \(b\) from \(q_1\) to \(q_2\).

The table shows the transitions for states \(q_0, q_1, q_2, q_3\) and inputs \(a, b\).
The diagram represents a finite automaton with states q_0, q_1, q_2, and q_3. The transitions are as follows:

1. From q_0 to q_1 on input a.
2. From q_1 to q_2 on input b.
3. From q_2 to q_3 on input a.
4. The loop from q_3 back to q_0 on any input symbol Σ.

The table below shows the transition function for states q_0, q_1, q_2, and q_3:

<table>
<thead>
<tr>
<th>State</th>
<th>Input a</th>
<th>Input b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_3}$</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_3}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td></td>
</tr>
</tbody>
</table>

The diagram shows a DFA with states q_0, q_1, q_2, q_3 and transitions labeled with a and b. The table represents the transition function δ. For example, $\delta(q_0, a) = \{q_0, q_1\}$.
A DFA with states \(q_0, q_1, q_2, q_3 \), transitions for \(a \) and \(b \), and \(\Sigma \) as the alphabet.

- \(q_0 \) is the start state.
- \(q_3 \) is a final state.

Transition table:

<table>
<thead>
<tr>
<th>State</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({q_0})</td>
<td>({q_0, q_1})</td>
<td>({q_0})</td>
</tr>
<tr>
<td>({q_0, q_1})</td>
<td>({q_0, q_1})</td>
<td>({q_0, q_2})</td>
</tr>
<tr>
<td>({q_0, q_2})</td>
<td>({q_0, q_1, q_3})</td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{array}{c|c|c}
\text{State} & a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \\
\end{array}
\]
<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td></td>
</tr>
</tbody>
</table>

The diagram shows a Finite State Machine (FSM) with states labeled with \(q_0, q_1, q_2, q_3\). The transitions are as follows:

- From \(q_0\) on input \(a\) to \(q_1\)
- From \(q_1\) on input \(b\) to \(q_2\)
- From \(q_2\) on input \(a\) to \(q_3\)
- \(q_3\) is an accepting state.
<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1, q_3}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{array}{c|cc|c}
\Sigma & a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & & \\
\end{array}
\]

Fill in this row.

Answer at https://cs103.stanford.edu/pollev
<table>
<thead>
<tr>
<th>State</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({q_0})</td>
<td>({q_0, q_1})</td>
<td>({q_0})</td>
</tr>
<tr>
<td>({q_0, q_1})</td>
<td>({q_0, q_1})</td>
<td>({q_0, q_2})</td>
</tr>
<tr>
<td>({q_0, q_2})</td>
<td>({q_0, q_1, q_3})</td>
<td>({q_0})</td>
</tr>
<tr>
<td>({q_0, q_1, q_3})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State Set</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1, q_3}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- States: \(q_0, q_1, q_2, q_3 \)
- Transitions:
 - \(q_0 \xrightarrow{a} q_1 \)
 - \(q_1 \xrightarrow{b} q_2 \)
 - \(q_2 \xrightarrow{a} q_3 \)
 - \(q_0 \xrightarrow{\Sigma} q_0 \)

The diagram shows a transition graph with the given state set and transition rules.
The diagram represents a finite automaton with states $q_0, q_1, q_2,$ and q_3. The table below describes the transitions:

<table>
<thead>
<tr>
<th>State Set</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1, q_3}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A finite automaton with the following transitions:

- Start state: q_0
- On input a:
 - From q_0 to q_1
 - From q_1 to q_2
- On input b:
 - From q_0 to q_1
- The language is defined by the following table:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0, q_1}$</td>
<td></td>
</tr>
</tbody>
</table>
The given automaton is described by the following transition table:

<table>
<thead>
<tr>
<th>Current State(s)</th>
<th>On 'a'</th>
<th>On 'b'</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1, q_3}</td>
<td>{q_0, q_1}</td>
<td></td>
</tr>
</tbody>
</table>

The initial state is \(q_0\) and the alphabet \(\Sigma\) includes 'a' and 'b'.
<table>
<thead>
<tr>
<th>State Set</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0, q_1}$</td>
<td></td>
</tr>
</tbody>
</table>
\[\begin{array}{c|cc}
\{ q_0 \} & \{ q_0, q_1 \} & \{ q_0 \} \\
\{ q_0, q_1 \} & \{ q_0, q_1 \} & \{ q_0, q_2 \} \\
\{ q_0, q_2 \} & \{ q_0, q_1, q_3 \} & \{ q_0 \} \\
\{ q_0, q_1, q_3 \} & \{ q_0, q_1 \} & \end{array} \]
\[\begin{array}{|c|c|c|} \hline
\text{State} & \text{ } & \text{ } \\
\{q_0\} & a & \{q_0, q_1\} \\
\{q_0, q_1\} & a & \{q_0\} \\
\{q_0, q_1\} & b & \{q_0, q_2\} \\
\{q_0, q_2\} & a & \{q_0\} \\
\{q_0, q_1, q_3\} & b & \{q_0\} \\
\{q_0, q_1, q_3\} & b & \{q_0, q_2\} \\
\hline
\end{array} \]
The given DFA has the following states:

- Start state: q_0
- Transitions:
 - a: $q_0 \rightarrow q_1$, $q_1 \rightarrow q_2$, $q_2 \rightarrow q_3$
 - b: $q_0 \rightarrow \{q_0\}$, $q_1 \rightarrow \{q_0, q_1\}$, $q_2 \rightarrow \{q_0, q_2\}$, $q_3 \rightarrow \{q_0, q_1, q_2, q_3\}$

The DFA accepts the following strings:

- $\{q_0\}$
- $\{q_0, q_1\}$
- $\{q_0, q_2\}$
- $\{q_0, q_1, q_2\}$
- $\{q_0, q_1, q_3\}$
- $\{q_0, q_2, q_3\}$
- $\{q_0, q_1, q_2, q_3\}$
The diagram illustrates a finite automaton with states q_0, q_1, q_2, q_3 and transitions labeled with symbols a and b. The start state is q_0. The table below shows the transitions:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>$\ast{q_0, q_1, q_3}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
</tbody>
</table>
\[\begin{align*}
\{q_0, q_1, q_3\} & \\
\{q_0, q_2\} & \\
\{q_0, q_1\} & \\
\{q_0\} & \\
\end{align*} \]
\[\Sigma \]

Start in \(q_0 \).

1. \(q_0 \) to \(q_1 \) on \(a \).
2. \(q_1 \) to \(q_2 \) on \(b \).
3. \(q_2 \) to \(q_3 \) on \(a \).

Input string: \(a b a a a b a a \)

State transitions:
- \(q_0 \) to \(q_1 \) on \(a \)
- \(q_1 \) to \(q_2 \) on \(b \)
- \(q_2 \) to \(q_3 \) on \(a \)

Start state: \(\{ q_0 \} \)

Transitions:
- \(a \) from \(q_0 \) to \(q_1 \)
- \(b \) from \(q_1 \) to \(q_2 \)
- \(a \) from \(q_2 \) to \(q_3 \)

Final state: \(\{ q_0, q_1, q_3 \} \)
\[\Sigma \]

- Start state: \(q_0 \)
- Transition: a -> \(q_1 \)
- Transition: b -> \(q_2 \)
- Transition: a -> \(q_3 \)

Input string: ababaaba

- Start state: \(\{ q_0 \} \)
- Transition: a -> \(\{ q_0, q_1 \} \)
- Transition: b -> \(\{ q_0, q_2 \} \)
- Transition: a -> \(\{ q_0, q_1, q_3 \} \)
The Subset Construction

- This procedure for turning an NFA for a language L into a DFA for a language L is called the *subset construction*.
 - It’s sometimes called the *powerset construction*; it’s different names for the same thing!

- Intuitively:
 - Each state in the DFA corresponds to a set of states from the NFA.
 - Each transition in the DFA corresponds to what transitions would be taken in the NFA when using the massive parallel intuition.
 - The accepting states in the DFA correspond to which sets of states would be considered accepting in the NFA when using the massive parallel intuition.

- There’s an online *Guide to the Subset Construction* with a more elaborate example involving ϵ-transitions and cases where the NFA dies; check that for more details.
The Subset Construction

- In converting an NFA to a DFA, the DFA's states correspond to sets of NFA states.

- **Useful fact:** \(|\wp(S)| = 2^{|S|} \) for any finite set \(S \).

- In the worst-case, the construction can result in a DFA that is *exponentially larger* than the original NFA.

- **Question to ponder:** Can you find a family of languages that have NFAs of size \(n \), but no DFAs of size less than \(2^n \)?
The Regular Languages
Regular Languages

• Let \(L \subseteq \Sigma^* \) be a language.

• We say that \(L \) is a regular language if there is a DFA \(D \) where \(\mathcal{L}(D) = L \).

• Equivalently, \(L \) is a regular language if there is an NFA \(N \) where \(\mathcal{L}(N) = L \).

• Key questions:
 • What do the regular languages “feel” like?
 • What properties do they have?
 • What languages aren’t regular?
Closure Under Union

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
$L_1 = \{ w \in \{a, b\}^* \mid w \text{ has even length} \}$

$L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \}$

Construct an NFA for $L_1 \cup L_2$.
$L_1 = \{ w \in \{a, b\}^* \mid w \text{ has even length} \}$

$L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \}$

Construct an NFA for $L_1 \cup L_2$.
\(L_1 = \{ w \in \{a, b\}^* | \text{w has even length} \} \)

\(L_2 = \{ w \in \{a, b\}^* | \text{w has length exactly three} \} \)

Construct an NFA for \(L_1 \cup L_2 \).
\[L_1 = \{ w \in \{a, b\}^* \mid w \text{ has even length} \} \]
\[L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \} \]

Construct an NFA for \(L_1 \cup L_2 \).
\[L_1 = \{ w \in \{a, b\}^* | w \text{ has even length} \} \]
\[L_2 = \{ w \in \{a, b\}^* | w \text{ has length exactly three} \} \]

Construct an NFA for \(L_1 \cup L_2 \).
\[L_1 = \{ w \in \{a, b\}^* \mid w \text{ has even length} \} \]
\[L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \} \]

Construct an NFA for \(L_1 \cup L_2 \).
\[L_1 = \{ w \in \{a, b\}^* \mid w \text{ has even length} \} \]
\[L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \} \]

Construct an NFA for \(L_1 \cup L_2 \).
$L_1 = \{ w \in \{a, b\}^* | w \text{ has even length} \}$

$L_2 = \{ w \in \{a, b\}^* | w \text{ has length exactly three} \}$

Construct an NFA for $L_1 \cup L_2$.
$L_1 = \{ \ w \in \{a, b\}^* \mid \text{w has even length} \ \}$

$L_2 = \{ \ w \in \{a, b\}^* \mid \text{w has length exactly three} \ \}$

Construct an NFA for $L_1 \cup L_2$.
$L_1 = \{ w \in \{a, b\}^* \mid w \text{ has even length} \}$

$L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \}$

Construct an NFA for $L_1 \cup L_2$.
\[L_1 = \{ w \in \{a, b}\}^* \mid w \text{ has even length} \} \]
\[L_2 = \{ w \in \{a, b}\}^* \mid w \text{ has length exactly three} \} \]

Construct an NFA for \(L_1 \cup L_2 \).
Construct an NFA for $L_1 \cup L_2$.

$L_1 = \{ w \in \{a, b\}^* \mid w \text{ has even length} \}$

$L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \}$
$L_1 = \{ w \in \{a, b\}^* \mid w \text{ has even length} \}$

$L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \}$

Construct an NFA for $L_1 \cup L_2$.
$L_1 = \{ w \in \{a, b\}^* | w \text{ has even length} \}$

$L_2 = \{ w \in \{a, b\}^* | w \text{ has length exactly three} \}$

Construct an NFA for $L_1 \cup L_2$.
\[L_1 = \{ w \in \{a, b\}^* \mid w \text{ has even length} \} \]

\[L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \} \]

Construct an NFA for \(L_1 \cup L_2 \).
\[L_1 = \{ w \in \{a, b\}^* \mid w \text{ has even length} \} \]

\[L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \} \]

Construct an NFA for \(L_1 \cup L_2 \).
Construct an NFA for $L_1 \cup L_2$.

$L_1 = \{ w \in \{a, b\}^* | w \text{ has even length} \}$

$L_2 = \{ w \in \{a, b\}^* | w \text{ has length exactly three} \}$
Construct an NFA for $L_1 \cup L_2$.

$L_1 = \{ w \in \{a, b\}^* \mid w \text{ has even length} \}$

$L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \}$
\[L_1 = \{ w \in \{a, b\}^* \mid w \text{ has even length} \} \]
\[L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \} \]

Construct an NFA for \(L_1 \cup L_2 \).
\[L_1 = \{ w \in \{a, b\}^* \mid w \text{ has even length} \} \]
\[L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \} \]

Construct an NFA for \(L_1 \cup L_2 \).
Construct an NFA for $L_1 \cup L_2$.

$L_1 = \{ w \in \{a, b\}^* | w \text{ has even length} \}$
$L_2 = \{ w \in \{a, b\}^* | w \text{ has length exactly three} \}$
\[L_1 = \{ w \in \{a, b\}^* \mid w \text{ has even length} \} \]
\[L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \} \]

Construct an NFA for \(L_1 \cup L_2 \).
$L_1 = \{ w \in \{a, b\}^* \mid w \text{ has even length} \}$

$L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \}$

Construct an NFA for $L_1 \cup L_2$.
Construct an NFA for $L_1 \cup L_2$.

$L_1 = \{ w \in \{a, b\}^* | w \text{ has even length} \}$

$L_2 = \{ w \in \{a, b\}^* | w \text{ has length exactly three} \}$
Closure Under Intersection

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
Closure Under Intersection

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
Closure Under Intersection

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
Closure Under Intersection

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

\[
\overline{L_1} \cup \overline{L_2}
\]
Closure Under Intersection

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

Hey, it's De Morgan's laws!

Hey, it's De Morgan's laws!
Concatenation
String Concatenation

- If \(w \in \Sigma^* \) and \(x \in \Sigma^* \), the *concatenation* of \(w \) and \(x \), denoted \(wx \), is the string formed by tacking all the characters of \(x \) onto the end of \(w \).

- Example: if \(w = \text{quo} \) and \(x = \text{kka} \), the concatenation \(wx = \text{quokka} \).

- This is analogous to the + operator for strings in many programming languages.

- Some facts about concatenation:
 - The empty string \(\varepsilon \) is the *identity element* for concatenation:
 \[
 w\varepsilon = \varepsilon w = w
 \]
 - Concatenation is *associative*:
 \[
 wxy = w(xy) = (wx)y
 \]
Concatenation

- The **concatenation** of two languages L_1 and L_2 over the alphabet Σ is the language
 \[L_1L_2 = \{ x \mid \exists w_1 \in L_1. \exists w_2 \in L_2. x = w_1w_2 \} \]

- Let $L_1 = \{ ab, ba \}$ and $L_2 = \{ aa, bb \}$. What is L_1L_2?

Answer at https://cs103.stanford.edu/pollev
Concatenation Example

- Let $\Sigma = \{ a, b, ..., z, A, B, ..., Z \}$ and consider these languages over Σ:
 - $Noun = \{ \text{Puppy, Rainbow, Whale, ... } \}$
 - $Verb = \{ \text{Hugs, Juggles, Loves, ... } \}$
 - $The = \{ \text{The} \}$
 - The language $TheNounVerbTheNoun$ is
 - $\{ \text{ThePuppyHugsTheWhale, TheWhaleLovesTheRainbow, TheRainbowJugglesTheRainbow, ... } \}$
Concatenation

- The *concatenation* of two languages L_1 and L_2 over the alphabet Σ is the language

 $$L_1L_2 = \{ \, x \mid \exists w_1 \in L_1. \exists w_2 \in L_2. \, x = w_1w_2 \, \}$$

- Two views of L_1L_2:
 - The set of all strings that can be made by concatenating a string in L_1 with a string in L_2.
 - The set of strings that can be split into two pieces: a piece from L_1 and a piece from L_2.

\[L_1 = \{ w \in \{a, b\}^* \mid w \text{ has odd length} \} \]
\[L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \} \]

Construct an NFA for \(L_1L_2 \).
\[L_1 = \{ \ w \in \{a, b\}^* \ | \ w \text{ has odd length} \ \} \]

\[L_2 = \{ \ w \in \{a, b\}^* \ | \ w \text{ has length exactly three} \ \} \]

Construct an NFA for \(L_1L_2 \).
\[L_1 = \{ w \in \{a, b\}^* \mid w \text{ has odd length} \} \]
\[L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \} \]

Construct an NFA for \(L_1L_2 \).
$L_1 = \{ w \in \{a, b\}^* \mid w \text{ has odd length} \}$

$L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \}$

Construct an NFA for L_1L_2.

$L_1 = \{ \ w \in \{a, b\}^* \mid w \text{ has odd length} \ \}$
$L_2 = \{ \ w \in \{a, b\}^* \mid w \text{ has length exactly three} \ \}$

Construct an NFA for L_1L_2.
$L_1 = \{ w \in \{a, b\}^* \mid w \text{ has odd length} \}$

$L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \}$

Construct an NFA for L_1L_2.
$L_1 = \{ w \in \{a, b\}^* \mid w \text{ has odd length} \}$

$L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \}$

Construct an NFA for L_1L_2.

DFA for L_1

NFA for L_2
\[L_1 = \{ w \in \{a, b\}^* \mid w \text{ has odd length} \} \]
\[L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \} \]

Construct an NFA for \(L_1 L_2 \).
$L_1 = \{ w \in \{a, b\}^* \mid w \text{ has odd length} \}$

$L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \}$

Construct an NFA for L_1L_2.
$L_1 = \{ w \in \{a, b\}^* \mid w \text{ has odd length} \}$

$L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \}$

Construct an NFA for L_1L_2.
Construct an NFA for \(L_1 \) \(L_2 \).

\[
L_1 = \{ w \in \{a, b\}^* \mid w \text{ has odd length} \}
\]

\[
L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \}
\]
Let
\[L_1 = \{ w \in \{a, b\}^* \mid w \text{ has odd length} \} \]
and
\[L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \} \]

Construct an NFA for \(L_1L_2 \).
\[L_1 = \{ w \in \{a, b\}^* \mid w \text{ has odd length} \} \]
\[L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \} \]

Construct an NFA for \(L_1 L_2 \).
\(L_1 = \{ \ w \in \{a, b\}^* \mid w \text{ has odd length} \ \} \)
\(L_2 = \{ \ w \in \{a, b\}^* \mid w \text{ has length exactly three} \ \} \)

Construct an NFA for \(L_1L_2 \).
\[L_1 = \{ w \in \{a, b\}^* \mid w \text{ has odd length} \} \]
\[L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \} \]

Construct an NFA for \(L_1L_2 \).
$L_1 = \{ \ w \in \{a, b\}^* \mid w \text{ has odd length} \ \}$

$L_2 = \{ \ w \in \{a, b\}^* \mid w \text{ has length exactly three} \ \}$

Construct an NFA for L_1L_2.
$L_1 = \{ \ w \in \{a, b\}^* \mid w \text{ has odd length} \ \}$

$L_2 = \{ \ w \in \{a, b\}^* \mid w \text{ has length exactly three} \ \}$

Construct an NFA for L_1L_2.
$L_1 = \{ w \in \{a, b\}* | w \text{ has odd length} \}$

$L_2 = \{ w \in \{a, b\}* | w \text{ has length exactly three} \}$

Construct an NFA for L_1L_2.
Consider the languages L_1 and L_2 defined as follows:

$L_1 = \{ \ w \in \{a, b\}^* \ | \ w \text{ has odd length} \ \}$

$L_2 = \{ \ w \in \{a, b\}^* \ | \ w \text{ has length exactly three} \ \}$

Construct an NFA for L_1L_2.
\[L_1 = \{ w \in \{a, b\}^* \mid w \text{ has odd length} \} \]
\[L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \} \]

Construct an NFA for \(L_1L_2 \).
\[L_1 = \{ w \in \{a, b\}^* \mid w \text{ has odd length} \} \]

\[L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \} \]

Construct an NFA for \(L_1 L_2 \).
$L_1 = \{ \ w \in \{a, b\}^* \ | \ w \text{ has odd length} \ \}$

$L_2 = \{ \ w \in \{a, b\}^* \ | \ w \text{ has length exactly three} \ \}$

Construct an NFA for L_1L_2.
Construct an NFA for $L_1 L_2$.

$L_1 = \{ \ w \in \{a, b\}^* \mid w \text{ has odd length} \ \}$

$L_2 = \{ \ w \in \{a, b\}^* \mid w \text{ has length exactly three} \ \}$

DFA for L_1

NFA for L_2

$a \ b \ a \ b \ a \ b \ b \ b \ b \ b$
Let $L_1 = \{ w \in \{a, b\}^* \mid w \text{ has odd length} \}$

Let $L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \}$

Construct an NFA for L_1L_2.
Construct an NFA for L_1L_2.

$L_1 = \{ w \in \{a, b\}^* \mid w \text{ has odd length} \}$

$L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \}$
The Kleene Star
Lots and Lots of Concatenation

- Consider the language $L = \{ \text{aa, b} \}$
- LL is the set of strings formed by concatenating pairs of strings in L.
 \[\{ \text{aaaa, aab, baa, bb} \} \]
- LLL is the set of strings formed by concatenating triples of strings in L.
 \[\{ \text{aaaaaa, aaaaab, aabaa, aabb, baaaaa, baab, bbaa, bbb} \} \]
- $LLLLL$ is the set of strings formed by concatenating quadruples of strings in L.
 \[\{ \text{aaaaaaaaa, aaaaaaab, aaaaaabaa, aabaaaab, aabaaa, aabaab, aabbaa, aabbb, baaaaaaa, baaaaab, baabaa, baabb, bbbaaa, bbaab, bbb} \} \]
Language Exponentiation

- We can define what it means to “exponentiate” a language as follows:
 - $L^0 = \{ \varepsilon \}$
 - Intuition: The only string you can form by gluing no strings together is the empty string.
 - Notice that $\{ \varepsilon \} \neq \emptyset$. Can you explain why?
 - $L^{n+1} = LL^n$
 - Idea: Concatenating $(n+1)$ strings together works by concatenating n strings, then concatenating one more.
- **Question to ponder:** Why define $L^0 = \{ \varepsilon \}$?
- **Question to ponder:** What is \emptyset^0?
The Kleene Star
The Kleene Closure

• An important operation on languages is the **Kleene closure**, or **Kleene star**, which is defined as

\[L^* = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N}. w \in L^n \} \]

• Mathematically:

\[w \in L^* \iff \exists n \in \mathbb{N}. w \in L^n \]

• Intuitively, \(L^* \) is the language all possible ways of concatenating zero or more strings in \(L \) together, possibly with repetition.

• **Question to ponder:** What is \(\emptyset^* \)?
The Kleene Closure

If \(L = \{ \text{a, bb} \} \), then \(L^* = \{ \)

\(\varepsilon, \)

\(\text{a, bb,} \)

\(\text{aa, abb, bba, bbbb,} \)

\(\text{aaa, aabb, abba, abbbb, bbbaa, bbabb, bbbba, bbbbbbb,} \)

\(\ldots \)

\(\} \)

Think of \(L^* \) as the set of strings you can make if you have a collection of stamps – one for each string in \(L \) – and you form every possible string that can be made from those stamps.
Idea: Can we convert an NFA for a language L to an NFA for language L^*?
$L = \{ w \in \{ a, b \}^* | w \text{ has an odd number of } a \text{'s and an even number of } b \text{'s } \}$

Construct an NFA for L^*.
Construct an NFA for L^*.

$L = \{ w \in \{a, b\}^* | w \text{ has an odd number of a's and an even number of b's } \}$

Construct an NFA for L^*.

DFA for L
\[L = \{ w \in \{a, b\}^* | w \text{ has an odd number of } a\text{'s and an even number of } b\text{'s } \} \]

Construct an NFA for \(L^* \).
\[L = \{ w \in \{a, b\}^* | \text{w has an odd number of a's and an even number of b's} \} \]

Construct an NFA for \(L^* \).
$L = \{ \ w \in \{a, b\}^* \ | \ w \text{ has an odd number of a's and an even number of b's } \}$

Construct an NFA for L^*.
\[L = \{ w \in \{a, b\}^* \mid w \text{ has an odd number of } a \text{'s and an even number of } b \text{'s } \} \]

Construct an NFA for \(L^* \).
$L = \{ w \in \{a, b\}^* \mid w \text{ has an odd number of } a\text{'s and an even number of } b\text{'s } \}$

Construct an NFA for L^*.
$L = \{ w \in \{a, b\}^* \mid w \text{ has an odd number of } a\text{'s and an even number of } b\text{'s } \}$

Construct an NFA for L^*.
Let $L = \{ w \in \{a, b\}^* \mid w \text{ has an odd number of } a\text{'s and an even number of } b\text{'s } \}$

Construct an NFA for L^*.

DFA for L
Construct an NFA for L^*.

$L = \{ w \in \{a, b\}^* \mid w$ has an odd number of a’s and an even number of b’s $\}$

Construct an NFA for L^*.

DFA for L
$L = \{ w \in \{a, b\}^* \mid w \text{ has an odd number of } a \text{'s and an even number of } b \text{'s} \}$

Construct an NFA for L^*.
\[L = \{ w \in \{a, b\}^* \mid w \text{ has an odd number of } a\text{'s and an even number of } b\text{'s } \} \]

Construct an NFA for \(L^* \).
$L = \{ w \in \{a, b\}^* \mid w \text{ has an odd number of a's and an even number of b's} \}$

Construct an NFA for L^*.
Construct an NFA for L^*.

$L = \{ \ w \in \{a, b\}^* \mid w \text{ has an odd number of } a's \text{ and an even number of } b's \ \}$

Construct an NFA for L^*.
$L = \{ w \in \{a, b\}^* | w \text{ has an odd number of } a\text{'s and an even number of } b\text{'s } \}$

Construct an NFA for L^*.
$L = \{ w \in \{a, b\}^* \mid w \text{ has an odd number of } a\text{'s and an even number of } b\text{'s} \}$

Construct an NFA for L^*.
Let \(L = \{ w \in \{a, b\}^* \mid w \text{ has an odd number of } a \text{'s and an even number of } b \text{'s} \} \).

Construct an NFA for \(L^* \).
$L = \{ w \in \{a, b\}^* \mid w \text{ has an odd number of } a\text{'s and an even number of } b\text{'s } \}$

Construct an NFA for L^*.
Let $L = \{ w \in \{a, b\}^* \mid w \text{ has an odd number of } a\text{'s and an even number of } b\text{'s } \}$

Construct an NFA for L^*.
Construct an NFA for \(L^* \).
$L = \{ w \in \{a, b\}^* | w \text{ has an odd number of } a\text{'s and an even number of } b\text{'s } \}$

Construct an NFA for L^*.
\[L = \{ w \in \{a, b\}^* \mid w \text{ has an odd number of } a's \text{ and an even number of } b's \} \]

Construct an NFA for \(L^* \).
\[L = \{ w \in \{a, b\}^* \mid w \text{ has an odd number of } a\text{'s and an even number of } b\text{'s } \}\]

Construct an NFA for \(L^* \).
$L = \{ w \in \{a, b\}^* \mid w \text{ has an odd number of } a\text{'s and an even number of } b\text{'s } \}$

Construct an NFA for L^*.

DFA for L
$L = \{ w \in \{a, b\}^* \mid w \text{ has an odd number of } a\text{'s and an even number of } b\text{'s } \}$

Construct an NFA for L^*.

Question: Why add the new state out front? Why not just make the old start state accepting?
Closure Properties

- **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ, then so are the following languages:
 - $L_1 \cup L_2$
 - $L_1 \cap L_2$
 - L_1L_2
 - L_1^*

- These properties are called **closure properties of the regular languages**.
Next Time

• **Regular Expressions**
 • Building languages from the ground up!

• **Thompson’s Algorithm**
 • A UNIX Programmer in Theoryland.

• **Kleene’s Theorem**
 • From machines to programs!