

Variables, Types,
and Expressions

Announcements

● Karel the Robot due right now.
● Email: Due Sunday, January 22 at 11:59PM.

● Update to assignment due dates:
● Assignments 2 – 5 going out one day later.
● Contact me if this is a problem.
● Updated syllabus will be posted to the course

website.

● Blank Java project available.
● Play around with Java on your own!

Variables

● A variable is a location where a program can
store information for later use.

● Each variable has three pieces of information
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the

variable?
● Value: What value does the variable have at any

particular moment in time?

Variables

● A variable is a location where a program can
store information for later use.

● Each variable has three pieces of information
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the

variable?
● Value: What value does the variable have at any

particular moment in time?

Variables

● A variable is a location where a program can
store information for later use.

● Each variable has three pieces of information
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the

variable?
● Value: What value does the variable have at any

particular moment in time?

Variables

● A variable is a location where a program can
store information for later use.

● Each variable has three pieces of information
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the

variable?
● Value: What value does the variable have at any

particular moment in time?

Variables

● A variable is a location where a program can
store information for later use.

● Each variable has three pieces of information
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the

variable?
● Value: What value does the variable have at any

particular moment in time?

int numVoters

Variables

● A variable is a location where a program can
store information for later use.

● Each variable has three pieces of information
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the

variable?
● Value: What value does the variable have at any

particular moment in time?

int numVoters

Variables

● A variable is a location where a program can
store information for later use.

● Each variable has three pieces of information
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the

variable?
● Value: What value does the variable have at any

particular moment in time?

int numVoters

Variables

● A variable is a location where a program can
store information for later use.

● Each variable has three pieces of information
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the

variable?
● Value: What value does the variable have at any

particular moment in time?

int numVoters

Variables

● A variable is a location where a program can
store information for later use.

● Each variable has three pieces of information
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the

variable?
● Value: What value does the variable have at any

particular moment in time?

137 int numVoters

Variables

A variable is a location where a program can
store information for later use.

Each variable has three pieces of information
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the

variable?
● Value: What value does the variable have at any

particular moment in time?

137 int numVoters

Variable Names

● Legal names for variables
● begin with a letter or an underscore (_)
● consist of letters, numbers, and underscores,

and
● aren't one of Java's reserved words.

x w
7thHorcrux LOUD_AND_PROUD
Harry Potter that'sACoolName
noOrdinaryRabbit true
lots_of_underscores C_19_H_14_O_5_S

Variable Names

● Legal names for variables
● begin with a letter or an underscore (_)
● consist of letters, numbers, and underscores,

and
● aren't one of Java's reserved words.

x w
7thHorcrux LOUD_AND_PROUD
Harry Potter that'sACoolName
noOrdinaryRabbit true
lots_of_underscores C_19_H_14_O_5_S

Variable Names

● Legal names for variables
● begin with a letter or an underscore (_)
● consist of letters, numbers, and underscores,

and
● aren't one of Java's reserved words.

x w
7thHorcrux LOUD_AND_PROUD
Harry Potter that'sACoolName
noOrdinaryRabbit true
lots_of_underscores C_19_H_14_O_5_S

Variable Names

● Legal names for variables
● begin with a letter or an underscore (_)
● consist of letters, numbers, and underscores,

and
● aren't one of Java's reserved words.

x w
7thHorcrux LOUD_AND_PROUD
Harry Potter that'sACoolName
noOrdinaryRabbit true
lots_of_underscores C_19_H_14_O_5_S

Variable Names

● Legal names for variables
● begin with a letter or an underscore (_)
● consist of letters, numbers, and underscores,

and
● aren't one of Java's reserved words.

x w
7thHorcrux LOUD_AND_PROUD
Harry Potter that'sACoolName
noOrdinaryRabbit true
lots_of_underscores C_19_H_14_O_5_S

Variable Names

● Legal names for variables
● begin with a letter or an underscore (_)
● consist of letters, numbers, and underscores,

and
● aren't one of Java's reserved words.

x w
7thHorcrux LOUD_AND_PROUD
Harry Potter that'sACoolName
noOrdinaryRabbit true
lots_of_underscores C_19_H_14_O_5_S

Variable Names

● Legal names for variables
● begin with a letter or an underscore (_)
● consist of letters, numbers, and underscores,

and
● aren't one of Java's reserved words.

x w
7thHorcrux LOUD_AND_PROUD
Harry Potter that'sACoolName
noOrdinaryRabbit true
lots_of_underscores C_19_H_14_O_5_S

Variable Names

● Legal names for variables
● begin with a letter or an underscore (_)
● consist of letters, numbers, and underscores,

and
● aren't one of Java's reserved words.

x w
 LOUD_AND_PROUD

noOrdinaryRabbit
lots_of_underscores C_19_H_14_O_5_S

Variable Naming Conventions

● You are free to name variables as you see fit, but
there are conventions.

● Names are often written in lower camel case:

capitalizeAllWordsButTheFirst

Choose names that describe what the variable
does.

If it's a number of votes, call it numberOfVotes,
numVotes, votes, etc.

Don't call it x, volumeControl, or severusSnape

Variable Naming Conventions

● You are free to name variables as you see fit, but
there are conventions.

● Names are often written in lower camel case:

capitalizeAllWordsButTheFirst

Choose names that describe what the variable
does.

If it's a number of votes, call it numberOfVotes,
numVotes, votes, etc.

Don't call it x, volumeControl, or severusSnape

Variable Naming Conventions

● You are free to name variables as you see fit, but
there are conventions.

● Names are often written in lower camel case:

capitalizeAllWordsButTheFirst

Choose names that describe what the variable
does.

If it's a number of votes, call it numberOfVotes,
numVotes, votes, etc.

Don't call it x, volumeControl, or severusSnape

Variable Naming Conventions

● You are free to name variables as you see fit, but
there are conventions.

● Names are often written in lower camel case:

capitalizeAllWordsButTheFirst

● Choose names that describe what the variable
does.
● If it's a number of voters, call it numberOfVoters,
numVoters, voters, etc.

● Don't call it x, volumeControl, or severusSnape

Types

● The type of a variable determines what
can be stored in it.

● Java has several primitive types that it
knows how to understand:
● int: Integers.
● double: Real numbers.
● char: Characters (letters, punctuation, etc.)
● boolean: Logical true and false.

Types

● The type of a variable determines what
can be stored in it.

● Java has several primitive types that it
knows how to understand:
● int: Integers.
● double: Real numbers.
● char: Characters (letters, punctuation, etc.)
● boolean: Logical true and false.

Types

● The type of a variable determines what
can be stored in it.

● Java has several primitive types that it
knows how to understand:
● int: Integers.
● double: Real numbers.
● char: Characters (letters, punctuation, etc.)
● boolean: Logical true and false.

Types

● The type of a variable determines what
can be stored in it.

● Java has several primitive types that it
knows how to understand:
● int: Integers.
● double: Real numbers.
● char: Characters (letters, punctuation, etc.)
● boolean: Logical true and false.

Types

● The type of a variable determines what
can be stored in it.

● Java has several primitive types that it
knows how to understand:
● int: Integers. (counting)
● double: Real numbers.
● char: Characters (letters, punctuation, etc.)
● boolean: Logical true and false.

Types

● The type of a variable determines what
can be stored in it.

● Java has several primitive types that it
knows how to understand:
● int: Integers. (counting)
● double: Real numbers. (measuring)
● char: Characters (letters, punctuation, etc.)
● boolean: Logical true and false.

Types

● The type of a variable determines what
can be stored in it.

● Java has several primitive types that it
knows how to understand:
● int: Integers. (counting)
● double: Real numbers. (measuring)
● char: Characters (letters, punctuation, etc.)
● boolean: Logical true and false.

Types

● The type of a variable determines what
can be stored in it.

● Java has several primitive types that it
knows how to understand:
● int: Integers. (counting)
● double: Real numbers. (measuring)
● char: Characters (letters, punctuation, etc.)
● boolean: Logical true and false.

Values

137 int numVotes

0.97333 double fractionVoting

0.64110 double fractionYes

Declaring Variables

Declaring Variables

public void run() {

}

Declaring Variables

public void run() {
 double ourDouble = 2.71828;

}

Declaring Variables

public void run() {
 double ourDouble = 2.71828;

}

2.71828

ourDouble

Declaring Variables

public void run() {
 double ourDouble = 2.71828;

}

2.71828

ourDouble

The syntax for declaring
a variable with an initial

value is

type name = value;

Declaring Variables

public void run() {
 double ourDouble = 2.71828;
 int ourInt = 137;

}

2.71828

ourDouble

Declaring Variables

public void run() {
 double ourDouble = 2.71828;
 int ourInt = 137;

}

2.71828

ourDouble

137

ourInt

Declaring Variables

public void run() {
 double ourDouble = 2.71828;
 int ourInt = 137;

 int anotherInt;

}

2.71828

ourDouble

137

ourInt

Declaring Variables

public void run() {
 double ourDouble = 2.71828;
 int ourInt = 137;

 int anotherInt;

}

2.71828

ourDouble

137

ourInt

anotherInt

Declaring Variables

public void run() {
 double ourDouble = 2.71828;
 int ourInt = 137;

 int anotherInt;

}

2.71828

ourDouble

137

ourInt

anotherInt

Variables can be declared
without an initial value:

type name;

Declaring Variables

public void run() {
 double ourDouble = 2.71828;
 int ourInt = 137;

 int anotherInt;
 anotherInt = 42;

}

2.71828

ourDouble

137

ourInt

anotherInt

Declaring Variables

public void run() {
 double ourDouble = 2.71828;
 int ourInt = 137;

 int anotherInt;
 anotherInt = 42;

}

2.71828

ourDouble

137

ourInt

42

anotherInt

Declaring Variables

public void run() {
 double ourDouble = 2.71828;
 int ourInt = 137;

 int anotherInt;
 anotherInt = 42;

}

2.71828

ourDouble

137

ourInt

42

anotherInt

An assignment statement has
the form

variable = value;

This stores value in variable.

Declaring Variables

public void run() {
 double ourDouble = 2.71828;
 int ourInt = 137;

 int anotherInt;
 anotherInt = 42;

 ourInt = 13;

}

2.71828

ourDouble

137

ourInt

42

anotherInt

Declaring Variables

public void run() {
 double ourDouble = 2.71828;
 int ourInt = 137;

 int anotherInt;
 anotherInt = 42;

 ourInt = 13;

}

2.71828

ourDouble

13

ourInt

42

anotherInt

Declaring Variables

public void run() {
 double ourDouble = 2.71828;
 int ourInt = 137;

 int anotherInt;
 anotherInt = 42;

 ourInt = 13;

}

2.71828

ourDouble

13

ourInt

42

anotherInt

Declaring Variables

public void run() {
 double ourDouble = 2.71828;
 int ourInt = 137;

 int anotherInt;
 anotherInt = 42;

 ourInt = 13;
 ourInt = ourInt + 1;

}

2.71828

ourDouble

13

ourInt

42

anotherInt

Declaring Variables

public void run() {
 double ourDouble = 2.71828;
 int ourInt = 137;

 int anotherInt;
 anotherInt = 42;

 ourInt = 13;
 ourInt = ourInt + 1;

}

2.71828

ourDouble

14

ourInt

42

anotherInt

Declaring Variables

public void run() {
 double ourDouble = 2.71828;
 int ourInt = 137;

 int anotherInt;
 anotherInt = 42;

 ourInt = 13;
 ourInt = ourInt + 1;

}

2.71828

ourDouble

14

ourInt

42

anotherInt

Declaring Variables

public void run() {
 double ourDouble = 2.71828;
 int ourInt = 137;

 int anotherInt;
 anotherInt = 42;

 ourInt = 13;
 ourInt = ourInt + 1;

 anotherInt = ourInt;

}

2.71828

ourDouble

14

ourInt

42

anotherInt

Declaring Variables

public void run() {
 double ourDouble = 2.71828;
 int ourInt = 137;

 int anotherInt;
 anotherInt = 42;

 ourInt = 13;
 ourInt = ourInt + 1;

 anotherInt = ourInt;

}

2.71828

ourDouble

14

ourInt

14

anotherInt

Declaring Variables

public void run() {
 double ourDouble = 2.71828;
 int ourInt = 137;

 int anotherInt;
 anotherInt = 42;

 ourInt = 13;
 ourInt = ourInt + 1;

 anotherInt = ourInt;

}

2.71828

ourDouble

14

ourInt

14

anotherInt

Declaring Variables

public void run() {
 double ourDouble = 2.71828;
 int ourInt = 137;

 int anotherInt;
 anotherInt = 42;

 ourInt = 13;
 ourInt = ourInt + 1;

 anotherInt = ourInt;
 ourInt = 1258;
}

2.71828

ourDouble

14

ourInt

14

anotherInt

Declaring Variables

public void run() {
 double ourDouble = 2.71828;
 int ourInt = 137;

 int anotherInt;
 anotherInt = 42;

 ourInt = 13;
 ourInt = ourInt + 1;

 anotherInt = ourInt;
 ourInt = 1258;
}

2.71828

ourDouble

1258

ourInt

14

anotherInt

Declaring Variables

public void run() {
 double ourDouble = 2.71828;
 int ourInt = 137;

 int anotherInt;
 anotherInt = 42;

 ourInt = 13;
 ourInt = ourInt + 1;

 anotherInt = ourInt;
 ourInt = 1258;
}

2.71828

ourDouble

1258

ourInt

14

anotherInt

The Add2Integers Program

Add2Integers

class Add2Integers extends ConsoleProgram {
 public void run() {
 println("This program adds two numbers.");
 int n1 = readInt("Enter n1: ");
 int n2 = readInt("Enter n2: ");
 int total = n1 + n2;
 println("The total is " + total + ".");
 }
} n1 n2 total

This program adds two numbers.

Enter n2:
The total is 42.

17 25 42

 25

class Add2Integers extends ConsoleProgram {
 public void run() {
 println("This program adds two numbers.");
 int n1 = readInt("Enter n1: ");
 int n2 = readInt("Enter n2: ");
 int total = n1 + n2;
 println("The total is " + total + ".");
 }
} n1 n2 total

17 25 42

Enter n1: 17

Graphic courtesy of Eric Roberts

The GObject Hierarchy

The classes that represent graphical objects form a
hierarchy, part of which looks like this:

GObject

GRect GOval GLineGLabel

Graphic courtesy of Eric Roberts

public class HelloProgram extends GraphicsProgram {
 public void run() {
 GLabel label = new GLabel("hello, world", 100, 75);
 label.setFont("SansSerif-36");
 label.setColor(Color.RED);
 add(label);
 }
}

HelloProgram

Sending Messages to a GLabel

hello, world

label

hello, worldhello, worldhello, world

public class HelloProgram extends GraphicsProgram {
 public void run() {
 GLabel label = new GLabel("hello, world", 100, 75);
 label.setFont("SansSerif-36");
 label.setColor(Color.RED);
 add(label);
 }
}

label

hello, world

Graphic courtesy of Eric Roberts

Objects and Variables

● Variables can be declared to hold objects.
● The type of the variable is the name of

the class:
● GLabel label;
● GOval oval;

● Instances of a class can be created using
the new keyword:
● GLabel label = new GLabel("Y?", 0, 0);

Sending Messages

● To call a method on an object stored in a
variable, use the syntax

object.method(parameters)

● For example:
 label.setFont("Comic Sans-32");

 label.setColor(Color.ORANGE);

Graphics Coordinates

HelloProgram

hello, world

(100, 75)

• Origin is upper left.

• x coordinates increase from left to right.

• y coordinates increase from top to bottom.

• Units are pixels (dots on the screen).

• GLabel coordinates are baseline of first character.
+x

+y

Graphic courtesy of Eric Roberts

Operations on the GObject Class

object.setColor(color)
Sets the color of the object to the specified color constant.

object.setLocation(x, y)
Changes the location of the object to the point (x, y).

object.move(dx, dy)
Moves the object on the screen by adding dx and dy to its current
coordinates.

The following operations apply to all GObjects:

Standard color names defined in the java.awt package:
Color.BLACK
Color.DARK_GRAY
Color.GRAY
Color.LIGHT_GRAY
Color.WHITE

Color.RED
Color.YELLOW
Color.GREEN
Color.CYAN

Color.BLUE
Color.MAGENTA
Color.ORANGE
Color.PINK

Graphic courtesy of Eric Roberts

Operations on the GLabel Class
Constructor
new GLabel(text, x, y)

Creates a label containing the specified text that begins at the point (x, y).

Methods specific to the GLabel class
label.setFont(font)

Sets the font used to display the label as specified by the font string.

The font is specified as

"family-style-size"

family is the name of a font family.
style is either PLAIN, BOLD, ITALIC, or BOLDITALIC.
size is an integer indicating the point size.

Graphic courtesy of Eric Roberts

Drawing Geometrical Objects

Graphic courtesy of Eric Roberts

Drawing Geometrical Objects
Constructors
new GRect(x, y, width, height)

Creates a rectangle whose upper left corner is at (x, y) of the specified size

Graphic courtesy of Eric Roberts

Graphics Program

 +x

+y

(x, y)

(x + width, y + height)

Drawing Geometrical Objects
Constructors
new GRect(x, y, width, height)

Creates a rectangle whose upper left corner is at (x, y) of the specified size

new GOval(x, y, width, height)
Creates an oval that fits inside the rectangle with the same dimensions.

Graphic courtesy of Eric Roberts

Graphics Program

 +x

+y

(x, y)

(x + width, y + height)

Drawing Geometrical Objects
Constructors
new GRect(x, y, width, height)

Creates a rectangle whose upper left corner is at (x, y) of the specified size

new GOval(x, y, width, height)
Creates an oval that fits inside the rectangle with the same dimensions.

new GLine(x0, y0, x1, y1)
Creates a line extending from (x0, y0) to (x1, y1).

Graphic courtesy of Eric Roberts

Graphics Program

 +x

+y

(x
0
, y

0
)

(x
1
, y

1
)

Drawing Geometrical Objects
Constructors
new GRect(x, y, width, height)

Creates a rectangle whose upper left corner is at (x, y) of the specified size

new GOval(x, y, width, height)
Creates an oval that fits inside the rectangle with the same dimensions.

Methods shared by the GRect and GOval classes
object.setFilled(fill)

If fill is true, fills in the interior of the object; if false, shows only the
outline.

object.setFillColor(color)
Sets the color used to fill the interior, which can be different from the
border.

new GLine(x0, y0, x1, y1)
Creates a line extending from (x0, y0) to (x1, y1).

Graphic courtesy of Eric Roberts

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	The Add2Integers Program
	The GObject Hierarchy
	Sending Messages to a GLabel
	Slide 62
	Slide 63
	Graphics Coordinates
	Operations on the GObject Class
	Operations on the GLabel Class
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Drawing Geometrical Objects

