

Debugging

Announcements

● Assignment 4 due right now.
● Assignment 5 (Yahtzee!) out, due next

Wednesday, February 29.
● Cool way to play around with arrays and algorithms.
● Hone your skills with data processing.
● YEAH hours Thursday, 7-8PM in Braun Lecture

Hall.

● Midterm graded; will be returned at the end of
lecture.
● Details at end of lecture.
● Midterms will be outside of Gates 178 after they've

been returned in lecture.

Yahtzee Demo

Debugging

http://en.wikipedia.org/wiki/File:First_flight2.jpg

Designing the Program

● Think like an
architect.

● What is the grand
vision?

● What will the large
pieces be?

http://upload.wikimedia.org/wikipedia/commons/9/99/Frank_Lloyd_Wright_LC-USZ62-36384.jpg

Writing the Program

● Think like an
engineer.

● Flesh out the
design by actually
making it happen.

http://www.infobarrel.com/media/image/15873.jpg

Testing the Program

● Think like a
vandal.

● Try doing things to
the program that
aren't expected:
● Enter invalid or

nonsensical data.
● Don't follow

directions.

http://www.conversationmarketing.com/Snidely%2BWhiplash.png

Debugging the Program

● Think like a
detective.

● Follow the clues
the program gives
to determine the
logical cause of
the bug.

http://upload.wikimedia.org/wikipedia/commons/c/cf/Agatha_Christie.png

What Causes Bugs?

Actual Bug from Mark II
Computer

© National Museum of American History
Source: Smithsonian National Museum of History

Kenneth E. Behring Center
http://americanhistory.si.edu/dynamic/images/collections_xlarge/92-13129_428px.jpg

What Causes Bugs?

● Incorrect values in variables.
● Using the wrong variable.
● Computing a value incorrectly.

● Logical errors.
● Looping the wrong number of times.
● Incorrect expressions in if statements.

● Bad assumptions.
● Assuming that the input has some form that

it doesn't.

Debugging Philosophy

● Find out what the program is doing, not
what it's not doing.
● The computer will do exactly what you told it

to do; you just told it to do the wrong thing!

● Be patient: The bug isn't trying to hide,
and with enough effort you're going to
find it.

While Debugging...

● Don't start making changes to the
program without a good reason.
● You're going to introduce new bugs!
● You're going to complicate your bug hunt!

● Ask the program to tell you what it's
doing.
● Pull up a debugger and look at what's

happening.

An Example

http://www.casinosonline.co.uk/userContent/roulette-pic.gif

Roulette

● Wheel contains the numbers 0 – 36.
● A ball is tossed into the wheel and ends at one of the

numbers.
● Can place lots of different bets on the outcome, but

we'll consider four:
● Low: The number is between 1 and 19.
● High: The number is between 20 and 36.
● Odd: The number is odd.
● Even: The number is even (but not zero).

● If you win, you get 2x your bet back.
● Odds are slightly against you because 0 always loses.

Runtime Exceptions

● ArrayIndexOutOfBoundsException

● Attempted to look up an element in an array at an invalid
index.

● Check to make sure that the index is valid and that the array
has the length you think it does.

● StringIndexOutOfBoundsException

● Attempted to look up an element in a String at an invalid
index.

● Check to make sure that the index is valid and that the
String has the length you think it does.

● NullPointerException

● Attempted to call a method on a null reference (for example,
an uninitialized String or GRect).

● Check the receiver object to make sure it's not null.

Runtime Exceptions

● ArrayIndexOutOfBoundsException

● Attempted to look up an element in an array at an invalid
index.

● Check to make sure that the index is valid and that the array
has the length you think it does.

● StringIndexOutOfBoundsException

● Attempted to look up an element in a String at an invalid
index.

● Check to make sure that the index is valid and that the
String has the length you think it does.

● NullPointerException

● Attempted to call a method on a null reference (for example,
an uninitialized String or GRect).

● Check the receiver object to make sure it's not null.

Runtime Exceptions

● ArrayIndexOutOfBoundsException

● Attempted to look up an element in an array at an invalid
index.

● Check to make sure that the index is valid and that the array
has the length you think it does.

● StringIndexOutOfBoundsException

● Attempted to look up an element in a String at an invalid
index.

● Check to make sure that the index is valid and that the
String has the length you think it does.

● NullPointerException

● Attempted to call a method on a null reference (for example,
an uninitialized String or GRect).

● Check the receiver object to make sure it's not null.

Runtime Exceptions

● ArrayIndexOutOfBoundsException

● Attempted to look up an element in an array at an invalid
index.

● Check to make sure that the index is valid and that the array
has the length you think it does.

● StringIndexOutOfBoundsException

● Attempted to look up an element in a String at an invalid
index.

● Check to make sure that the index is valid and that the
String has the length you think it does.

● NullPointerException

● Attempted to call a method on a null reference (for example,
an uninitialized String or GRect).

● Check the receiver object to make sure it's not null.

Infinite Loops

● Infinite loops result when a loop that
ought to terminate never does.

● Program will seem unresponsive, or will
keep doing the same thing over and over
again.

● Step through the program with a
debugger.
● Can you find out why the loop isn't

terminating?

Preventing Bugs

● The best way to debug is to prevent bugs
from occurring in the first place.

● Test your program often.
● Write the program in small pieces and verify

that each piece works as you write it.
● Sometimes called “unit testing.”

● Use libraries when possible.
● Thoroughly-tested code is less likely to be

buggy than your own version.

Midterm Scores

0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 101-110 111-120
0

10

20

30

40

50

60

70

80

90

Mean: 83.7/120 (70%)
Median: 88/120 (73%)
Stdev: 24

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Actual Bug from Mark II Computer
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

