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Announcements

● Assignment 4 due right now.
● Assignment 5 (Yahtzee!) out, due next 

Wednesday, February 29.
● Cool way to play around with arrays and algorithms.
● Hone your skills with data processing.
● YEAH hours Thursday, 7-8PM in Braun Lecture 

Hall.

● Midterm graded; will be returned at the end of 
lecture.
● Details at end of lecture.
● Midterms will be outside of Gates 178 after they've 

been returned in lecture.
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Designing the Program

● Think like an 
architect.

● What is the grand 
vision?

● What will the large 
pieces be?

http://upload.wikimedia.org/wikipedia/commons/9/99/Frank_Lloyd_Wright_LC-USZ62-36384.jpg



  

Writing the Program

● Think like an 
engineer.

● Flesh out the 
design by actually 
making it happen.

http://www.infobarrel.com/media/image/15873.jpg



  

Testing the Program

● Think like a 
vandal.

● Try doing things to 
the program that 
aren't expected:
● Enter invalid or 

nonsensical data.
● Don't follow 

directions.

http://www.conversationmarketing.com/Snidely%2BWhiplash.png



  

Debugging the Program

● Think like a 
detective.

● Follow the clues 
the program gives 
to determine the 
logical cause of 
the bug.

http://upload.wikimedia.org/wikipedia/commons/c/cf/Agatha_Christie.png



  

What Causes Bugs?



  

Actual Bug from Mark II 
Computer

© National Museum of American History 
Source: Smithsonian National Museum of History

Kenneth E. Behring Center
http://americanhistory.si.edu/dynamic/images/collections_xlarge/92-13129_428px.jpg



  

What Causes Bugs?

● Incorrect values in variables.
● Using the wrong variable.
● Computing a value incorrectly.

● Logical errors.
● Looping the wrong number of times.
● Incorrect expressions in if statements.

● Bad assumptions.
● Assuming that the input has some form that 

it doesn't.



  

Debugging Philosophy

● Find out what the program is doing, not 
what it's not doing.
● The computer will do exactly what you told it 

to do; you just told it to do the wrong thing!

● Be patient: The bug isn't trying to hide, 
and with enough effort you're going to 
find it.



  

While Debugging...

● Don't start making changes to the 
program without a good reason.
● You're going to introduce new bugs!
● You're going to complicate your bug hunt!

● Ask the program to tell you what it's 
doing.
● Pull up a debugger and look at what's 

happening.



  

An Example

http://www.casinosonline.co.uk/userContent/roulette-pic.gif



  

Roulette

● Wheel contains the numbers 0 – 36.
● A ball is tossed into the wheel and ends at one of the 

numbers.
● Can place lots of different bets on the outcome, but 

we'll consider four:
● Low: The number is between 1 and 19.
● High: The number is between 20 and 36.
● Odd: The number is odd.
● Even: The number is even (but not zero).

● If you win, you get 2x your bet back.
● Odds are slightly against you because 0 always loses.



  

Runtime Exceptions

● ArrayIndexOutOfBoundsException

● Attempted to look up an element in an array at an invalid 
index.

● Check to make sure that the index is valid and that the array 
has the length you think it does.

● StringIndexOutOfBoundsException

● Attempted to look up an element in a String at an invalid 
index.

● Check to make sure that the index is valid and that the 
String has the length you think it does.

● NullPointerException

● Attempted to call a method on a null reference (for example, 
an uninitialized String or GRect).

● Check the receiver object to make sure it's not null.



  

Runtime Exceptions

● ArrayIndexOutOfBoundsException

● Attempted to look up an element in an array at an invalid 
index.

● Check to make sure that the index is valid and that the array 
has the length you think it does.

● StringIndexOutOfBoundsException

● Attempted to look up an element in a String at an invalid 
index.

● Check to make sure that the index is valid and that the 
String has the length you think it does.

● NullPointerException

● Attempted to call a method on a null reference (for example, 
an uninitialized String or GRect).

● Check the receiver object to make sure it's not null.



  

Runtime Exceptions

● ArrayIndexOutOfBoundsException

● Attempted to look up an element in an array at an invalid 
index.

● Check to make sure that the index is valid and that the array 
has the length you think it does.

● StringIndexOutOfBoundsException

● Attempted to look up an element in a String at an invalid 
index.

● Check to make sure that the index is valid and that the 
String has the length you think it does.

● NullPointerException

● Attempted to call a method on a null reference (for example, 
an uninitialized String or GRect).

● Check the receiver object to make sure it's not null.



  

Runtime Exceptions

● ArrayIndexOutOfBoundsException

● Attempted to look up an element in an array at an invalid 
index.

● Check to make sure that the index is valid and that the array 
has the length you think it does.

● StringIndexOutOfBoundsException

● Attempted to look up an element in a String at an invalid 
index.

● Check to make sure that the index is valid and that the 
String has the length you think it does.

● NullPointerException

● Attempted to call a method on a null reference (for example, 
an uninitialized String or GRect).

● Check the receiver object to make sure it's not null.



  

Infinite Loops

● Infinite loops result when a loop that 
ought to terminate never does.

● Program will seem unresponsive, or will 
keep doing the same thing over and over 
again.

● Step through the program with a 
debugger.
● Can you find out why the loop isn't 

terminating?



  

Preventing Bugs

● The best way to debug is to prevent bugs 
from occurring in the first place.

● Test your program often.
● Write the program in small pieces and verify 

that each piece works as you write it.
● Sometimes called “unit testing.”

● Use libraries when possible.
● Thoroughly-tested code is less likely to be 

buggy than your own version.



  

Midterm Scores
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Mean:   83.7/120 (70%)
Median:  88/120 (73%)
Stdev:   24
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