

Interactors

Anatomy of a Window

NORTH

CENTER

SOUTH

E
A
S
T

W
E
S
T

Introducing Interactors

● An interactor is a widget that can be
added to a window.

● The user can then interact with the
program through the interactors.

Adding Interactors

● To use most interactors, you will need to

import acm.gui.*;

import javax.swing.*;

● You can add an interactor to the
appropriate part of the window by calling

add(interactor, location);

● location can be NORTH, SOUTH, EAST, or
WEST.

Structuring a Program

● Inside init:
● Create interactors.
● Add interactors to the program.

● Inside run:
● Set up any graphics, state, etc.
● Run the program.

Text Input

● Three common text input controls:
● JTextField

● Takes in any text as input.
● IntField

● Only accepts int values; will prompt if you
give bad data.

● DoubleField
● Only accepts double values; will prompt if

you give bad data.

Slider Controls

● The JSlider control lets the user visually
choose from a range of integers.

● Constructor:

new JSlider(min, max, initial)
● To construct a vertical slider bar:
new JSlider(SwingConstants.VERTICAL,
 min, max, initial)

Responding to Commands

● As with mouse events, responding to
interactor events requires two steps.

● Tell Java that you want to respond to
commands by calling

addActionListeners();

● Respond to events by writing a method
public void actionPerformed(ActionEvent e)

Determining the Cause

● You can tell where an ActionEvent came
from in one of two ways:

● Calling e.getActionCommand(), which
returns a string containing the name of the
source.
● Most common use case: the name of the
JButton that was clicked.

● Calling e.getSource(), which returns a
reference to the interactor that caused the
event.

Responding to Text

● If the user presses ENTER or RETURN in a text
box, you will not automatically be notified of this.

● One way to get notification:

text.addActionListener(this);

● Can then use e.getSource() to find the text box.

● Once you've done the above, you can also

text.setActionCommand(command-string);

● Can then use e.getActionCommand() to find the
text box.

Combo Boxes

● A combo box is a drop-down list from which the
user can make a selection.

● Create the combo box using

new JComboBox()

● Add each item by calling addItem.

● Set a default by calling setSelectedItem.

● Call setEditable(false) to disable editing.

● Call addActionListeners(this) (plus optionally
setActionCommand) to respond to events.

Iterating Over a HashMap

● Because a HashMap doesn't have an order
associated with it, the techniques we've
used to iterate over Strings, arrays, and
ArrayLists won't work on it.

● Instead, we can use a for each loop:

for (KeyType key: map.keySet()) {

/* … use key … */

}

● Keys will be returned in no particular order.

The “For Each” Loop

● For Strings, arrays, and ArrayLists:

for (ElemType elem: collection) {

…

}

● Elements will be returned in sequence.
● Almost always easier to use than a

standard for loop, but you don't get
access to the indices as you iterate.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

