Introduction to Java

A Farewell to Karel

Welcome to Java

But First...

A Brief History of Digital Computers

Image credit: http://upload.wikimedia.org/wikipedia/commons/4/4e/Eniac.jpg

Programming in the 1940s

Electrical Device

High-Level Languages

Image: http://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Grace_Hopper.jpg/300px-Grace_Hopper.jpg http://www.nytimes.com/2007/03/20/business/20backus.html

Programming in the 1950s

Programming in the 1950s

Programming Now (ish)

Hey! I wrote a program that can draw stick figures!

That's great! I wrote a program that makes speech bubbles!

Programming Now

Programming Now

Image credit: http://upload.wikimedia.org/wikipedia/commons/d/d2/Internet_map_1024.jpg

The Java Model

Computer Virtual Machine

Time-Out For Announcements

Section Assignments

- Section assignments given out on Tuesday; you can submit assignments once you have an SL assigned.
 - Didn't sign up? Signups reopen on Tuesday.
- Section Handout 1 released.
 - Recommendation: review the handout and think about the problem before attending section.
 - Section problems are not collected or graded; you'll go over them in section.

Announcements

- Programming Assignment #1 Out:
 - Karel the Robot: Due Friday, January 17 at 3:15 PM.
 - Suggestion: Try to have a working solution to all the Karel problems by Wednesday. That gives you two buffer days to do final testing and cleanup.
 - Email: Due Sunday, January 19 at 11:59PM.
 - Please wait until you get your section assignments before writing these emails – we'd like you to introduce yourself to your SL as well!

Getting Help

- It's normal to ask for help in CS106A!
- LaIR hours start tonight! 6PM Midnight,
 Sunday through Thursday.
- Keith's Office Hours:
 - Tuesday, 10:15AM 12:15PM in Gates 505.
 - Wednesday, 4:30PM 6:30PM in Gates 505.
- QuestionHut (link on the CS106A website)
 - Q&A site for CS106A.
 - Keith and Vikas frequently look over it, and you can answer questions as well!

Let's See Some Java!

The Add2Integers Program

```
public class Add2Integers extends ConsoleProgram {
   public void run() {
      println("This program adds two numbers.");
      int n1 = readInt("Enter n1: ");
      int n2 = readInt("Enter n2: ");
      int total = n1 + n2;
      println("The total is " + total + ".");
   }
}

n1      n2      total
      17      25      42
```

```
This program adds two numbers.
Enter n1: 17
Enter n2: 25
The total is 42.
```

• A **variable** is a location where a program can store information for later use.

• A **variable** is a location where a program can store information for later use.

• A **variable** is a location where a program can store information for later use.

• Each variable has three pieces of information associated with it:

• A **variable** is a location where a program can store information for later use.

- Each variable has three pieces of information associated with it:
 - Name: What is the variable called?

• A **variable** is a location where a program can store information for later use.

- Each variable has three pieces of information associated with it:
 - Name: What is the variable called?

 A variable is a location where a program can store information for later use.

- Each variable has three pieces of information associated with it:
 - Name: What is the variable called?
 - **Type**: What sorts of things can you store in the variable?

• A **variable** is a location where a program can store information for later use.

- Each variable has three pieces of information associated with it:
 - Name: What is the variable called?
 - **Type**: What sorts of things can you store in the variable?

• A **variable** is a location where a program can store information for later use.

- Each variable has three pieces of information associated with it:
 - Name: What is the variable called?
 - **Type**: What sorts of things can you store in the variable?
 - Value: What value does the variable have at any particular moment in time?

• A **variable** is a location where a program can store information for later use.

137 int numVoters

- Each variable has three pieces of information associated with it:
 - Name: What is the variable called?
 - **Type**: What sorts of things can you store in the variable?
 - Value: What value does the variable have at any particular moment in time?

A **variable** is a location where a program can store information for later use.

137 int numVoters

Each variable has three pieces of information associated with it:

- Name: What is the variable called?
- **Type**: What sorts of things can you store in the variable?
- Value: What value does the variable have at any particular moment in time?

7thHorcrux
Harry Potter
noOrdinaryRabbit
lots_of_underscores

W
LOUD_AND_PROUD
that'sACoolName
true
C 19 H 14 O 5 S

- Legal names for variables
 - begin with a letter or an underscore (_)

```
7thHorcrux LOUD_AND_PROUD
Harry Potter that'sACoolName
noOrdinaryRabbit true
lots_of_underscores C_19_H_14_O_5_S
```

- Legal names for variables
 - begin with a letter or an underscore (_)

```
X
7thHorcrux
LOUD_AND_PROUD
Harry Potter that'sACoolName
noOrdinaryRabbit true
lots_of_underscores C_19_H_14_O_5_S
```

- Legal names for variables
 - begin with a letter or an underscore (_)
 - consist of letters, numbers, and underscores,

```
X
7thHorcrux
LOUD_AND_PROUD
Harry Potter that'sACoolName
noOrdinaryRabbit true
lots_of_underscores C_19_H_14_O_5_S
```

- Legal names for variables
 - begin with a letter or an underscore (_)
 - consist of letters, numbers, and underscores,

```
7thHorcrux LOUD_AND_PROUD
Harry Potter that'sACoolName
noOrdinaryRabbit true
lots_of_underscores C_19_H_14_O_5_S
```

Variable Names

- Legal names for variables
 - begin with a letter or an underscore (_)
 - consist of letters, numbers, and underscores, and
 - aren't one of Java's reserved words.

```
x
7thHorcrux
LOUD_AND_PROUD
Harry Potter
noOrdinaryRabbit true
lots_of_underscores C_19_H_14_O_5_S
```

Variable Names

- Legal names for variables
 - begin with a letter or an underscore ()
 - consist of letters, numbers, and underscores, and
 - aren't one of Java's reserved words.

```
7thHorcrux LOUD_AND_PROUD
Harry Potter that'sACoolName
noOrdinaryRabbit true
lots_of_underscores C_19_H_14_O_5_S
```

Variable Names

- Legal names for variables
 - begin with a letter or an underscore (_)
 - consist of letters, numbers, and underscores, and
 - aren't one of Java's reserved words.

- You are free to name variables as you see fit, but there are some standard conventions.
- Names are often written in lower camel case: capitalizeAllWordsButTheFirst

- You are free to name variables as you see fit, but there are some standard conventions.
- Names are often written in lower camel case: capitalizeAllWordsButTheFirst

- You are free to name variables as you see fit, but there are some standard conventions.
- Names are often written in lower camel case: capitalizeAllWordsButTheFirst

- You are free to name variables as you see fit, but there are some standard conventions.
- Names are often written in lower camel case: capitalizeAllWordsButTheFirst
- Choose names that describe what the variable does.
 - If it's a number of voters, call it numberOfVoters, numVoters, voters, etc.
 - Don't call it x, volumeControl, or severusSnape

- The **type** of a variable determines what can be stored in it.
- Java has several primitive types that it knows how to understand:

- The **type** of a variable determines what can be stored in it.
- Java has several primitive types that it knows how to understand:
 - int: Integers.

- The **type** of a variable determines what can be stored in it.
- Java has several primitive types that it knows how to understand:
 - int: Integers.
 - double: Real numbers.

- The **type** of a variable determines what can be stored in it.
- Java has several primitive types that it knows how to understand:
 - int: Integers.
 - double: Real numbers.

- The **type** of a variable determines what can be stored in it.
- Java has several primitive types that it knows how to understand:
 - int: Integers. (counting)
 - double: Real numbers.

- The **type** of a variable determines what can be stored in it.
- Java has several primitive types that it knows how to understand:
 - int: Integers. (counting)
 - double: Real numbers. (measuring)

- The **type** of a variable determines what can be stored in it.
- Java has several primitive types that it knows how to understand:
 - int: Integers. (counting)
 - double: Real numbers. (measuring)
 - boolean: Logical true and false.

- The **type** of a variable determines what can be stored in it.
- Java has several primitive types that it knows how to understand:
 - int: Integers. (counting)
 - double: Real numbers. (measuring)
 - boolean: Logical true and false.
 - **char**: Characters and punctuation.

Values

137

int numVotes

0.97333 double fractionVoting

0.64110

double fractionYes

```
public void run() {
```

```
public void run() {
   double ourDouble = 2.71828;
```

```
2.71828
ourDouble
```

```
public void run() {
   double ourDouble = 2.71828;
```

2.71828

ourDouble

```
public void run() {
   double ourDouble = 2.71828;
```

The syntax for declaring a variable with an initial value is

```
type name = value;
```

}

```
2.71828
ourDouble
```

```
public void run() {
   double ourDouble = 2.71828;
   int ourInt = 137;
```

```
2.71828
```

ourDouble

```
public void run() {
   double ourDouble = 2.71828;
   int ourInt = 137;
```

137

ourInt

```
2.71828
ourDouble
```

137

ourInt

```
public void run() {
   double ourDouble = 2.71828;
   int ourInt = 137;

int anotherInt;
```

```
2.71828
ourDouble
```

```
137
```

```
anotherInt
```

```
public void run() {
   double ourDouble = 2.71828;
   int ourInt = 137;

int anotherInt;
```

```
}
```

```
2.71828
ourDouble
```

```
137
ourInt
```

```
public void run() {
   double ourDouble = 2.71828;
   int ourInt = 137;
   int anotherInt;
```

```
Variables can be declared
 without an initial value:
        type name;
```

```
2.71828
ourDouble
```

```
137
```

```
anotherInt
```

```
public void run() {
   double ourDouble = 2.71828;
   int ourInt = 137;

int anotherInt;
   anotherInt = 42;
```

```
2.71828
ourDouble
```

```
137
```

```
42
anotherInt
```

```
public void run() {
   double ourDouble = 2.71828;
   int ourInt = 137;

int anotherInt;
   anotherInt = 42;
```

```
2.71828
ourDouble
```

```
137
```

ourInt

```
42
anotherInt
```

```
public void run() {
   double ourDouble = 2.71828;
   int ourInt = 137;
   int anotherInt;
   anotherInt = 42;
    An assignment statement has
              the form
           variable = value;
```

This stores value in variable.

```
2.71828
ourDouble
```

137

42

```
public void run() {
   double ourDouble = 2.71828;
   int ourInt = 137;

int anotherInt;
   anotherInt = 42;

ourInt = 13;
```

```
2.71828
ourDouble
```

13

ourInt

```
42
```

```
public void run() {
   double ourDouble = 2.71828;
   int ourInt = 137;

int anotherInt;
   anotherInt = 42;

ourInt = 13;
```

```
2.71828
ourDouble
```

13

ourInt

```
42
```

```
public void run() {
   double ourDouble = 2.71828;
   int ourInt = 137;

int anotherInt;
   anotherInt = 42;

ourInt = 13;
```

```
2.71828
ourDouble
```

13

ourInt

42

```
public void run() {
   double ourDouble = 2.71828;
   int ourInt = 137;
   int anotherInt;
   anotherInt = 42;
   ourInt = 13;
   ourInt = ourInt + 1;
```

```
2.71828
ourDouble
```

```
14
ourInt
```

```
42
anotherInt
```

```
public void run() {
   double ourDouble = 2.71828;
   int ourInt = 137;
   int anotherInt;
   anotherInt = 42;
   ourInt = 13;
   ourInt = ourInt + 1;
```

```
2.71828
ourDouble
```

```
14
ourInt
```

```
42
anotherInt
```

```
public void run() {
   double ourDouble = 2.71828;
   int ourInt = 137;
   int anotherInt;
   anotherInt = 42;
   ourInt = 13;
   ourInt = ourInt + 1;
```

```
2.71828
ourDouble
```

14 ourInt

```
public void run() {
   double ourDouble = 2.71828;
   int ourInt = 137;
   int anotherInt;
   anotherInt = 42;
   ourInt = 13;
   ourInt = ourInt + 1;
   anotherInt = ourInt;
```

```
2.71828
ourDouble
```

14 ourInt

```
public void run() {
   double ourDouble = 2.71828;
   int ourInt = 137;
   int anotherInt;
   anotherInt = 42;
   ourInt = 13;
   ourInt = ourInt + 1;
   anotherInt = ourInt;
```

```
2.71828
ourDouble
```

14 ourInt

```
public void run() {
   double ourDouble = 2.71828;
   int ourInt = 137;
   int anotherInt;
   anotherInt = 42;
   ourInt = 13;
   ourInt = ourInt + 1;
   anotherInt = ourInt;
```

```
2.71828
ourDouble
```

14

ourInt

anotherInt

14

```
public void run() {
   double ourDouble = 2.71828;
   int ourInt = 137;
   int anotherInt;
   anotherInt = 42;
   ourInt = 13;
   ourInt = ourInt + 1;
   anotherInt = ourInt;
   ourInt = 1258;
```

```
2.71828
ourDouble
```

1258

ourInt

14

```
public void run() {
   double ourDouble = 2.71828;
   int ourInt = 137;
   int anotherInt;
   anotherInt = 42;
   ourInt = 13;
   ourInt = ourInt + 1;
   anotherInt = ourInt;
   ourInt = 1258;
```

```
2.71828
ourDouble
```

1258

ourInt

14

```
public void run() {
   double ourDouble = 2.71828;
   int ourInt = 137;
   int anotherInt;
   anotherInt = 42;
   ourInt = 13;
   ourInt = ourInt + 1;
   anotherInt = ourInt;
   ourInt = 1258;
```