

Security and Privacy

Outline for Today

● Iterators and Assignment 7
● One final topic for the last assignment.
● Demo for Assignment 7.

● Security and Privacy
● A case study in privacy and security.

Iterators

● To visit every element of a collection, you can use the
“for each” loop:

 for (ElemType elem: collection) {

…

 }

● Alternatively, you can use an iterator, an object whose
job is to walk over the elements of a collection.

● The iterator has two commands:
● hasNext(), which returns whether there are any more

elements to visit, and
● next(), which returns the next element and moves the

iterator to the next position.

Java Iterators

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

Java Iterators

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

Java Iterators

137 42 2718

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

Java Iterators

137 42 2718

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

Java Iterators

137 42 2718

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iter

Java Iterators

137 42 2718

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iter

Java Iterators

137 42 2718

hasNext()?

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iter

Java Iterators

137 42 2718

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iter

Java Iterators

137 42 2718

next()!

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iter

Java Iterators

137 42 2718

next()!

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iter

Java Iterators

137 42 2718

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iter

Java Iterators

137 42 2718

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iter

Java Iterators

137 42 2718

hasNext()?

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iter

Java Iterators

137 42 2718

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iter

Java Iterators

137 42 2718

next()!

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iter

Java Iterators

137 42 2718

next()!

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iter

Java Iterators

137 42 2718

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iter

Java Iterators

137 42 2718

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iter

Java Iterators

137 42 2718

hasNext()?

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iter

Java Iterators

137 42 2718

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iter

Java Iterators

137 42 2718

next()!

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iter

Java Iterators

137 42 2718

next()!

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iter

Java Iterators

137 42 2718

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iteriter

Java Iterators

137 42 2718

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iteriter

Java Iterators

137 42 2718

hasNext()?

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iter

Java Iterators

137 42 2718

Done!

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iter

Java Iterators

137 42 2718

ArrayList<Integer> myList = /* … */

Iterator<Integer> iter = myList.iterator();
while (iter.hasNext()) {
 int curr = iter.next();

 /* … use curr … */
}

iter

Why Iterators?

● Buying a cake versus buying cake mix:
● If you buy a cake, you need to eat it soon.
● If you buy cake mix, you can eat it at your

convenience.

● For loops versus iterators:
● If you have a for loop, you always iterate

across the range at a particular point in the
code.

● If you get back an iterator, you can iterate
over it at your convenience.

A Word of Warning

A Word of Warning

● The following will loop forever on a nonempty collection:

while (collection.iterator().hasNext()) {

 /* … */

}

● Every time that you call .iterator(), you get back a new
iterator to the start of the collection.

Ibex Kitty

A Word of Warning

● The following will loop forever on a nonempty collection:

while (collection.iterator().hasNext()) {

 /* … */

}

● Every time that you call .iterator(), you get back a new
iterator to the start of the collection.

Ibex Kitty

Assignment 7 Demo

Assignment 7

● We're releasing Assignment 7
(FacePamphlet) right now. It's due on Friday,
March 21 at 11:30AM.

● Great way to synthesize everything from the
course together into one assignment.

● Due date is a hard deadline:
● No late days may be used.
● No late submissions accepted.

● Assignment review hours: Sunday, 7PM –
8PM in Hewlett 200.

Security and Privacy

Refresher: How the Internet Works

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

133.0.0.1
LOL

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

133.0.0.1
LOL

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

133.0.0.1
LOL

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

133.0.0.1
LOL

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

133.0.0.1
LOL

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

133.0.0.1
LOL

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

ROFLCOPTER

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

Sending Secrets

● When you send a message from one
computer to another over the Internet,
any of the routers between you and your
destination can read that message.

● To send secrets, the data is typically
encrypted; only the receiver can read it
and it looks like gibberish to everyone
else.

● Advice: Use https instead of http any
time you enter a password online.

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

133.0.0.1
LOL

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

133.0.0.1
LOL

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

133.0.0.1
LOL

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

133.0.0.1
LOL

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

133.0.0.1
LOL

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

133.0.0.1
LOL

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

ROFLCOPTER

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

Ethernet and WiFi

● If you send or receive data over WiFi or
Ethernet, that message can be read by anyone
else on the same physical network.

● If the data is already encrypted, this isn't a
problem.

● If the data is not already encrypted, anyone on
the same network as you can see exactly what
you're doing online.

● Password-protecting WiFi networks prevents
strangers from snooping, but does not prevent
other people on the network from reading
data.

Google Street View and WiFi

Street View: What Happened

● Google's Street View cars drove around snapping
pictures of what was visible from the street.

● To improve location information, Google recorded
information about unsecured WiFi networks it drove
by:
● SSID (network name)
● MAC address (hardware identification)
● Signal strength (proximity)

● The Street View cars also stored payloads (actual
Internet traffic) from unsecured wireless networks;
about 200GB of payloads stored.

Why Record WiFi?

● Recording WiFi information around the US
makes it possible to get much more precise
location information.
● Searches done from a particular WiFi network

can be localized based on the position of the car.
● Searches done near other WiFi networks can be

used to help pinpoint the user.
● Position-based information helps give better

search results and better advertising.
● WiFi payloads are not required to do any of

this.

Why Record Packets?

● Recording network packets would give
engineers a better view of realistic web traffic.

● For example, could see
● which websites people were visiting,
● contents of those websites,
● distribution of those websites,
● number of emails sent,
● contents of emails sent,
● etc.

Why is this a problem?

● According to Canadian legal documents,
the data Google gathered included
● medical records,
● website passwords,
● email exchanges,
● compromising content,
● etc.

● Because of the extra location information
gathered, this information could be traced
back to individual users.

How did Google let this happen?

● Public court documents suggest that a single engineer
(“Engineer Doe”) was responsible for installing the packet
recording code into the Street View cars.

● How did this happen?

● Diffusion of responsibility: everyone (probably) assumed that
Engineer Doe knew what he/she was doing.

● Engineer Doe's design documents and presentations did not
make impact clear.

● Incorrect assumptions: engineers believed that only fragments
of data would be caught, not full transmissions.

● Engineers reviewing the code were mostly checking for code
syntax and style and did not recognize the significance of
storing payloads.

● Engineers testing the cars did not notice (or did not recognize
the significance of) what they were logging.

Why No Encryption?

● Why were there so many unencrypted wireless
networks?

● No incentive for WiFi router manufacturers to add
encryption by default.

● Encrypted WiFi is slower than normal WiFi due to
the overhead of encryption and decryption.

● Encrypted WiFi is harder to set up – all computers
using the WiFi need the password, and any new
devices added to the network need that password as
well.

● Little information available to consumers about the
risks of unencrypted WiFi networks.

Why No Encryption? Part II

● If communications over the network were
encrypted, no personal information could have been
logged.

● Why wasn't that information encrypted?
● End users can't use encryption if servers don't support it.
● Economic incentives for companies to leave data

unencrypted.
– Encrypted communication is slower than unencrypted

communication.
– Encrypting data increases server expenses and increases

response time.
● Low external pressure on companies to add encryption.
● Poor communication of risk to average users.

Why Only Unencrypted Networks?

● It is possible to record SSIDs, MAC addresses, and signal
strengths of any wireless network, even encrypted ones.

● It is only possible to record (intelligble) payloads from
unencrypted networks.

● It's unclear whether it is even legal to record data from
public WiFi in the first place.
● This is currently working through the appeals courts.

● I could not find any public documents explaining the
engineers' decisions.

● Possible reasons:
● Concern that encrypted WiFi was intended to be kept private.
● Concerns about the legality of recording data from private

networks.

Why Look at This?

● I chose this example to point out the following
questions:

● How should we design technology in a way that
minimizes or properly communicates risks to users?

● How should we incentivize technology companies to
protect privacy and security when, in many cases,
only the company itself fully understands the scope
of what it's doing?

● These are ethical, societal, and political questions, not
technical ones.

● Having a deeper understanding of the technology can
help inform your answers.

Topical Announcement

● New joint majors announced:
CS + English and CS + Music.
● Complete both degrees.
● Each department waives two requirements.
● Complete a joint capstone project at the end.

● Want to learn more? Come talk to me
after lecture!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

