
Chris Piech Handout #14A
CS 106A February 1, 2017

Solution to Section #3
Portions of this handout by Eric Roberts and Patrick Young.

1. True/False questions

a) The value of a local variable named i has no direct relationship with that of a
variable named i in its caller.
Answer: True

b) The value of a parameter named x has no direct relationship with that of a variable

named x in its caller.
Answer: True

2. Tracing method execution #1
The output of Hogwarts.java is:

snitch: x = 4004, y = 1001
quaffle: x = 2003, y = 1, z = 1001
bludger: x = 1001, y = 2001, z = 2003

For this problem the main idea is that there is no connection between the names given to
variables in one method, and the names of the parameters which those variables are
assigned to during a method call. When passing a variable as an argument to a method,
Java assigns the first argument to the first parameter, the second argument to the second
parameter, and so forth, regardless of the names they are given. Giving confusing names
to parameters though, while certainly possible, constitutes bad style and should be
avoided.

3. Tracing method execution #2
The output of OneTwoThree.java is:

addOne: a = 101, b = 201
addTwo: a = 102, b = 203
addThreeAndReturnResult: a = 103, b = 206
run: a = 103, b = 206

For this problem it is important to realize that instance variables retain their values
throughout method calls whereas primitive types (such as ints and doubles) do not. When
primitive types are passed as arguments to methods their values are copied to new
variables, and therefore any changes made will be lost once the method terminates. In
order to transfer a value computed by a method back to the method that called it, it is
necessary to return that value using the return statement. Note that methods can only
return one value.

 – 2 –

4. Random circles

/*
 * File: RandomCircles.java
 * ------------------------
 * This program draws a set of 10 circles with different sizes,
 * positions, and colors. Each circle has a randomly chosen
 * color, a randomly chosen radius between 5 and 50 pixels,
 * and a randomly chosen position on the canvas, subject to
 * the condition that the entire circle must fit inside the
 * canvas without extending past the edge.
 */

import acm.program.*;
import acm.graphics.*;
import acm.util.*;

public class RandomCircles extends GraphicsProgram {

/** Number of circles */
 private static final int NCIRCLES = 10;

/** Minimum radius */
 private static final double MIN_RADIUS = 5;

/** Maximum radius */
 private static final double MAX_RADIUS = 50;

 public void run() {
 for (int i = 0; i < NCIRCLES; i++) {
 double r = rgen.nextDouble(MIN_RADIUS, MAX_RADIUS);
 double x = rgen.nextDouble(0, getWidth() - 2 * r);
 double y = rgen.nextDouble(0, getHeight() - 2 * r);
 GOval circle = new GOval(x, y, 2 * r, 2 * r);
 circle.setFilled(true);
 circle.setColor(rgen.nextColor());
 add(circle);
 }
 }

/* Private instance variable */
 private RandomGenerator rgen = RandomGenerator.getInstance();

}

Note: on some runs of the program you might not see 10 circles because some circles will
be drawn white, or happen be drawn on top of other previously drawn circles, potentially
blocking them entirely from view.

 – 3 –

5. Drawing lines

/*
 * File: RubberBanding.java
 * ------------------------
 * This program allows users to create lines on the graphics
 * canvas by clicking and dragging with the mouse. The line
 * is redrawn from the original point to the new endpoint, which
 * makes it look as if it is connected with a rubber band.
 */

import acm.graphics.*;
import acm.program.*;
import java.awt.event.*;

/** This class allows users to drag lines on the canvas */
public class RubberBanding extends GraphicsProgram {

 public void run() {
 addMouseListeners();
 }

/** Called on mouse press to create a new line */
 public void mousePressed(MouseEvent e) {
 double x = e.getX();
 double y = e.getY();
 line = new GLine(x, y, x, y);
 add(line);
 }

/** Called on mouse drag to reset the endpoint */
 public void mouseDragged(MouseEvent e) {
 double x = e.getX();
 double y = e.getY();
 line.setEndPoint(x, y);
 }

/* Private instance variables */
 private GLine line;
}

Style Focus for Section 3:

When to Use Instance Variables: Often, we can solve our programming problems by
choosing to make our variables instance variables. However, this is not always the right
choice. Instance variables should only be used when this value needs to be accessed in
multiple methods of the class, and it makes sense for multiple methods to have access.
Usually, this is only the case when there is some state information that must be
maintained in the object between method calls. Most of the time, you actually should be
using local variables and parameters. In RandomCircles, can you explain why circle
should be local and not an instance variable?

