
Chris Piech Section 8 Solutions
CS 106A March 8, 2017

Solution to Section #8
Parts of this handout by Brandon Burr and Patrick Young

/*
 * FlightPlanner.java
 * ------------------
 * Reads in a file of cities and their corresponding flights,
 * and allows the user to plan a flight route.
 */

import acm.program.*;
import acm.util.*;
import java.io.*;
import java.util.*;

public class FlightPlanner extends ConsoleProgram {

 /** Runs the program. */
 public void run() {
 println("Welcome to Flight Planner!");
 readFlightData("flights.txt");

 println("Here's a list of all the cities in our database:");
 printCityList(cities);

 println("Let's plan a round-trip route!");
 String startCity = readLine("Enter the starting city: ");
 ArrayList<String> route = new ArrayList<String>();
 route.add(startCity);
 String currentCity = startCity;

 while (true) {
 String nextCity = getNextCity(currentCity);
 route.add(nextCity);
 if (nextCity.equals(startCity)) break;
 currentCity = nextCity;
 }

 printRoute(route);
 }

 /** Ask user for the name of the next city in the route */
 private String getNextCity(String city) {
 ArrayList<String> destinations = getDestinations(city);
 String nextCity = null;
 while (true) {
 println("From " + city + " you can fly directly to:");
 printCityList(destinations);
 String prompt = "Where do you want to go from " + city + "? ";
 nextCity = readLine(prompt);
 if (destinations.contains(nextCity)) break;
 println("You can't get to that city by a direct flight.");
 }
 return nextCity;
 }

 – 2 –

 /**
 * Given a starting city, looks up the destinations from that
 * city in the HashMap of flights, and return an array list of
 * the destinations that are available.
 */
 private ArrayList<String> getDestinations(String fromCity) {
 return flights.get(fromCity);
 }

 /**
 * Prints a list of cities from the array list. Each city name is
 * indented by a space.
 */
 private void printCityList(ArrayList<String> cityList) {
 for(int i = 0; i < cityList.size(); i++) {
 String city = cityList.get(i);
 println(" " + city);
 }
 }

 /**
 * Given a list of city names, prints out the flight
 * route, with a " -> " between each pair of cities
 */
 private void printRoute(ArrayList<String> route) {
 println("The route you've chosen is: ");
 for (int i = 0; i < route.size(); i++) {
 if (i > 0) print(" -> ");
 print(route.get(i));
 }
 println();
 }

 /**
 * Reads in the city information from the given file storing the
 * information in both the ArrayList of cities and the HashMap of
 * flights.
 */
 private void readFlightData(String filename) {
 flights = new HashMap<String, ArrayList<String>>();
 cities = new ArrayList<String>();
 try {
 BufferedReader rd =
 new BufferedReader(new FileReader(filename));
 while (true) {
 String line = rd.readLine();
 if (line == null) break;
 if (line.length() != 0) {
 readFlightEntry(line);
 }
 }
 rd.close();
 } catch (IOException ex) {
 throw new ErrorException(ex);

 – 3 –

 }
 }

 /**
 * Reads a single flight entry from the line passed as an argument,
 * which should be in the form
 *
 * fromCity -> toCity
 *
 * Each new city is added to the ArrayList cities, and each new
 * flight is recorded by adding a new destination city to the
 * ArrayList stored in the HashMap flights under the key for the
 * starting city.
 */
 private void readFlightEntry(String line) {
 String[] cities = line.split("->");
 if (cities.length != 2) {
 throw new ErrorException("Illegal flight entry " + line);
 }

 // Note: trim() removes leading/ending spaces from a string
 String fromCity = cities[0].trim();
 String toCity = cities[1].trim();
 defineCity(fromCity);
 defineCity(toCity);
 getDestinations(fromCity).add(toCity);
 }

 /**
 * Defines a city if it has not already been defined. Defining
 * a city consists of entering it in the cities array and
 * entering an empty ArrayList in the flights table to show
 * that it has no destinations yet.
 */
 private void defineCity(String cityName) {
 if (!cities.contains(cityName)) {
 cities.add(cityName);
 flights.put(cityName, new ArrayList<String>());
 }
 }

 /* Private instance variables */
 private Map<String, ArrayList<String>> flights;
 private ArrayList<String> cities;
}

