
Simple Arrays

Eric Roberts
CS 106A

February 15, 2017

Once upon a time . . .

A Quick Review of Array Lists
• In Java, an array list is an abstract type used to store a

linearly ordered collection of similar data values.
• When you use an array list, you specify the type ArrayList,

followed by the element type enclosed in angle brackets, as in
ArrayList<String> or ArrayList<Integer>. In Java, such
types are called parameterized types.

• Each element is identified by its position number in the list,
which is called its index. In Java, index numbers always
begin with 0 and therefore extend up to one less than the size
of the array list.

• Operations on array lists are implemented as methods in the
ArrayList class, as shown on the next slide.

Common ArrayList Methods
list.size()

Returns the number of values in the list.
list.isEmpty()

Returns true if the list is empty.
list.set(i, value)

Sets the ith entry in the list to value.
list.get(i)

Returns the ith entry in the list.
list.add(value)

Adds a new value to the end of the list.
list.add(index, value)

Inserts the value before the specified index position.
list.remove(index)

Removes the value at the specified index position.
list.clear()

Removes all values from the list.

Arrays in Java
• The Java ArrayList class is derived from an older, more

primitive type called an array, which is a collection of
individual data values with two distinguishing characteristics:

• As with array lists, the individual values in an array are called
elements, the type of those elements (which must be the same
because arrays are homogeneous) is called the element type,
and the number of elements is called the length of the array.
Each element is identified by its position number in the array,
which is called its index.

An array is ordered. You must be able to count off the values:
here is the first, here is the second, and so on.

1.

An array is homogeneous. Every value in the array must have
the same type.

2.

Arrays Have Fewer Capabilities
list.size()

Returns the number of values in the list.
list.isEmpty()

Returns true if the list is empty.
list.set(i, value)

Sets the ith entry in the list to value.
list.get(i)

Returns the ith entry in the list.
list.add(value)

Adds a new value to the end of the list.
list.add(index, value)

Inserts the value before the specified index position.
list.remove(index)

Removes the value at the specified index position.
list.clear()

Removes all values from the list.

array.length

array[i] = value

array[i]

´

´
´
´
´

So Why Use Arrays?
• Arrays are built into the Java language and offer a more

expressive selection syntax.
• You can create arrays of primitive types like int and double

and therefore don’t need to use wrapper types like Integer
and Double.

• It is much easier to create arrays of a fixed, predetermined
size.

• Java makes it easy to initialize the elements of an array.
• Many methods in the Java libraries take arrays as parameters

or return arrays as a result. You need to understand arrays in
order to use those methods.

Declaring an Array Variable
• As with any other variable, array variables must be declared

before you use them. In Java, the most common syntax for
declaring an array variable looks like this:

type[] name = new type[n];

where type is the element type, name is the array name, and n
is an integer expression indicating the number of elements.

• This declaration syntax combines two operations. The part of
the line to the left of the equal sign declares the variable; the
part to the right creates an array value with the specified
number of elements.

• Even though the two operations are distinct, it will help you
avoid errors if you make a habit of initializing your arrays
when you declare them.

An Example of Array Declaration
• The following declaration creates an array called intArray

consisting of 10 values of type int:

int[] intArray = new int[10];

• This easiest way to visualize arrays is to think of them as a
linear collection of boxes, each of which is marked with its
index number. You might therefore diagram the intArray
variable by drawing something like this:

0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0
9

intArray

• Java automatically initializes each element of a newly created
array to its default value, which is zero for numeric types,
false for values of type boolean, and null for objects.

Array Selection
• Given an array such as the intArray variable at the bottom of

this slide, you can get the value of any element by writing the
index of that element in brackets after the array name. This
operation is called selection.

0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0
9

intArray

• You can, for example, select the initial element by writing
intArray[0]

• The result of a selection operation is essentially a variable. In
particular, you can assign it a new value. The following
statement changes the value of the last element to 42:

intArray[9] = 42;

42

Cycling through Array Elements
• One of the most useful things about array selection is that the

index does not have to be a constant. In many cases, it is
useful to have the index be the control variable of a for loop.

for (int i = 0; i < intArray.length; i++) {
intArray[i] = 0;

}

• As an example, you can reset every element in intArray to
zero using the following for loop:

• The standard for loop pattern that cycles through each of the
array elements in turn looks like this:

for (int i = 0; i < array.length; i++) {
Operations involving the ith element of the array

}

Selecting the length field returns the number of elements.

/**
* Calculates the sum of an integer array.
* @param array An array of integers
* @return The sum of the values in the array
*/

private int sumArray(int[] array) {

}

Exercise: Summing an Array
Write a method sumArray that takes an array of integers and
returns the sum of those values.

int sum = 0;
for (int i = 0; i < array.length; i++) {

sum += array[i];
}
return sum;

Static Initialization
• Java makes it easy to initialize the elements of an array as part

of a declaration. The syntax is

type[] name = {elements};

where elements is a list of the elements of the array separated
by commas. The length of the array is automatically set to be
the number of values in the list.

• For example, the following declaration initializes the variable
powersOfTen to the values 100, 101, 102, 103, and 104:

int[] powersOfTen = { 1, 10, 100, 1000, 10000 };

This declaration creates an integer array of length 5 and
initializes the elements as specified.

Passing Arrays as Parameters
• When you pass an array as a parameter to a method or return

a method as a result, only the reference to the array is actually
passed between the methods.

• The effect of Java’s strategy for representing arrays as
references is that the elements of an array are effectively
shared between the caller and callee. If a method changes an
element of an array passed as a parameter, that change will
persist after the method returns.

• The next slide contains a simulated version of a program that
performs the following actions:

Generates an array containing the integers 0 to N-1.1.
Prints out the elements in the array.2.
Reverses the elements in the array.3.
Prints out the reversed array on the console.4.

The ReverseArray Program

skip simulation

public void run() {
int n = readInt("Enter number of elements: ");
int[] intArray = createIndexArray(n);
println("Forward: " + arrayToString(intArray));
reverseArray(intArray);
println("Reverse: " + arrayToString(intArray));

} n

10
intArray

ReverseArray

Enter number of elements: 10
Forward: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Reverse: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

private int[] createIndexArray(int n) {
int[] array = new int[n];
for (int i = 0; i < n; i++) {

array[i] = i;
}
return array;

}
10

n arrayi

012345678910

0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0
9

09 18 27 36 45 54 63 72 81 90

private String arrayToString(int[] array) {
String str = "";
for (int i = 0; i < array.length; i++) {

if (i > 0) str += ", ";
str += array[i];

}
return "[" + str + "]";

}
arrayistr

01234567891000, 10, 1, 20, 1, 2, 30, 1, 2, 3, 40, 1, 2, 3, 4, 50, 1, 2, 3, 4, 5, 60, 1, 2, 3, 4, 5, 6, 70, 1, 2, 3, 4, 5, 6, 7, 80, 1, 2, 3, 4, 5, 6, 7, 8, 9

private void reverseArray(int[] array) {
for (int i = 0; i < array.length / 2; i++) {

swapElements(array, i, array.length - i - 1);
}

}

arrayi

012345

private void swapElements(int[] array, int p1, int p2) {
int temp = array[p1];
array[p1] = array[p2];
array[p2] = temp;

}
array

9
p2

0
p1temp

0

public void run() {
int n = readInt("Enter number of elements: ");
int[] intArray = createIndexArray(n);
println("Forward: " + arrayToString(intArray));
reverseArray(intArray);
println("Reverse: " + arrayToString(intArray));

} n intArray

0 1 2 3 4 5 6 7 8

9 8 7 6 5 4 3 2 1 0
9

0

10

Using Arrays for Tabulation
• Arrays turn out to be useful when you have a set of data

values and need to count how many values fall into each of a
set of ranges. This process is called tabulation.

• The example of tabulation used in the text is a program that
counts how many times each of the 26 letters appears in a
sequence of text lines. Such a program would be very useful
in solving codes and ciphers, as described on the next slide.

• Tabulation uses arrays in a slightly different way from those
applications that use them to store a list of data. When you
implement a tabulation program, you use each data value to
compute an index into an integer array that keeps track of
how many values fall into that category.

Cryptograms
• A cryptogram is a puzzle in which a message is encoded by

replacing each letter in the original text with some other letter.
The substitution pattern remains the same throughout the
message. Your job in solving a cryptogram is to figure out
this correspondence.

• In this story, Poe describes the technique
of assuming that the most common letters
in the coded message correspond to the
most common letters in English, which
are E, T, A, O, I, N, S, H, R, D, L, and U.

• One of the most famous cryptograms was
written by Edgar Allan Poe in his short
story “The Gold Bug.”

Edgar Allan Poe (1809-1849)

Poe’s Cryptogram Puzzle
53‡‡†305))6*;4826)4‡•)4‡);806*;48†8¶
60))85;1‡(;:‡*8†83(88)5*†;46(;88*96*
?;8)*‡(;485);5*†2:*‡(;4956*2(5*–4)8¶
8*;4069285);)6†8)4‡‡;1(‡9;48081;8:8‡
1;48†85;4)485†528806*81(‡9;48;(88;4(
‡?34;48)4‡;161;:188;‡?;

8 33
; 26
4 19
‡ 16
) 16
* 13
5 12
6 11
(10
† 8
1 8
0 6
9 5
2 5
: 4
3 4
? 3
¶ 2
– 1
• 1

53‡‡†305))6*;4826)4‡•)4‡);806*;48†8¶
60))85;1‡(;:‡*8†83(88)5*†;46(;88*96*
?;8)*‡(;485);5*†2:*‡(;4956*2(5*–4)8¶
8*;4069285);)6†8)4‡‡;1(‡9;48081;8:8‡
1;48†85;4)485†528806*81(‡9;48;(88;4(
‡?34;48)4‡;161;:188;‡?;

53‡‡†305))6*;4E26)4‡•)4‡);E06*;4E†E¶
60))E5;1‡(;:‡*E†E3(EE)5*†;46(;EE*96*
?;E)*‡(;4E5);5*†2:*‡(;4956*2(5*–4)E¶
E*;40692E5);)6†E)4‡‡;1(‡9;4E0E1;E:E‡
1;4E†E5;4)4E5†52EE06*E1(‡9;4E;(EE;4(
‡?34;4E)4‡;161;:1EE;‡?;

53‡‡†305))6*THE26)H‡•)H‡)TE06*THE†E¶
60))E5T1‡(T:‡*E†E3(EE)5*†TH6(TEE*96*
?TE)*‡(THE5)T5*†2:*‡(TH956*2(5*–H)E¶
E*TH0692E5)T)6†E)H‡‡T1(‡9THE0E1TE:E‡
1THE†E5TH)HE5†52EE06*E1(‡9THET(EETH(
‡?3HTHE)H‡T161T:1EET‡?T

AGOODGLASSINTHEBISHOPSHOSTELINTHEDEV
ILSSEATFORTYONEDEGREESANDTHIRTEENMIN
UTESNORTHEASTANDBYNORTHMAINBRANCHSEV
ENTHLIMBEASTSIDESHOOTFROMTHELEFTEYEO
FTHEDEATHSHEADABEELINEFROMTHETREETHR
OUGHTHESHOTFIFTYFEETOUT

Implementation Strategy
The basic idea behind the program to count letter frequencies is
to use an array with 26 elements to keep track of how many times
each letter appears. As the program reads the text, it increments
the array element that corresponds to each letter.

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0
25

GILLIRBSAWT

1 11 11 11 1221

import acm.program.*;

/**
* This program creates a table of the letter frequencies in a
* paragraph of input text terminated by a blank line.
*/
public class CountLetterFrequencies extends ConsoleProgram {

public void run() {
println("This program counts letter frequencies.");
println("Enter a blank line to indicate the end of the text.");
initFrequencyTable();
while (true) {

String line = readLine();
if (line.length() == 0) break;
countLetterFrequencies(line);

}
printFrequencyTable();

}

/* Initializes the frequency table to contain zeros */
private void initFrequencyTable() {

frequencyTable = new int[26];
for (int i = 0; i < 26; i++) {

frequencyTable[i] = 0;
}

}

skip codepage 1 of 2

CountLetterFrequencies

import acm.program.*;

/**
* This program creates a table of the letter frequencies in a
* paragraph of input text terminated by a blank line.
*/
public class CountLetterFrequencies extends ConsoleProgram {

public void run() {
println("This program counts letter frequencies.");
println("Enter a blank line to indicate the end of the text.");
initFrequencyTable();
while (true) {

String line = readLine();
if (line.length() == 0) break;
countLetterFrequencies(line);

}
printFrequencyTable();

}

/* Initializes the frequency table to contain zeros */
private void initFrequencyTable() {

frequencyTable = new int[26];
for (int i = 0; i < 26; i++) {

frequencyTable[i] = 0;
}

}

/* Counts the letter frequencies in a line of text */
private void countLetterFrequencies(String line) {

for (int i = 0; i < line.length(); i++) {
char ch = line.charAt(i);
if (Character.isLetter(ch)) {

int index = Character.toUpperCase(ch) - 'A';
frequencyTable[index]++;

}
}

}

/* Displays the frequency table */
private void printFrequencyTable() {

for (char ch = 'A'; ch <= 'Z'; ch++) {
int index = ch - 'A';
println(ch + ": " + frequencyTable[index]);

}
}

/* Private instance variables */
private int[] frequencyTable;

}

CountLetterFrequencies

skip codepage 2 of 2

Arrays and Graphics
• Arrays turn up frequently in graphical programming. Any

time that you have repeated collections of similar objects, an
array provides a convenient structure for storing them.

• As an aesthetically pleasing illustration of both the use of
arrays and the possibility of creating interesting pictures using
nothing but straight lines, the text presents the YarnPattern
program, which simulates the following process:
– Place a set of pegs at regular intervals around a rectangular border.
– Tie a piece of colored yarn around the peg in the upper left corner.
– Loop that yarn around the peg a certain distance DELTA ahead.
– Continue moving forward DELTA pegs until you close the loop.

import acm.graphics.*;
import acm.program.*;
import java.awt.*;

/**
* This program creates a pattern that simulates the process of
* winding a piece of colored yarn around an array of pegs along
* the edges of the canvas.
*/
public class YarnPattern extends GraphicsProgram {

public void run() {
initPegArray();
int thisPeg = 0;
int nextPeg = -1;
while (thisPeg != 0 || nextPeg == -1) {

nextPeg = (thisPeg + DELTA) % N_PEGS;
GPoint p0 = pegs[thisPeg];
GPoint p1 = pegs[nextPeg];
GLine line = new GLine(p0.getX(), p0.getY(), p1.getX(), p1.getY());
line.setColor(Color.MAGENTA);
add(line);
thisPeg = nextPeg;

}
}

The YarnPattern Program

skip codepage 1 of 2

import acm.graphics.*;
import acm.program.*;
import java.awt.*;

/**
* This program creates a pattern that simulates the process of
* winding a piece of colored yarn around an array of pegs along
* the edges of the canvas.
*/
public class YarnPattern extends GraphicsProgram {

public void run() {
initPegArray();
int thisPeg = 0;
int nextPeg = -1;
while (thisPeg != 0 || nextPeg == -1) {

nextPeg = (thisPeg + DELTA) % N_PEGS;
GPoint p0 = pegs[thisPeg];
GPoint p1 = pegs[nextPeg];
GLine line = new GLine(p0.getX(), p0.getY(), p1.getX(), p1.getY());
line.setColor(Color.MAGENTA);
add(line);
thisPeg = nextPeg;

}
}

/* Initializes the array of pegs */
private void initPegArray() {

int pegIndex = 0;
for (int i = 0; i < N_ACROSS; i++) {

pegs[pegIndex++] = new GPoint(i * PEG_SEP, 0);
}
for (int i = 0; i < N_DOWN; i++) {

pegs[pegIndex++] = new GPoint(N_ACROSS * PEG_SEP, i * PEG_SEP);
}
for (int i = N_ACROSS; i > 0; i--) {

pegs[pegIndex++] = new GPoint(i * PEG_SEP, N_DOWN * PEG_SEP);
}
for (int i = N_DOWN; i > 0; i--) {

pegs[pegIndex++] = new GPoint(0, i * PEG_SEP);
}

}

/* Private constants */
private static final int DELTA = 67; /* How many pegs to advance */
private static final int PEG_SEP = 10; /* Pixels separating each peg */
private static final int N_ACROSS = 50; /* Pegs across (minus a corner) */
private static final int N_DOWN = 30; /* Pegs down (minus a corner) */
private static final int N_PEGS = 2 * N_ACROSS + 2 * N_DOWN;

/* Private instance variables */
private GPoint[] pegs = new GPoint[N_PEGS];

}

The YarnPattern Program

page 2 of 2

A Digression on the ++ Operator

pegs[pegIndex++] = new GPoint(x, y);

• The YarnPattern program illustrates a new form of the ++
operator in the various statements with the following form:

• The pegIndex++ expression adds one to pegIndex just as if
has all along. The question is what value is used as the index,
which depends on where the ++ operator appears:
– If the ++ operator comes after a variable, the variable is incremented

after the value of the expression is determined. Thus, in this example,
the expression pegs[pegIndex++] therefore selects the element of
the array at the current value of pegIndex and then adds one to
pegIndex afterwards, which moves it on to the next index position.

– If the ++ operator comes before a variable, the variable is incremented
first and the new value is used in the surrounding context.

• The -- operator behaves similarly but subtracts one from the
variable instead.

A Larger Sample Run
YarnPattern

The End

