
Piech,	CS106A,	Stanford	University

Data Structure Design II
Chris Piech

CS106A, Stanford University



Piech,	CS106A,	Stanford	University

Today in lecture



Piech,	CS106A,	Stanford	University

We have used many variable types



Piech,	CS106A,	Stanford	University

E.g. GRect



Piech,	CS106A,	Stanford	University

E.g. String



Piech,	CS106A,	Stanford	University

E.g. AudioSample



Piech,	CS106A,	Stanford	University

Today we learn how to define our own



Piech,	CS106A,	Stanford	University

We use new Classes (written in new files) to 
define new variable types



Piech,	CS106A,	Stanford	University

Bouncing Balls



Piech,	CS106A,	Stanford	University

class:	A	template	for	a	new	type	of	variable.

Classes are like blueprints



Piech,	CS106A,	Stanford	University

You must define three things

1. What variables does each instance store?

2. What methods can you call on an instance?

3. What happens when you make a new one?

*details on how to define these three things coming soon



Piech,	CS106A,	Stanford	University

A Ball Variable Type

1. What variables does each instance store?

2. What methods can you call on an instance?

3. What happens when you make a new one?

*details on how to define these three things coming soon

• Each ball has its own Goval (lets call it shape)
• Each ball has its own dx
• Each ball has its own dy

• heartbeat();
• getShape();

• Sets initial values for all the ”instance” vars



Piech,	CS106A,	Stanford	University

public class Ball {
/* instance vars! */

// each ball has a “shape”
private GOval shape = null; 

// each ball has a dx
private double dx = 0.0;

// each ball has a dy
private double dy = 0.0;

...

Instance variables say what each ball ”has”



Piech,	CS106A,	Stanford	University

public class Ball {
/* instance vars! */

// each ball has a “shape”
private GOval shape = null; 

// each ball has a dx
private double dx = 0.0;

// each ball has a dy
private double dy = 0.0;

// This defines what happens when you make a new ball
public Ball(int screenWidth, int screenHeight) {

RandomGenerator rg = RandomGenerator.getInstance();
double x = rg.nextInt(screenWidth - BALL_SIZE);
double y = rg.nextInt(screenHeight - BALL_SIZE);
shape = new GOval(x, y, BALL_SIZE, BALL_SIZE);
shape.setFilled(true);
shape.setColor(Color.BLUE);
dx = getRandomSpeed();
dy = getRandomSpeed();

}

...

2. The constructor defines 
what happens when you 

call new



Piech,	CS106A,	Stanford	University

public void heartbeat(int screenWidth, int screenHeight) {
shape.move(dx, dy);
reflectOffWalls(screenWidth, screenHeight);

}

public GOval getShape() {
return shape;

}

...

3. Public methods define 
what methods the “client” 

can call on instances



Piech,	CS106A,	Stanford	University

public void heartbeat(int screenWidth, int screenHeight) {
shape.move(dx, dy);
reflectOffWalls(screenWidth, screenHeight);

}

public GOval getShape() {
return shape;

}

private void reflectOffWalls(int sWidth, int sHeight) {
if(shape.getY() < 0) {

dy *= -1;
}
if(shape.getY() > sHeight - BALL_SIZE) {

dy *= -1;
}
if(shape.getX() < 0) {

dx *= -1;
}
if(shape.getX() > sWidth - BALL_SIZE) {

dx *= -1;
}

}

4. Private methods are 
allowed



Piech,	CS106A,	Stanford	University

What does a class do?



Piech,	CS106A,	Stanford	University

A class defines a new variable type



Piech,	CS106A,	Stanford	University

You must define three things

1. What variables does each instance store?

2. What methods can you call on an instance?

3. What happens when you make a new one?



Piech,	CS106A,	Stanford	University

Wait… if each ball has it’s own dx and dy. 
How does Java know which one to use?



Piech,	CS106A,	Stanford	University

public class BouncingBalls extends GraphicsProgram {
public void run() {

// make a few new balls
Ball a = new Ball(getWidth(), getHeight());
Ball b = new Ball(getWidth(), getHeight());

// call a method on one of the balls
a.heartbeat(getWidth(), getHeight());

}
}

run
a

b
dx = 1.0
dy = 1.5

dx = -1.2
dy = -1.1



Piech,	CS106A,	Stanford	University

public class BouncingBalls extends GraphicsProgram {
public void run() {

// make a few new balls
Ball a = new Ball(getWidth(), getHeight());
Ball b = new Ball(getWidth(), getHeight());

// call a method on one of the balls
a.heartbeat(getWidth(), getHeight());

}
}

public void heartbeat(int screenWidth, int screenHeight) {
shape.move(dx, dy);
reflectOffWalls(screenWidth, screenHeight);

}

run
a

b

heartbeat this

sWidth

sHidth

dx = 1.0
dy = 1.5

dx = -1.2
dy = -1.1

800

600



Piech,	CS106A,	Stanford	University

public class BouncingBalls extends GraphicsProgram {
public void run() {

// make a few new balls
Ball a = new Ball(getWidth(), getHeight());
Ball b = new Ball(getWidth(), getHeight());

// call a method on one of the balls
a.heartbeat(getWidth(), getHeight());

}
}

public void heartbeat(int screenWidth, int screenHeight) {
shape.move(dx, dy);
reflectOffWalls(screenWidth, screenHeight);

}

run
a

b

heartbeat this

sWidth

sHidth

dx = 1.0
dy = 1.5

dx = -1.2
dy = -1.1

800

600



Piech,	CS106A,	Stanford	University

Tl;dr: Java knows which Ball 
you called heartbeat on



Piech,	CS106A,	Stanford	University



Piech,	CS106A,	Stanford	University



Piech,	CS106A,	Stanford	University



Piech,	CS106A,	Stanford	University

Wall of abstraction

FishTank

heartbeat

getImage



Piech,	CS106A,	Stanford	University

private boolean isLeftImgShown;

• encapsulation:	Hiding	implementation	details	of	an	
object	from	its	clients.

– Encapsulation	provides	abstraction.
• separates	external	view	(behavior)	from	internal	view	(state)

– Encapsulation	protects	the	integrity	of	an	object's	data.

• A	class's	instance	variables	should	be	declared	private.
– No	code	outside	the	class	can	access	or	change	it.

Adding Privacy



Piech,	CS106A,	Stanford	University

What does a class do?



Piech,	CS106A,	Stanford	University

A class defines a new variable type



Piech,	CS106A,	Stanford	University

You must define three things

1. What variables does each instance store?

2. What methods can you call on an instance?

3. What happens when you make a new one?



Piech,	CS106A,	Stanford	University

More Practice


