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Simulator
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Has an img
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The job of a fish is 
to update its image 

and goal each 
heartbeat
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Simulator

FishTank

FishFishFish

Architecture

img goalimgimg goalgoal

Has a tank

Has many fish

Has an img
Has a goal

The job of a fish 
tank is to keep 

track of all the fish 
and to tell them to 

update each 
heartbeat
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Simulator

FishTank

FishFishFish

Architecture

img goalimgimg goalgoal

Has a tank

Has many fish

Has an img
Has a goal

The job of the 
simulator is to 
“control” the 

program. Handle 
user events, run 

animation.
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Whose job is it to put the imges
on the screen?
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Simulator

FishTank

FishFishFish

Architecture

img goalimgimg goalgoal

Has a tank

Has many fish

Has an img
Has a goal

The job of a fish 
tank is to manage 
the display and 

state. 
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extends

Make a class inherit all the 
instance variables and methods 

of another class
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public class Simulator extends GraphicsProgram {
// class definition

} 
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public class NameSurferGraph extends GCanvas {
// class definition

} 
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public class FishTank extends GCanvas {
// class definition

} 
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Simulator

FishTank
extends
GCanvas

FishFishFish

Architecture

img goalimgimg goalgoal

Has a tank

Has many fish

Has an img
Has a goal

Is a GCanvas
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implements

I promise that this class will define 
a few given methods
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public class NameSurferGraph extends GCanvas,
implements ComponentListener {
// class definition

} 
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implements

I promise that this class will define 
a few given methods

Also a cheeky way to share constants between classes
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Four Prototypical Trajectories

Machine	Learning
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Four Prototypical Trajectories

Machine	Learning
or,	How	we	learned	to	decompose
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Four Prototypical Trajectories

There	is	something	going	on
in	the	world	of	AI
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Four Prototypical Trajectories

Something	big	(for	us)…
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Four Prototypical Trajectories

[suspense]
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How can we develop intelligent agents?
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Volunteer



Piech,	CS106A,	Stanford	University

How can we develop intelligent agents?

Computer	
programs

Better	than
chance As	well	as

humans
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1952 1955

Early Optimism 1950
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Early Optimism 1950

“Machines will be capable, 
within twenty years, of 
doing any work a man can 
do.” 
–Herbert Simon, 1952
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The	world	is	too	complex

Underwhelming Results 1950s to 1980s
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Machine Learning: Learn From Experience
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Four Prototypical Trajectories

Some	success
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Four Prototypical Trajectories

Hard	problems	seemed	impossible.
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Can we predict hand written digits?
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Can we predict birds vs planes?
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Vision is Hard



Piech,	CS106A,	Stanford	University

[

Why	is	this	hard?
You see this: 

But the camera sees this:

[Andrew Ng]

Vision is Hard
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Motorcycle

Motorcycle

Motorcycle

Motorcycle

Motorcycle Motorcycle

Motorcycle

Motorcycle

Motorcycle

Not Perfect…
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Great idea inspired by biology
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Neuron
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Neuron
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Neuron
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Neuron
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Neuron
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Some Inputs are More Important
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Artificial Neuron

2

3

-2

1
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Artificial Neuron
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Artificial Neuron
1

1

0

1

2

3

-2

1

6 0.99

buildup = input1 * weight1 +
input2 * weight2 +
input3 * weight3 +
input4 * weight4 
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Artificial Neuron
1

1

0

1

2

3

-2

1

6 0.99

buildup = 1 * 2 +
1 * 3 +
0 * -2 +
1 * 1
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Sigmoid Function
1

1

0

1

2

3

-2

1

6 0.99

1

1 + e�x
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Java Demo
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Digit Recognition Example
Let’s make feature vectors from pictures of numbers

x

(i) = [0, 0, 0, 0, . . . , 1, 0, 0, 1, . . . 0, 0, 1, 0]

x

(i) = [0, 0, 1, 1, . . . , 0, 1, 1, 0, . . . 0, 1, 0, 0]

y(i) = 0

y(i) = 1

input

label

label

input
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Single Neuron

This means it 
predicts a 0 

…
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Single Neuron

This means it 
predicts a 0 

Indicates fully 
connected

…
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Single Neuron

This means it 
predicts a 1 

…
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Not So Good

This means it 
predicts a 1 

…
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• Single Neuron:

• Neural network

Logistic Regression and Neural Networks
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A neuron Artificial Neuron

Your brain Neural Network

Actually, it’s probably someone else’s brain

Biological Basis for Neural Networks
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We Can Put Neurons Together

This means it 
predicts a 0 

…
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We Can Put Neurons Together

Look at a single “hidden” neuron

This means it 
predicts a 0 

There is an 
adjustable parameter 
for every connection

…
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What Does This Look Like in Code?
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Aside: decomposition
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How do we get those weights?
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Neural Network

Each node 
represents a 

neuron (or a vector 
of neurons)

Each edge 
represents the 
weight of the 
interaction
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Forward Pass…
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Forward Pass

Each node 
represents a 

neuron (or a vector 
of neurons)

Each edge 
represents the 
weight of the 
interaction
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Forward Pass
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Forward Pass

Each node 
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Forward Pass

Each node 
represents a 

neuron (or a vector 
of neurons)

Each edge 
represents the 
weight of the 
interaction
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Backward Pass…
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Backward Pass
The image had a 0 

but we predicted a 1
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Backward Pass
The image had a 0 

but we predicted a 1We start by making our 
missprediction a 
numerical “loss”
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Backward Pass
The image had a 0 

but we predicted a 1We start by making our 
missprediction a 
numerical “loss”

@Loss

@EdgeWeight

For each edge weight 
we calculate
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Gradient of output layer params

@ŷ
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(ŷ)
j

1

A

2

41� �

0

@
mhX

j=0

hj✓
(ŷ)
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@ŷ
· @ŷ
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Chain Rule Down the Network



Piech,	CS106A,	Stanford	University

Artificial Neurons: One of the greatest 
decompositions of our lifetimes
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model.calculatePartialDerivative(data)
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model.update(data)
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Works for any number of layers

Weight between two neurons
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Let’s Train!

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
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Like lego pieces
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1 Trillion Artificial Neurons

GoogLeNet Brain
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GoogLeNet Brain Graph

22 layers deep

Multiple,
Multi class output
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Top	stimuli	from	the	test	set Optimal	stimulus	
by	numerical	optimization

Le,	et	al.,	Building	high-level	features	using	large-scale	unsupervised	learning.	ICML	2012

The Face Neuron
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Optimal	stimulus	
by	numerical	optimization

Le,	et	al.,	Building	high-level	features	using	large-scale	unsupervised	learning.	ICML	2012

Top	stimuli	from	the	test	set

The Cat Neuron
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Random	distractors

Cat	faces

Feature	value

Le,	et	al.,	Building	high-level	features	using	large-scale	unsupervised	learning.	ICML	2012

Frequency

The Cat Neuron
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Neuron	1

Neuron 2

Neuron 3

Neuron 4

Neuron 5

Le,	et	al.,	Building	high-level	features	using	large-scale	unsupervised	learning.	ICML	2012

Best Neuron Stimuli
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Neuron 7 

Neuron 8

Neuron 6

Neuron 9

Le,	et	al.,	Building	high-level	features	using	large-scale	unsupervised	learning.	ICML	2012

Best Neuron Stimuli
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Neuron 11 

Neuron 10

Neuron 12

Neuron 13

Le,	et	al.,	Building	high-level	features	using	large-scale	unsupervised	learning.	ICML	2012

Best Neuron Stimuli
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22,000	categories

14,000,000	 images

Hand-engineered	 features	(SIFT,	HOG,	LBP),	
Spatial	pyramid,	 	SparseCoding/Compression

Le,	et	al.,	Building	high-level	features	using	large-scale	unsupervised	learning.	ICML	2012

ImageNet Classification
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…
smoothhound,	 smoothhound shark,	Mustelus mustelus
American	 smooth	dogfish,	Mustelus canis
Florida	 smoothhound,	Mustelus norrisi
whitetip shark,	 reef	whitetip shark,	Triaenodon obseus
Atlantic	 spiny	dogfish,	Squalus acanthias
Pacific	 spiny	dogfish,	Squalus suckleyi
hammerhead,	 hammerhead	 shark
smooth	hammerhead,	 Sphyrna zygaena
smalleye hammerhead,	 Sphyrna tudes
shovelhead,	 bonnethead,	 bonnet	shark,	Sphyrna tiburo
angel	 shark,	angelfish,	Squatina squatina,	monkfish
electric	 ray,	crampfish,	numbfish,	torpedo
smalltooth sawfish,	Pristis pectinatus
guitarfish
roughtail stingray,	Dasyatis centroura
butterfly ray
eagle	 ray
spotted	eagle	 ray,	spotted	ray,	Aetobatus narinari
cownose ray,	cow-nosed	 ray,	Rhinoptera bonasus
manta,	manta	 ray,	devilfish
Atlantic	manta,	Manta	birostris
devil	 ray,	Mobula hypostoma
grey	skate,	gray	skate,	Raja	batis
little	 skate,	Raja	erinacea
…

Stingray

Mantaray

22,000 is a lot!
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0.005%
Random	guess

1.5% ?

Le,	et	al.,	Building	high-level	features	using	large-scale	unsupervised	learning.	ICML	2012

Pre	Neural	Networks GoogLeNet
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0.005%
Random	guess

1.5%
Pre	Neural	Networks

43.9%
GoogLeNet

Szegedy et al, Going	Deeper	With	Convolutions,	 CVPR	2015
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Vision has Social Implications

Neural network
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http://sustain.stanford.edu/

http://sustain.stanford.edu/http://sustain.stanford.edu/
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The	hypothesis
Much of perception in the brain can be 
explained with a single learning algorithm. 

[Andrew Ng]

One Algorithm Hypothesis
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One	Learning	Algorithm

[Roe et al., 1992]

Auditory cortex learns to see

Auditory Cortex

[Andrew Ng]

One Algorithm Hypothesis
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[Metin & Frost, 1989]

Somatosensory cortex learns to see

Somatosensory Cortex

[Andrew Ng]

One Algorithm Hypothesis



Piech,	CS106A,	Stanford	University

Tl;dr our brain is constantly decomposing
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Told Vision Was 30 Years Out
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Almost perfect…

Told Speech Was 30 Years Out
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Huge Progress
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http://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html

Deep Reinforcement Learning
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The end


