Machine Learning

Chris Piech
CS106A, Stanford University




AqguariumSimulator




Architecture

(" )

Simulator
\ Has a tank
(" )

FishTank
. Yy, Has many fish
—

Fish
Has an img \\ ) e 2 q0u
v A i

GO &=




Architecture
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to update its image
and goal each
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Architecture

The job of a fish

tank is to keep 4 )
track of all the fish ,
and to tell them to FishTank
update each 9 y
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The job of the
simulator is to
“control” the
program. Handle
user events, run
animation.
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Whose job is it to put the imges
on the screen?



Architecture

(" )

Simulator
\ Has a tank
(" )

FishTank
. Yy, Has many fish
—

Fish
Has an img \\ ) e 2 q0u
v A i

GO &=




Architecture

The job of a fish

tank is to manage 4 )

the display and
state.

FishTank

. J




extends

Make a class inherit all the
instance variables and methods
of another class




public class Simulator extends GraphicsProgram {
// class definition




public class NameSurferGraph extends GCanvas {
// class definition




public class FishTank extends GCanvas {
// class definition
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AqguariumSimulator




implements

I promise that this class will define
a few given methods




public class NameSurferGraph extends GCanvas,
implements ComponentListener {
// class definition




Also a cheeky way to share constants between classes

implements

I promise that this class will define
a few given methods




Machine Learning



Machine Learning
or, How we learned to decompose



There is something going on
in the world of Al



Something big (for us)...



[suspense]



How can we develop intelligent agents?
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Computer
programs

\

How can we develop intelligent agents?

/)

Better than
chance

As well as
humans




Early Optimism 1950

1952

1955
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Early Optimism 1950

“Machines will be capable,
within twenty years, of

doing any work a man can
do.”

—Herbert Simon, 1952




Underwhelming Results 1950s to 1980s

The spirit is willing but the flesh is weak.

'

(Russian)

'

The vodka is good but the meat is rotten.

The world is too complex




BRACE YOURSELVES




Machine Learning: Learn From Experience




Some success



Hard problems seemed impossible.






Can we predict hand written digits?

6/23.&/5.6)00?
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Can we predict birds vs planes?
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Vision is Hard

WHEN A USER TAKES A PHOTO),
THE. APP SHOULD CHECK WHETHER
THEY'RE. IN A NATIONAL PARK ...

SURE, ERSY GIS (OOKUR
GIMME A FEW HOURS.

.. AND CHECK WUHETHER
THE PHOTO IS OF A BIRD.
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Vision is Hard

You see this:
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[Andrew Ng]



Motorcycle




Great idea inspired by biology
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Some Inputs are More Important

~—~— .
—>Dcndrites




Artificial Neuron

Termiral buﬂ:n—ﬁg




Artificial Neuron




Artificial Neuron

1 2
1;:5::*
) 099
0 ,ii:;K:::>
1
1

buildup

inputl
input2
input3
input4

* % ok %

weightl +
weight2 +
weight3 +
welght4




Artificial Neuron
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NeuronGraphi

Artificial Neuron
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Digit Recognition Example

Let’'s make feature vectors from pictures of numbers

input — [0,0,0,0,..‘.\,1,0,0,1,...0,0,1,0]
label = ()

nput = 10,0,1,1,...,0,1,1,0,...0,1,0,0]




Single Neuron

This means it
10 predictsa O

C00 . O00000000




Single Neuron

Indicates fully

connected This means it
) predictsa O

{ Ce0O .. O0O® OQOOOOJ




Single Neuron

This means it
) predicts a 1

{ C0® . O00 OQOOOOJ




Not So Good

This means it
) predicts a 1

{ Ce0® .. O0O® OOQOOOJ




Logistic Regression and Neural Networks

» Single Neuron:
X0 0,
X2 62
x; 0> y

0
X4

 Neural network




Biological Basis for Neural Networks

A neuron Artificial Neuron

X0 0,

X, 6,




We Can Put Neurons Together

This means it
—_—) predictsa O
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We Can Put Neurons Together

( ) There is an
O adjustable parameter
O for every connection
N\ SN
O N O
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o O This means it
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Look at a single ’hidden’: neuron



What Does This Look Like in Code?

@ @® = workspace - Java - Neuron/Neuron.java - Eclipse
i _ T eaElRE S %S . DE M F- 0" Q- G BB & S il ooy B & 3%
& = 8
& |J] NeuralNetwork.j 3 Tank.java b FileWriter.clas o1p FileOutputStrea . w Fish.java +J| AquariumSimulator.java +J] Neuron.java g%

7 public class NeuralNetwork extends ConsoleProgram{ ZE public class Neuron extends GraphicsProgram {

9 private static final int N_INPUTS = 1024; 14 private ArraylList<Double> weights = null;

10 private static final int N_LAYERI = 20; 15 |

11 16 public Neuron(String fileName, int n) {

12 private ArraylList<Neuron> layerl = null; 17 loadWeightsFromFile(fileName, n);

13 private Neuron prediction = null; 18 1

1 9

al5 public void runQ) { 20 public double activate(ArraylList<Double> inputs) {

16 loadNeuralNetwork(); 21 double weightedSum = 0.0;

17 22 for(int i = @; 1 < inputs.size(Q); i++) {

18 // make predicitons 23 weightedSum += inputs.get(i) * weights.get(i);

19 GImage birdImage = new GImage("bird6.png"); 24 }

20 GImage planeImage = new GImage("airplane4.png"); 25 return sigmoid(weightedSum);

21 26 }

22 makePrediction(birdImage); 27

23 makePrediction(planelmage); 28 private double sigmoid(double x) {

2 } 29 return 1.0 / (1.0 + Math.exp(-x));

25 30 }

26 private void makePrediction(GImage img) { 31

27 // turn the image into inputs 32 private void loadWeightsFromFile(String fileName, int

28 ArrayList<Double> inputs = new ArraylList<Double>(); 33 weights = new ArraylList<Double>();

29 int[J[] pixelArray = img.getPixelArray(); 34 try {

0 for(int r = @; r < pixelArray.length; r++) { 35 BufferedReader rd = new BufferedReader(new Fil

for(int c = @; c < pixelArray[@].length; c++) {
Color color = new Color(pixelArray[r][c]);

double greyScale = getGrey(color);
inputs.add(greyScale);

36 while(Ctrue) {

3 String line = rd.readLine();

38 if(line == null) break;

39 weights.add(Double.parseDouble(line));
40 }

Writable Smart Insert 15:1 £




Aside: decomposition



How do we get those weights?



Neural Network
Each node Each edge
represents a represents the

neuron (or a vector weight of the
of neurons) interaction




Forward Pass...



Forward Pass

Each node Each edge
represents a represents the

neuron (or a vector weight of the
of neurons) interaction




Forward Pass

Each node Each edge
represents a represents the

neuron (or a vector weight of the
of neurons) interaction
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Forward Pass

Each node Each edge
represents a represents the

neuron (or a vector weight of the
of neurons) interaction
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Forward Pass

Each node Each edge
represents a represents the

neuron (or a vector weight of the
of neurons) interaction
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Backward Pass...



Backward Pass
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Backward Pass

The image had a 0

We start by making our but we predicted a 1
mlsspredlctlon a

numerical “loss” /' \
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Backward Pass

The image had a 0

We start by making our but we predicted a 1
mlsspredlctlon a

numerical “loss” /' \
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For each edge weight
we calculate

OL.oss

\ OEdgeWeight
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Chain Rule Down the Network

di;




Artificial Neurons: One of the greatest
decompositions of our lifetimes



model.calculatePartialDerivative(data)



model.update(data)



Works for any number of layers

Weight between two neurons
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Let’s Train!

test accuracy based on last 200 test images: 0.2894736842105263
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http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
Piech, CS106A, Stanford University




Like lego pieces



GoogleNet Brain

1 Trillion Artificial Neurons



GoogleNet Brain Graph

Multiple,
Multi class output
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22 layers deep




The Face Neuron

Top stimuli from the test set Optimal stimulus
by numerical optimization

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



The Cat Neuron

Optimal stimulus

Top stimuli from the test set : .
by numerical optimization

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



The Cat Neuron

Random distractors

Cat faces

Frequency

[ I} >

Feature value

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



Hirg the smartest neople in the world
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Best Neuron Stimuli

Neuron 1

Neuron 2

Neuron 3 ;-_.
e "

Neuron 4 ./

Neuron 5

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



Best Neuron Stimuli

MEl i M

Neuron 8

Neuron 9

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



Best Neuron Stimuli

Neuron 10

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



ImageNet Classification

22,000 categories
14,000,000 images

Hand-engineered features (SIFT, HOG, LBP),
Spatial pyramid, SparseCoding/Compression

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



22,000 is a lof!

smoothhound, smoothhound shark, Mustelus mustelus

American smooth dogfish, Mustelus canis

Florida smoothhound, Mustelus norrisi

whitetip shark, reef whitetip shark, Triaenodon obseus

Atlantic spiny dogfish, Squalus acanthias _
Pacific spiny dogfish, Squalus suckleyi Stingray
hammerhead, hammerhead shark BT
smooth hammerhead, Sphyrna zygaena \

smalleye hammerhead, Sphyrna tudes

shovelhead, bonnethead, bonnet shark, Sphyrna tiburo
angel shark, angelfish, Squatina squatina, monkfish
electric ray, crampfish, numbfish, torpedo

smalltooth sawfish, Pristis pectinatus Mantaray
guitarfish

¢

eagle ray
spotted eagle ray, spotted ray, Aetobatus narinari
cownose ray, cow-nosed ray, Rhinoptera bonasus
manta, manta ray, devilfish

Atlantic manta, Manta birostris

\ C d K d

little skate, Raja erinacea



0.005% 1.5%

Random guess Pre Neural Networks GoogleNet

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



0.005% 1.5%

Random guess Pre Neural Networks GoogleNet

Szegedy et al, Going Deeper With Convolutions, CVPR 2015



Vision has Social Implications

- 92%
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Neural network



Estimated daily per capita expenditure, 2012-2015

Nigeria

B
1.5 , 3 4 8
Average daily per capita consumption expenditure (S)

http://sustain.stanford.edu/

Tanzania

Malawi



One Algorithm Hypothesis

Much of perception in the brain can be
explained with a single learning algorithm.

[Andrew Ng]



One Algorithm Hypothesis

A vy / ’ j

Auditory Corte>£

Auditory cortex learns to see

[Roeetal.,1992]
[Andrew Ng]



One Algorithm Hypothesis

[Metin & Frost, 1989]

[Andrew Ng]



Tl;dr our brain is constantly decomposing



Told Vision Was 30 Years Out



Told Speech Was 30 Years Out

Almost perfect...




Huge Progress




Deep Reinforcement Learning
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http://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html




The end



